烷烃的微生物降解及其羟化酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从我国东海近海污泥中分离筛选出一株高效降解烷烃的细菌,经形态、生理生化特性及其16S rDNA序列分析,将此菌株初步鉴定为食碱菌属(Alcanivorax sp.),命名为2B5。菌株2B5为革兰氏阴性,球形,能产生物表面活性剂,不能利用葡萄糖、蔗糖等碳源,以酵母粉为唯一氮源时生长较好。菌株2B5能够在96h内完全降解500 mg/L正十八烷,降解正十八烷的最适温度是30-37℃,最适pH值为6.0-7.0,最适NaCl浓度为2%-9%。菌株2B5能够降解原油中C13-C30的正构烷烃及姥鲛烷、植烷等支链烷烃,在人工海水中降解原油中烷烃的最适温度是30℃,最适接种量为1%,通气量越大越好,补加2 g/L NH4NO3和0.25 g/L酵母粉可以明显地提高原油中烷烃的降解率。由于其较高的烷烃降解率和较广的烷烃降解谱,菌株2B5可以应用于海洋石油污染的生物修复。
     从山东东营胜利油田油井下的油水混合物中分离筛选出一株嗜热烷烃降解菌株,经形态、生理生化特性及其16S rDNA序列分析,将其初步鉴定为土芽孢杆菌属(Geobacillus sp.),命名为MH-1。菌株MH-1为革兰氏阳性,长杆状,能产芽孢。菌株MH-1在培养96h后对正十六烷的降解率达92%以上,降解的最适温度是70℃,最适pH值为6.0,能够在6天内降解原油中的大部分中链烷烃及部分长链烷烃。
     首先从菌株2B5中克隆出alkB基因的保守片段,在此基础上通过SEFA-PCR方法成功克隆出alkB全长基因及其上、下游序列。氨基酸序列分析表明,该基因与具有完整ORF的Marinobacter sp. ELB17的putitave AlkB具有最高的同源性(65%),与经过功能验证的Alcanivorax borkumensis SK2的A1kB1的同源性为41.9%,存在四个含His的保守基序,分别为Hist-1、Hist-2、Hist-3和HYG-motif。进一步将该基因在P. fluorescens KOB2△1进行异源表达,恢复了P. fluorescens KOB2△1降解烷烃的功能,表明该基因就是烷烃羟化酶基因(GenBank登录号为No. FJ905614),能够氧化C14和C16烷。通过RT-PCR方法证明该alkB基因能够在指数生长期被正十八烷诱导表达。在alkB基因的上、下游序列中分别存在一个与AraC家族转录调控蛋白有关序列的同源性达58%的ORF和一个与Shewanella sp. W3-18-1菌株的siderophore-interacting protein的氨基酸序列的同源性达45%的ORF。
     从菌株2B5中成功克隆出细胞色素P450基因及其基因簇,该基因簇包含5个完整的ORF,它们分别与Limnobacter sp. MED 105菌株的transcriptional regulator和Alcanivorax dieselolei B-5T菌株的putative ferrodoxin、cytochrome P450 alkanehydroxylase、putative alcohol dehydrogenas、putative FAD-dependent oxidoreductase family protein的氨基酸序列的同源性达73%、98%、99%、99%和99%,将此5个ORF分别命名为transcriptional regulator, fdx、P450、alkJ和fdr。通过在E. coli BL21 (DE3)中构建多顺反子结构fdx、P450和fdr基因的共表达系统,检测P450基因的功能活性,但没有显示出活性。
     研究了Geobacillus sp. MH-1菌株中的alkB基因及其基因簇。采用普通PCR方法从Geobacillus sp. MH-1中获得alkB基因的同源物, alkB-geol、alkB-geo4和alkB-geo6,它们分别与Rhodococcus sp. Q15中alkB4、alkB3和alkB2基因高度同源。进一步采用SEFA-PCR的方法,获得alkB-geo6基因簇的完整序列(GenBank登录号为No. FJ977899),该基因簇包含putative transporter、alkB-geo6、rubA3、rubA4和putative regulatory protein。核苷酸和氨基酸序列分析表明,alkB-geo6基因簇的核苷酸序列与Rhodococcus sp. Q15和Rhodococcus sp. NRRL-16531的alkB2的基因簇的序列同源性高达98%。在菌株MH-1的AlkB-geo6中同样发现了四个含His的保守基序,分别为Hist-1、Hist-2、Hist-3和HYG-motif。菌株MH-1的AlkB-geo6和Rhodococcus sp. Q15及Rhodococcus sp. NRRL-16531的AlkB2氨基酸序列高度同源,只有4个氨基酸位点发生了变化。
A bacterium strain,2B5, was isolated from the sea mud of the crude oil-polluted Donghai area in China, which was capable of utilizing alkane as the sole carbon source for its growth. This bacterium was identified preliminarily as Alcanivorax sp. based on its physiological characteristics and analysis of its 16S rDNA sequence. The strain 2B5 was a round-shaped, gram-negative bacterium which produced biosurfactant. The strain 2B5 degraded 500 mg/L octadecane in 96h. Surgars could not be metabolized by the strain 2B5. The optimal temperature and pH for strain 2B5 growth and octadecane degradation were 30~37℃and pH 6.0~7.0, respectively. NaCl is required for strain 2B5 growth and octadecane degradation with the optimal concentrations of 20 to 90 g/L. Strain 2B5 was able to degrade C13~C3o n-alkanes and branched alkanes (pristane and phytane) in crude oil as the sole carbon source. The optimal temperature and inoculum for strain 2B5 alkanes in crude oil degradation were 30℃and 1%, respectively. The aeration has little effect on degrading ability of the strain 2B5. NH4NO3 (2 g/L) and yeast extract (0.25 g/L) could improve degrading ability largely. Based on these results, it is obvious that the strain 2B5 could potentially be useful for the remediation of hydrocarbon pollution in the marine environment.
     An extremely thermophilic alkane-degrading bacterium, strain MH-1 was isolated from the deep subterranean petroleum reservoir in Shengli oil field in China. The strain MH-1 was rod-shaped gram-positive strain. Based on its physiological characteristics and analysis of its 16S rRNA gene sequence, the strain MH-1 was identified as Geobacillus sp. The strain MH-1 was able to grow at temperatures ranging from 50 to 72℃and effectively degraded hexadecane as the sole carbon source at 70℃. The strain MH-1 degraded alkanes with different length chain (C12~C31) in crude oil, but it preferentially degraded middle chain-alkanes.
     A novel alkane hydroxylase gene (GenBank Accession No. FJ905614), obtained by self-formed adaptor PCR (SEFA-PCR), showed 41.9% deduced amino acid sequence identity with AlkB1 of Alcanivorax borkumensis SK2. Functional heterologous expression of the alkB gene was achieved in Pseudomona fluorescens KOB2△1. Recombinant Pseudomonas containing the alkB gene of Alcanivorax sp.2B5 recovered the ability to grow on C14 and C16 n-alkanes. The three conserved histidine motifs and a fourth motif found in the alkane hydroxylases were identified in the AlkB of the strain 2B5. RT-PCR analysis showed that expression of the alkB gene was induced by octadecane. The immediately upstream sequence of the alkB gene was found to encode a peptide with 58% sequence similarity with a putative AraC family transcriptional regulator protein. In the downstream region of the alkB gene, an open reading fame was 45% similar to the deduced amino acid sequence of the siderophore-interacting protein in Shewanella sp. W3-18-1.
     Cytochrome P450 gene and its cluster were also cloned by the same method. The cluster included transcriptional regulator, fdx, P450, alkJ and fdr which had a 73%,98%, 99%,99% and 99% sequence similarity respectively with transcriptional regulator of Limnobacter sp. MED 105 and putative ferrodoxin cytochrome (Fdx), P450 alkane hydroxylase, putative alcohol dehydrogenas, putative FAD-dependent oxidoreductase family protein (Fdr) of Alcanivorax dieselolei B-5T. The fdx, P450 and fdr genes were ligated into expression vector pET29a, then transformed into E.coli BL21 (DE3) which could not degrade alkane s.
     Alkane hydroxylase system of Geobacillus sp. MH-1 was characterized by self-formed adaptor PCR (SEFA-PCR). It contained at least three alkane monooxygenase gene homologs such as alkB-geol, alkB-geo4 and alkB-geo6, which had a high sequence similarity with alkB4, alkB3 and alkB2 in Rhodococcus sp. Q15, respectively. AlkB-geo6 cluster (GenBank Accession No. FJ977899) included putative transporter, alkB-geo6, rubA3, rubA4 and putative regulatory protein, which had a high sequence similarity (98%) with the alkB2 cluster of Rhodococcus sp. NRRL B-16531 and Q15. The conserved Hist-1, Hist-2, Hist-3 and HYG-motif were also found in the AlkB-geo6 of strain MH-1. AlkB-geo6 in strain MH-1 had a very high amino acid sequence similarity with AlkB2 of Rhodococcus sp. Q15 and Rhodococcus sp. NRRL-16531. There was only four amino acids variation among them.
引文
[1]Shell International Ltd.,1983. The chemistry of petroleum. In:The Petroleum Handbook,6th ed., Elsevier, New York, pp.223-264.
    [2]Wang, Z., Fingas, M. Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography. Journal of Chromatography.1997,774:51-78.
    [3]冯君,唐丽娜,张晋京,等.长期石油污染土壤腐殖质组成的研究.环境科学.2008,29(5):1425-1429.
    [4]李凯峰,温青,夏淑梅.石油污染土壤的生物处理技术.应用科技.2002,29(10):62-64.
    [5]易绍金,马文臣.利用本源微生物修复技术处理含油土壤试验研究.石油与天然气化工.2006,35(4):326-328.
    [6]毛国成,刘晓冬,纪学雁,等.用生物法治理大庆油田地表油污土壤.油气田环境保护.2004,11(1):30-32.
    [7]夏平,李学亚,刘斌.石油污染的生物修复.污染防治技术.2006,19(3):37.
    [8]胡晓芳,夏福军,朱南文,等.原油污染土壤的生物法修复效果研究.环境化学.2006,25(5):24.
    [9]王红旗,陈延君,孙宁宁.土壤石油污染物微生物降解机理与修复技术研究.地学前缘(Earth Science Frontiers).2006,13(1):134-135.
    [10]Balba, M. T., Al—Awadhi, N., A1-Daher, R. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods.998,32(2):155-164.
    [11]Hinchee, R. E., Downey, D. C, Dupont, R. R.., et al. Enhancing biodegradation of petroleum hydrocarbons through soil venting. Journal of Hazardous Materials.1991,27(3):315-325.
    [12]张旭,李广贺,黄巍.石油烃污染土层生物修复模拟实验研究.清华大学学报(自然科学版)2000,40(11):106-108.
    [13]R Boopathy. Factors limiting bioremediation technologies.Bioresource Technology.2000,74: 63-67.
    [14]Sohngen, N. L. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoffund Energiequelle fur Mikroben. Zentr. Bacteriol. Parasitenk. Abt. II,1913,37:595-609.
    [15]李法云.污染土壤生物修复理论基础与技术.北京:化学工业出版社.2006,70-99.
    [16]张子间,刘勇弟,孟庆梅,张立辉.微生物降解石油烃污染物的研究进展.化工环保.2009,29(3):193-199.
    [17]Yakimov, M. M., Golyshin, P. N., Lang, S., et al. Alcanivorax borkumensis gen nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 1998,48:339-348.
    [18]Dutta, T. K., Harayama, S. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol.2001,67:1970-1974.
    [19]R.M.阿特拉斯著,黄第藩译.石油微生物学.北京:石油工业出版社,1991.
    [20]Ratl Edge, C. Degradation of aliphatic hydrocarbons in developments in biodegradation of hydrocarbons. London: Applied Science.1978.
    [21]Aurich, H. Die oxidation aliphatischer Kohlenwasserstoffe durch bakterien. Math-Naturwiss Technik.1979,16:12-24.
    [22]Rehm, H. J., Reief, I. Mechanism and occurrence of microbial oxidation of long-chain alkanes. Adv. Bio. Eng.1981,24:1241-1269.
    [23]Watkinson, R. J., Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation.1990,1:79-92.
    [24]Ashraf, W., Mihdhir, A., Murrell, J. C. Bacterial oxidation of propane. FEMS Microbiol Lett.1994, 122:1-6.
    [25]van Hamme, J. D., Singh, A., and Ward, O. P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev.2003,67:503-549.
    [26]Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B., and Throne-Holst, M. Bacterial metabolism of long chain n-alkanes. Appl. Microbiol. Biotechnol.2007,76:1209-1221.
    [27]Coon, M. J. Omega oxygenases:nonheme-iron enzymes and P450 cytochromes. Biochem. Biophys. Res. Commun.2005,338:378-385.
    [28]Whyte, L. G., Hawari, J., Zhou, E., Bourbonniere, L., Inniss, W. E., and Greer, C. W. Biodegradation of variablechain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol.1998,64:2578-2584.
    [29]Kotani, T., Kawashima, Y., Yurimoto, H., Kato, N., and Sakai, Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J. Biosci. Bioeng.2006,102:184-192.
    [30]Fernando Rojo. Degradation of alkanes by bacteria. Environmental Microbiology.2009,11(10): 2477-2490.
    [31]Widdel, F., and Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol.2001,12:259-276.
    [32]Coates, J. D., Woodward, J. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in pet roleum-contaminated marine harbor sediments. Appl. Environ. Microbiol.1997,63: 3589-3593.
    [33]Kniemeyer, O., Musat, F., Sievert, S. M., Knittel, K., Wilkes, H., Blumenberg, M., et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature.2007,449: 898-901.
    [34]Widdel, F., and Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol.2001,12:259-276.
    [35]Hamamura, N., Storfa, R. T., Semprini, L., and Arp, D. J. Diversity in butane monooxygenases among butane-grown bacteria. Appl. Environ. Microbiol.65:4586-4593.
    [36]Dubbels, B. L., Sayavedra-Soto, L. A., and Arp, D. J. Butane monooxygenase of 'Pseudomonas butanovora':purification and biochemical characterization of a terminalalkane hydroxylating diiron monooxygenase. Microbiology.2007,153:1808-1816.
    [37]Lieberman, R. L., and Rosenzweig, A. C. Biological methane oxidation:regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 2004,39:147-164.
    [38]Hakemian, A. S., and Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem.2007,76:223-241.
    [39]Ashraf, W., Mihdhir, A., and Murrell, J. C. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994,122:1-6.
    [40]Arp, D. J. Butane metabolism by butane-grown 'Pseudomonas butanovora'. Microbiology.1999, 145:1173-1180.
    [41]Sluis, M. K., Sayavedra-Soto, L. A., and Arp, D. J. Molecular analysis of the soluble butane monooxygenase from'Pseudomonas butanovora'. Microbiology.2002,148:3617-3629.
    [42]Dubbels, B. L., Sayavedra-Soto, L. A., and Arp, D. J. Butane monooxygenase of 'Pseudomonas butanovora':purification and biochemical characterization of a terminalalkane hydroxylating diiron monooxygenase. Microbiology.2007,153:1808-1816.
    [43]Kotani, T., Yamamoto, T., Yurimoto, H., Sakai, Y., and Kato, N. Propane monooxygenase and NAD+ -dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J. Bacteriol.2003,185:7120-7128.
    [44]Kotani, T., Kawashima, Y., Yurimoto, H., Kato, N., and Sakai, Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J. Biosci. Bioeng.2006,102:184-192.
    [45]Baptist, J. N., Gholson, R. K., and Coon, M. J. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim. Biophys. Acta.1963,69:40-47.
    [46]van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Rothlisberger, M., and Witholt, B. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences:evolution and regulation of the alk-genes. Microbiology.2001,147:1621-1630.
    [47]van Beilen, J. B., Penninga, D., and Witholt, B. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J. Biol. Chem.1992a,267:9194-9201.
    [48]Shanklin, J., Whittle, E., and Fox, B. G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry.1994,33:12787-12794.
    [49]Smits, T. H. M., Rothlisberger, M., Witholt, B., and van Beilen, J. B. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol.1999, 1:307-317.
    [50]Smits, T. H., Balada, S. B., Witholt, B., and van Beilen, J. B. Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J. Bacteriol.2002,184:1733-1742.
    [51]Smits, T. H., Witholt, B., and van Beilen, J. B. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek.2003,84:193-200.
    [52]Marin, M. M., Smits, T. H., van Beilen, J. B., and Rojo, F. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J. Bacteriol.2001,183: 4202-4209.
    [53]van Beilen, J. B., Smits, T. H., Whyte, L. G., Schorcht, S., Rothlisberger, M., Plaggemeier, T., et al. Alkane hydroxylase homologues in Gram-positive strains. Environ. Microbiol.2002b,4:676-682.
    [54]van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M., and Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas. Sci. Technology.2003,58:427-440.
    [55]van Beilen, J. B., Marin, M. M., Smits, T. H., Rothlisberger, M., Franchini, A.G., Witholt, B., and Rojo, F. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol.2004,6:264-273.
    [56]Kuhn, E., Bellicanta, G. S., and Pellizari, V. H. New alk genes detected in Antarctic marine sediments. Environ. Microbiol.2009,11:669-673.
    [57]Thomas Maier, Hans-Heinrich Forster, Otmar Asperger, and Ulrich Hahn. Molecular Characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104.Biochemical and Biophysical Research Communications.2001,286:652-658.
    [58]van Beilen, J.B., Funhoff, E.G., van Loon, A., Just, A., Kaysser, L., Bouza, M., et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl. Environ. Microbiol.2006,72:59-65.
    [59]Sekine, M., Tanikawa, S., Omata, S., Saito, M., Fujisawa, T., Tsukatani, N., et al. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ. Microbiol.2006,8: 334-346.
    [60]Schneiker, S., dos Santos, V., Bartels, D., et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotech.2006,24: 997-1004.
    [61]Funhoff, E.G., Bauer, U., Garcia-Rubio, I., Witholt, B., and van Beilen, J.B. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J. Bacteriol.2006,188:5220-5227.
    [62]Schmitz, C., Goebel, I., Wagner, S., Vomberg, A., and Klinner, U. Competition between n-alkane assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl. Microbiol. Biotechnol.2000,54:126-132.
    [63]Zimmer, T., Ohkuma, M., Ohta, A., Takagi, M., and Schunck, W.H. The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem. Biophys. Res. Commun.1996,224:784-789.
    [64]Ohkuma, M., Zimmer, T., Iida, T., Schunck, W.H., Ohta, A., and Takagi, M. Isozyme function of n-alkane inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption. J. Biol. Chem.1998,273:3948-3953.
    [65]Iida, T., Sumita, T., Ohta, A., and Takagi, M. The cytochrome P450ALK multigene family of an n-alkane assimilating yeast, Yarrowia lipolytica:cloning and characterization of genes coding for new CYP52 family members. Yeast.2000,16:1077-1087.
    [66]Maeng, J. H., Sakai, Y., Ishige, T., Tani, Y., and Kato, N. Diversity of dioxygenases that catalyze the first step of oxidation of long-chain n-alkanes in Acinetobacter sp. strain M-l. FEMS Microbiol Lett.1996,141:177-182.
    [67]Tani, A., Ishige, T., Sakai, Y., and Kato, N. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J. Bacteriol.2001,183:1819-1823.
    [68]Throne-Holst, M., Wentzel, A., Ellingsen, T.E., Kotlar, H.K., and Zotchev, S.B. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol.2007,73:3327-3332.
    [69]Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. USA,2007,104:5602-5607.
    [70]Chakrabarty, A. M., Chou, G., Gunsalus, I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Natl. Acad. Sci.1973,70(4):1137-1140.
    [71]Ratajczak, A., Geiβdorfer, W., and Hillen, W. Alkane hydroxylase from Acinetobacter sp. Strain ADP-1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases. Appl. Environ. Microbiol.1998,64:1175-1179.
    [72]Hamamura, N., Yeager, C. M., and Arp, D. J. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl. Environ. Microbiol.2001,67:4992-4998.
    [73]Marin, M.M., Smits, T.H.M., van Beilen, J.B., and Rojo, F. The alkane hydroxylase gene of Burkholderia Cepacia RR10 is under catabolite repression control. J. Bacteriol.2001,183: 4202-4209.
    [74]Andreoni, V., Bernasconi, S., Colombo, M., van Beilen, J.B., and Cavalca, L. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ. Microbiol.2000,2: 572-577.
    [75]Whyte, L.G., Smits, T.H.M., Labbe, D., Witholt, B., Greer, C.W. and van Beilen, J. B. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus Strains Q15 and NRRL B-16531. Appl. Environ. Microbiol.2002,11:5933-5942.
    [76]van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Rothlisberger, M., and Witholt, B. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences:evolution and regulation of the alk-genes. Microbiology.2001,147:1621-1630.
    [77]Kok, M., Oldenhuis, R., van der Linden, M.P., Raatjes, P., Kingma, J., van Lelyveld, P.H., and Witholt, B. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J. Biol. Chem.1989,264:5435-5441.
    [78]Canosa, I., Yuste, L., and Rojo, F. Role of the alternative sigma factor sigma S in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. J. Bacteriol.1999, 181:1748-1754.
    [79]Canosa, I., Sanchez-Romero, J.M., Yuste, L., and Rojo, F. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol. Microbiol.2000,35:791-799.
    [80]Panke, S., Meyer, A., Huber, C.M., Witholt, B., and Wubbolts, M.G. An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol.1999,65: 2324-2332.
    [81]Yuste, L., Rojo, F. Role of the crc gene in catabolic repression of the Pseudomonas putida GPol alkane degradation pathway. J. Bacteriol.2001,183(21):6197-6206.
    [82]Kurth, E.G., Doughty, D.M., Bottomley, P.J., Arp, D.J., and Sayavedra-Soto, L.A. Involvement of BmoR and BmoG in n-alkane metabolism in 'Pseudomonas butanovora'.Microbiology.2008, 154:139-147.
    [83]Doughty, D.M., Sayavedra-Soto, L.A., Arp, D.J., and Bottomley, P.J. Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J.Bacteriol.2006,188:2586-2592.
    [84]Marin, M.M., Yuste, L., and Rojo, F. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J. Bacteriol.2003,185:3232-3237.
    [85]Sabirova, J.S., Ferrer, M., Regenhardt, D., Timmis, K.N., and Golyshin, P.N. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J. Bacteriol. 2006,188:3763-3773.
    [86]Hara, A., Baik, S.H., Syutsubo, K., Misawa, N., Smits, T.H., van Beilen, J.B., and Harayama, S. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ. Microbiol.2004,6:191-197.
    [1]丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志.2000,19(2):50-55.
    [2]苏国荣等.微生物对石油烃的降解机理及影响因素.化工环保.2001,21(4):205-208.
    [3]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社.2001.
    [4]Hort, J.G., Krieg, N.R., Sneath, P.H.A., et al. Bergey's Manual of Determinative Bacteriology 9 edition. Baltimore:The Williams & Wilkins Co,1994.
    [5]Marin, M., Pedregosa, A., Rios, S., Laborda, F. Study of factors influencing the degradation of heating oil by Acinetobacter calcoaceticus MM5. Int. Biodeter. Biodegr.1996,33:69-75.
    [6]Kyung, H.S., Kyoung, W.K., Yeonghee, A. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process. Journal of Hazardous Materials.2006,137:1831-1837.
    [7]Volkering, F., Breure, A.M. and Rulken, W.H. Microbiological aspects of surfactant ues for biological soil remediation. Bioremediation.1998,8:401-417.
    [8]Hara, A.,Syutsubo, K., Harayama, S. Alcanivorax which prevails in oil-contami nated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol.2003,5(9):746-753.
    [9]Peter N. Golyshin, Vitor A.P. Martins Dos Santos, Olaf Kaiser, Manuel Ferrer, Yulia S. Sabirova, H. Lunsdorf, Tatyana N. Chernikova, Olga V. Golyshina, Michail M. Yakimov, Alfred Puhler, Kenneth N. Timmis. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology.106,2003:215-220.
    [10]Syutsubo, K., Kishira, H. and Harayama, S. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol.2001,3:371-379.
    [1]Hara, A., Syutsubo, K., Harayama, S. Alcanivorax which prevails in oil-contami nated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol.2003,5(9):746-753.
    [2]Schneiker, S., dos Santos, V., Bartels, D., et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotech.2006,24: 997-1004.
    [3]Chenli Liu and Zongze Shao. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. International Journal of Systematic and Evolutionary Microbiology.2005,55:1181-1186.
    [4]Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B. Formation of polyesters by Pseudomonas oleovorans:effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol.1988, 54(12):2924-2932.
    [5]Smits, T.H.M., Seeger, M.A., Witholt, B., van Beilen, J.B., New alkane-responsive expression vectors for E. coli and Pseudomonas. Plasmid.2001,46:16-24.
    [6]Smits, T.H.M., Balada, S.B., Witholt, B., van Beilen, J.B. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J. Bacteriol.2002,184:1733-1742.
    [7]Shiming Wang, Jian He, Zhongli Cui and Shunpeng Li. Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl. Environ. Microbiol.2007,73(15):5048-5051.
    [8]萨姆布鲁克,拉赛尔著,黄培堂等译.分子克隆实验指南[M].第三版.科学出版社,2002.
    [9]Smits, T.H.M., Rothlisberger, M., Witholt, B., van Beilen, J.B. Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ. Microbiol.1999,1(4): 307-317.
    [10]van Beilen, J. B., Marin, M. M., Smits, T. H., Rothlisberger, M., Franchini, A.G., Witholt, B., and Rojo, F. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol.2004,6:264-273.
    [11]Momcilo, S., Vidakovic, Grace Fraczkiewicz, Juris, P., Germanas. Expression and Spectroscopic Characterization of the Hydrogenosomal [2Fe-2S] Ferredoxin from the Protozoan Trichomonas vaginalis.The Jounal of Biological Chemistry.1996,271(25):14734-14739.
    [12]Thomas Maier, Hans-Heinrich Fo"rster, Otmar Asperger, and Ulrich Hahn. Molecular Characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104.Biochemical and Biophysical Research Communications.2001,286:652-658.
    [13]van Beilen, J.B., Funhoff, E.G., van Loon, A., Just, A., Kaysser, L., Bouza, M., et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl. Environ. Microbiol.2006,72:59-65.
    [14]Mitsutoshi Kubpta, Miho Nodate, et al., Isolation and functional analysis of Cytochrome P450 CYP153A genes from various environments. Biosci. Biotechnol. Biochem.2005,69(12): 2421-2430.
    [15]van Beilen, J.B., Rene Holtackers, et al., Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. Cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl. Environ. Microbiol.2005,71(4):1737-1744.
    [16]谢辉,王雅静,帖超男,毕世梁,刘佩娜,廖琳.阴道毛滴虫铁氧还蛋白基因的原核表达.四川动物.2007,26(1):15-17.
    [1]Mateles, R.I., Baruah, J.N., Tannenbaum, S.R. Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein. Science.1967,157:1322-1323.
    [2]Heiko Feitkenhauer, Rudolf Muller, Herbert Mark. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70℃ by Thermus and Bacillus spp. Biodegradation.2003,14: 367-372.
    [3]Ruixia Hao, Anhuai Lu, Guanyu Wang. Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can. J. Microbiol.2004,50:175-182.
    [4]Wang, L., Tang, Y., Wang, S., et al. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles.2006,10:347-356.
    [1]Mateles, R.I., Baruah, J.N., Tannenbaum, S.R. Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein. Science.1967,157:1322-1323.
    [2]Feitkenhauer, H., Muller, R., Markl, H. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70℃ by Thermus and Bacillus spp. Biodegradation.2003,14:367-372.
    [3]Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol.2001,51:433-446.
    [4]Perry, J.J. Isolation and characterization of thermophilic hydrocarbon utilizing bacteria. Adv. Aquat. Microbiol.1985,3:109-139.
    [5]Phillips, W.E., Perry, J.J. Thermomicrobium fosteri sp. nov., a hydrocarbon utilizing obligate thermophile. Int. J. System. Bacteriol.1976,26:220-225.
    [6]Sorkhoh, N.A., Ibrahim, A.S., Ghannoum, M.A., Radwan, S.S. High temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl. Microbiol. Biotechnol.1993,39:123-126.
    [7]Marchant, R., Sharkey, F.H., Banat, I.M., Rahman, T.J., Perfumo, A. The degradation of rc-hexadecane in soil by thermophilic Geobacilli. FEMS Microbiol. Ecol.2006,56:44-54.
    [8]Lu, F., Wei, W., Jiansong, C., Yi, R., Guang, Z., Chunxu, G., Yun, T., Xueqian, L., et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. USA.2007,104:5602-5607
    [9]Tourova, T.P., Nazina, T.N., Mikhailova, E.M., Rodionova, T.A., Ekimov, A.N., Mashukova, A.V., Poltaraus, A.B. alkB homologs in thermophilic bacteria of the genus Geobacillus. Molecular Biology.2008,42:217-226.
    [10]Shiming Wang, Jian He, Zhongli Cui and Shunpeng Li. Self-formed adaptor PCR:a simple and efficient method for chromosome walking. Appl. Environ. Microbiol.2007,73(15):5048-5051.
    [11]Van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H.M., Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol.2003,58:427-440.
    [12]Chakrabarty, A.M., Chou, G., Gunsalus, I.C. Genetic regulation of octane dissimulation plasmids in Pseudomonas. Proc. Natl. Acad. Sci. USA.1973,70:1137-1140.
    [13]Van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Rothlisberger, M., Witholt, B. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology.2001,147:1621-1630.
    [14]石宣明,刘淑珍,黄玉碧.嗜热酶耐热机制的研究进展.科学技术与工程.2004,4(9):1671-1815.
    [15]Sriprapundh, D., Vieille, C., Zeikus, J.G. Molecular determinants of xylose isomerase thermal stability and activity:analysis by site-directed mutagenesis. Protein Eng.2000,13(4):259-265.
    [16]Baisong, L.,Guoliu, Peitang, H.A comparison of amino acid composition of protein from thermophiles and mesophiles.Acta Microbiologic Sinica.1998,38(1):20-25.
    [17]Rahman Rnza, Fujiwara, S., Nakamura, H., et.al. Ion pairs involved inmaintaining a thermostable structure of glutamate dehydrogenase from a hyperthermophilic archaeon. Biochem. Biophys. Res. Commun,1998,248(3):920-926.