JAK-STAT信号通路在微波辐照致小胶质细胞活化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:随着科技的进步和发展,各类办公自动化设备、移动通讯设备、家用电器迅速进入我们的生活,使我们更多地暴露于电磁辐射中。从上世纪60年代开始国际社会已经把关注的目光集中到微波的生物效应研究。越来越多的电磁辐射的生物效应、效应机理及其防护正逐渐成为研究的热点课题。根据我室以往的研究,微波辐射致伤的敏感靶器官包括神经系统、血液系统、生殖系统、免疫系统等,尤以对神经系统的影响最为显著。小胶质细胞是中枢神经系统中重要的免疫细胞,参与神经免疫调节,其最显著的生物学特性就是在中枢神经系统受到各种病理刺激时发生活化。活化的小胶质细胞对神经元以及中枢神经系统内环境发挥着重要的调节功能,小胶质细胞活化的调控机制十分广泛复杂。其中JAK-STAT信号转导途径是近年来新发现的一条参与神经免疫调节的信号传导通路。为此我们研究微波辐照能否激活小胶质细胞,JAK-STAT信号通路是否参与微波诱导的小胶质细胞活化,以及作用机制进行了研究。
     方法:以平均功率密度90 mW/cm2的微波一次性辐照N9小胶质细胞,分别采用细胞免疫组织化学和流式细胞技术来检测小胶质细胞活化标志物OX-42的表达变化。用ELISA方法检测肿瘤坏死因子α,白介素1β在培养上清中的浓度,用Griess reaction方法检测培养上清中NO的释放。用RT-PCR方法检测iNOS的mRNA表达变化。用Western-blot检测小胶质细胞JAK1、JAK2、JAK3、STAT3蛋白质表达及磷酸化表达变化,用凝胶迁移率实验(Electrophoretic Mobility Shift Assay,EMSA)检测小胶质细胞STAT3的DNA结合活性的变化。
     结果:
     1. 90 mW/cm2的微波辐照N9小胶质细胞后,小胶质细胞形态发生明显变化,辐照后3h至24h小胶质细胞活化标志物OX-42表达增加,在辐照后6h表达最为明显。辐照后即刻至24h小胶质细胞TNF-α分泌明显增加,在辐照后3h达到高峰,而IL-1β无明显变化。微波辐照后即刻至24h内NO释放明显增加,iNOS mRNA表达增强,在辐照后6h达到高峰。
     2. 90 mW/cm2的微波辐照N9小胶质细胞后,JAK1、JAK2、JAK3蛋白质磷酸化出现不同程度增加,并且其变化趋势各不相同。微波辐照后小胶质细胞STAT3磷酸化增强,其变化趋势与JAK2类似,STAT3核转位与DNA结合活性在辐照后6h至24h增加,并以12h最为明显。
     3.使用JAK的抑制剂AG490及P6能显著抑制微波辐照后STAT3磷酸化以及与DNA的结合活性,可有效抑制了JAK家族的磷酸化。抑制炎性因子TNF-α,的分泌和NO的释放,减少iNOS的mRNA表达。减少微波诱导小胶质细胞活化标志物OX-42的表达。
     结论:
     1.在本实验条件下,微波辐射能诱导小胶质细胞活化,并且表现为持续活化,活化小胶质细胞分泌功能明显增强。
     2.微波辐照可以使小胶质细胞JAK/STAT信号通路出现差别激活。JAK/STAT信号通路中各信号分子在小胶质细胞活化过程中的作用不同,其中JAK2、STAT3具有主要作用,JAK3可能也发挥一定作用,而JAK1作用不明显。
     3.微波辐照后小胶质细胞活化,活化的小胶质细胞分泌大量细胞因子。JAK-STAT信号通路参与了微波辐射诱导的小胶质细胞活化过程。
Objectives: With the development of science and technology, more and more people are exposed to electromagnetic radiation, because of the popular use electrical appliances. Such as mobile phone and microwave oven steps into our daily life rapidly.The effects of electromagnetic fields (EMF) and microwave on the central nervous system (CNS) need to be evaluated. Microglia activation is an important component of physiological and pathological processes in CNS. The Janus kinase/signal transducer and activator of transcription (JAK /STAT) pathway play a central role in cytokine signal transduction and regulate various biological processes. We investigated the possible participation of JAK/STAT signaling system and activation of microglia after microwave exposure.
     Methods: N9 murine microglia cells were irradiated by 90 mW/cm2 microwave, Expression of microglial membrane OX-42 was determined by immunocytochemical staining and flow cytometry. Secretion of TNF-α, IL-1βwas examined by ELISA and NO activity was determined by the Griess reaction. The expression of iNOS mRNA was determined by RT-PCR. Phosphorylation of JAK-STAT3 was tested using western blotting. STAT3 DNA binding activity was detected by EMSA.
     Results:(1) After 90 mW/cm2 microwave exposure, the morphous of microglia changed significantly. OX-42, an activated microglia surface marker was gradually increased from 3h to 24h post microwave exposure and expressed at 6h time point obviously.The production of TNF-αwas increased from 0h to 24h and achieved peak level at 3h after microwave exposure.But the secretion IL-1βwas unchanged. The expression of of iNOS mRNA and release of NO increased in a time-dependent manner post microwave exposure,and achieved peak level at 3h time point. (2) After 90 mW/cm2 microwave exposure, the phosphorylation of JAK1, JAK2 and JAK3 was increased at different manner. The band of phosphorylated STAT3 was dected rapidly post microwave exposure, and the pattern was similar to phosphorylated-JAK2.A significant increase of STAT3 DNA-binding ability was noted from 6h to 24h after exposure, especially at 12h. (3)AG490 and P6, the specific JAK inhibitor, inhibited STAT3 translocation to nuclus and markedly reduced the activation of JAK and STAT3 in microwave -treated microglia. Furthermore, the expression of TNF-αand release of NO induced by microwave in microglia were reduced by AG490 and P6 pretreatment.The expression of iNOS mRNA decreased markedly in pretreatment with AG490 and P6.Lastly ,the FITC-labelled OX-42 cell counts declined after pretreatment with AG490 and P6.
     Conclusions:(1) Microwave irradiation induced the activation of microglia in a persistent manner. Production of proinflammatory cytokines of activated microglia increased significantly after exposure to microwave. (2) Microwav irradiation activated JAK-STAT protein at a differential manner.The involvement of JAK-STAT signal pathway was not identical in microglia activation post microwave exposure.These results suggest that JAK2-STAT3 signaling pathway plays a critical role in microwave mediated activation of microglia, and JAK3 may participate in the activation,while JAK1 has no effect. (3) Microwave irradiation induced the activation of microglia and secretion of cytokine. The JAK2-STAT3 signaling pathway may participate in the pathogenesis of microwave-induced injury.
引文
1. Chou, C.K., Thirty-five years in bioelectromagnetics research. Bioelectromagnetics, 2007. 28(1): p. 3-15.
    2. Bailey, W.H., Health effects relevant to the setting of EMF exposure limits. Health Phys, 2002. 83(3): p. 376-86.
    3. Jauchem, J.R., Effects of low-level radio-frequency (3kHz to 300GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. nternational journal of hygiene and environmental health 2008. 211(1-2): p. 1-29.
    4. Brillaud, E., A. Piotrowski, and R. de Seze, Effect of an acute 900MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicology, 2007. 238(1): p. 23-33.
    5. Mausset-Bonnefont, A.L., et al., Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiology of disease, 2004. 17(3): p. 445-54.
    6. Chan, P., et al., Effects of pulsed magnetic stimulation of GFAP levels in cultured astrocytes. Journal of neuroscience research, 1999. 55(2): p. 238-44.
    7. Stagg, R.B., et al., DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics, 1997. 18(3): p. 230-6.
    8. Meda, L., et al., Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995. 374(6523): p. 647-50.
    9. Choi, S.H., R. Langenbach, and F. Bosetti, Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J, 2008. 22(5): p. 1491-501.
    10. Guo, Z., et al., Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem, 2008. 283(3): p. 1754-63.
    11. Li, Q., et al., Effect of Neuregulin on Apoptosis and Expressions of STAT3 and GFAP in Rats Following Cerebral Ischemic Reperfusion. Journal of molecular neuroscience,2008.
    12. Hwang, M.N., et al., PMA activates Stat3 in the Jak/Stat pathway and induces SOCS5 in rat brain astrocytes. Mol Cells, 2007. 23(1): p. 94-9.
    13. Nagata, Y. and K. Todokoro, Interleukin 3 activates not only JAK2 and STAT5, but also Tyk2, STAT1, and STAT3. Biochem Biophys Res Commun, 1996. 221(3): p. 785-9.
    14. Bella, A.J., et al., Upregulation of penile brain-derived neurotrophic factor (BDNF) and activation of the JAK/STAT signalling pathway in the major pelvic ganglion of the rat after cavernous nerve transection. Eur Urol, 2007. 52(2): p. 574-80.
    15. Hashioka, S., et al., Interferon-gamma-dependent cytotoxic activation of human astocytes and astrocytoma cells. Neurobiol Aging, 2008.
    16. Satriotomo, I., K.K. Bowen, and R. Vemuganti, JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. Journal of neurochemistry, 2006. 98(5): p. 1353-68.
    17. Pawate, S., et al., Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. Journal of neuroscience research, 2004. 77(4): p. 540-51.
    18. Dhillon, N.K., et al., PDGF synergistically enhances IFN-gamma-induced expression of CXCL10 in blood-derived macrophages: implications for HIV dementia. J Immunol, 2007. 179(5): p. 2722-30.
    19. Justicia, C., C. Gabriel, and A.M. Planas, Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia, 2000. 30(3): p. 253-70.
    20. Hou, Y., et al., Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Progress in neuro-psychopharmacology & biological psychiatry, 2006. 30(8): p. 1523-8.
    21. Rodriguez, A., et al., The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology, 2007. 148(1): p. 324-31.
    22. Cavaliere, F., K. Dinkel, and K. Reymann, Microglia response and P2 receptorparticipation in oxygen/glucose deprivation-induced cortical damage. Neuroscience, 2005. 136(3): p. 615-23.
    23. Hickman, S.E., E.K. Allison, and J. El Khoury, Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. The Journal of neuroscience, 2008. 28(33): p. 8354-60.
    24. Muthian, G., et al., 1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res, 2006. 83(7): p. 1299-309.
    25. Mir, M., et al., Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. J Neuroimmunol, 2008. 204(1-2): p. 101-9.
    26. Wen, T.C., et al., Induction of phosphorylated-Stat3 following focal cerebral ischemia in mice. Neurosci Lett, 2001. 303(3): p. 153-6.
    27. Wakita, H., et al., Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol, 1994. 87(5): p. 484-92.
    28. Walters, T.J., K.L. Ryan, and P.A. Mason, Regional distribution of Hsp70 in the CNS of young and old food-restricted rats following hyperthermia. Brain Res Bull, 2001. 55(3): p. 367-74.
    29. Peilot, H., et al., Interferon-gamma induces secretory group IIA phospholipase A2 in human arterial smooth muscle cells. Involvement of cell differentiation, STAT-3 activation, and modulation by other cytokines. J Biol Chem, 2000. 275(30): p. 22895-904.
    30. Silva, N.M., et al., Expression of Toxoplasma gondii-specific heat shock protein 70 during In vivo conversion of bradyzoites to tachyzoites. Infect Immun, 1998. 66(8): p. 3959-63.
    31. Cannella, B. and C.S. Raine, Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann Neurol, 2004. 55(1): p. 46-57.
    32. Steensberg, A., et al., Cerebrospinal fluid IL-6, HSP72, and TNF-alpha in exercising humans. Brain Behav Immun, 2006. 20(6): p. 585-9.
    33. Cheranov, S.Y. and J.H. Jaggar, TNF-alpha dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation. American journal of physiology. Cell physiology2006. 290(4): p. C964-71.
    34. Robinson, K., et al., Peptide YY attenuates STAT1 and STAT3 activation induced by TNF-alpha in acinar cell line AR42J. J Am Coll Surg, 2006. 202(5): p. 788-96.
    35. Yazdi, A.S., K. Ghoreschi, and M. Rocken, Inflammasome activation in delayed-type hypersensitivity reactions. J Invest Dermatol, 2007. 127(8): p. 1853-5.
    36. Kawaguchi, Y., et al., Contribution of single nucleotide polymorphisms of the IL1A gene to the cleavage of precursor IL-1alpha and its transcription activity. Immunogenetics, 2007. 59(6): p. 441-8.
    37. Kim, Y.J., et al., C6 glioma cell insoluble matrix components enhance interferon-gamma-stimulated inducible nitric-oxide synthase/nitric oxide production in BV2 microglial cells. J Biol Chem, 2008. 283(5): p. 2526-33.
    38. Willis, C.L. and T.P. Davis, Chronic inflammatory pain and the neurovascular unit: a central role for glia in maintaining BBB integrity? Curr Pharm Des, 2008. 14(16): p. 1625-43.
    39. Gorina, R., et al., Exposure of glia to pro-oxidant agents revealed selective Stat1 activation by H2O2 and Jak2-independent antioxidant features of the Jak2 inhibitor AG490. Glia, 2007. 55(13): p. 1313-24.
    40. Aid, S., R. Langenbach, and F. Bosetti, Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. Journal of neuroinflammation, 2008. 5: p. 17.
    41. Jin, S., et al., Interferon-beta is neuroprotective against the toxicity induced by activated microglia. Brain Res, 2007. 1179: p. 140-6.
    42. Chen, C.J., et al., Manganese modulates pro-inflammatory gene expression in activated glia. Neurochemistry international, 2006. 49(1): p. 62-71.
    43. Di Loreto, S., et al., Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol, 2009. 219(2): p. 334-43.
    44.李玉红,王德文,王水明,胡文华,高亚兵,李杨。电磁脉冲辐射后海马形态学观察及凋亡相关基因检测。解放军预防医学杂志,2006,(2):95-98.
    45.王琦,张元菊,张松涛等。电磁辐射对大鼠海马、边缘区超微结构的影响。疾病控制杂志,2006,10 10(5):468-472
    46.杨端,彭端云,高亚兵等,微波辐射对大鼠海马神经元的损伤效应及其机制研究。中华物理医学与康复杂志。2006 10 28(10):670-672
    47.杨学森,陈纯海,郝玉通,余争平,张广斌;微波辐照致大鼠小胶质细胞活化与JAKs磷酸化。中国公共卫生,2008; 24(4): 456-458
    48. Thorlin, T., et al., Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation. Radiat Res, 2006. 166(2): p. 409-21.
    49. Hewicker-Trautwein, M., G. Schultheis, and G. Trautwein, Effects of trypsinization and microwave treatment on lectin labelling of microglial cells in paraffin-embedded sections from pre- and postnatal bovine brains. Acta Histochem, 1995. 97(4): p. 455-61.
    50. Schuz, J., et al., Radiofrequency electromagnetic fields emitted from base stations of DECT cordless phones and the risk of glioma and meningioma (Interphone Study Group, Germany). Radiat Res, 2006. 166(1 Pt 1): p. 116-9.
    51. Kim, D.H., et al., Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: suppression of STAT3-mediated intercellular adhesion molecule-1 expression. Experimental & molecular medicine, 2006. 38(4): p. 417-27.
    52. Castano, A., et al., The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem, 2002. 81(1): p. 150-7.
    53. Tolosa, L., et al., Vascular endothelial growth factor protects motoneurons from serum deprivation-induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition. Neuroscience, 2009. 158(4): p. 1348-1355.
    54. Dominguez, E., et al., JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem, 2008. 107(1): p. 50-60.
    55. Kim, H.Y., et al., Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol, 2003. 171(11): p. 6072-9.
    56. Borges, S., et al., Involvement of a JAK/STAT pathway inhibitor: cytokine inducible SH2 containing protein in breast cancer. Advances in experimental medicine and biology 2008. 617: p. 321-9.
    57. Piuhola, J., et al., Direct cardiac actions of erythropoietin (EPO): effects on cardiac contractility, BNP secretion and ischaemia/reperfusion injury. Clin Sci (Lond), 2008. 114(4): p. 293-304.
    58. Kreis, S., et al., Cell density dependent increase of constitutive signal transducers and activators of transcription 3 activity in melanoma cells is mediated by Janus kinases. Molecular cancer research, 2007. 5(12): p. 1331-41.
    59. Bellik, L., et al., Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. Br J Pharmacol, 2005. 146(4): p. 568-75.
    60. Knoops, L., et al., JAK kinases overexpression promotes in vitro cell transformation. Oncogene, 2008. 27(11): p. 1511-9.
    61. Neilson, L.M., et al., Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways. Mol Endocrinol, 2007. 21(9): p. 2218-32.
    62. Dal Rhee, S., et al., Leptin inhibits rosiglitazone-induced adipogenesis in murine primary adipocytes. Mol Cell Endocrinol, 2008.
    63. Krejci, P., et al., Fibroblast growth factor inhibits interferon gamma-STAT1 and interleukin 6-STAT3 signaling in chondrocytes. Cell Signal, 2009. 21(1): p. 151-60.
    64. Kong, L.Y., et al., A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clinical cancer research 2008. 14(18): p. 5759-68.
    65. Zaheer, S., et al., Glia maturation factor regulation of STAT expression: a novelmechanism in experimental autoimmune encephalomyelitis. Neurochemical research, 2007. 32(12): p. 2123-31.
    66. Rummel, C., et al., Nuclear STAT3 translocation in guinea pig and rat brain endothelium during systemic challenge with lipopolysaccharide and interleukin-6. J Comp Neurol, 2005. 491(1): p. 1-14.
    67. Herrmann, A., et al., Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci, 2007. 120(Pt 18): p. 3249-61.
    68. De-Fraja, C., et al., Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. Journal of neuroscience research, 1998. 54(3): p. 320-30.
    69. Hu, X., et al., Ciliary neurotrophic factor receptor alpha subunit-modulated multiple downstream signaling pathways in hepatic cancer cell lines and their biological implications. Hepatology, 2008. 47(4): p. 1298-308.
    70. Lee, K.S., et al., HB-EGF induces delayed STAT3 activation via NF-kappaB mediated IL-6 secretion in vascular smooth muscle cell. Biochim Biophys Acta, 2007. 1773(11): p. 1637-44.
    71. Auernhammer, C.J., et al., Comparative study of gp130 cytokine effects on corticotroph AtT-20 cells--redundancy or specificity of neuroimmunoendocrine modulators? Neuroimmunomodulation, 2004. 11(4): p. 224-32.
    72. Jay, D.B., et al., Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med, 2008. 45(3): p. 329-35.
    73. Liva, S.M., et al., Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia, 1999. 26(4): p. 344-52.
    74. Suh, H.S., M.O. Kim, and S.C. Lee, Inhibition of granulocyte-macrophage colony-stimulating factor signaling and microglial proliferation by anti-CD45RO: role of Hck tyrosine kinase and phosphatidylinositol 3-kinase/Akt. J Immunol, 2005. 174(5): p. 2712-9.
    75. Kim, S.Y., et al., Ischemic preconditioning-induced expression of gp130 and STAT3 in astrocytes of the rat hippocampus. Brain Res Mol Brain Res, 2004. 129(1-2): p. 96-103.
    76. Natarajan, C., et al., Signaling through JAK2-STAT5 pathway is essential for IL-3-induced activation of microglia. Glia, 2004. 45(2): p. 188-96.
    77. Huang, C., et al., JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol, 2008. 204(1-2): p. 118-25.
    78. Kim, B.H., et al., A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol Cancer Ther, 2008. 7(9): p. 2672-80.
    79. Liu, Y.P., et al., Phosphorylation and nuclear translocation of STAT3 regulated by the Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. International journal of molecular medicine2008. 21(2): p. 153-62.
    80. de Totero, D., et al., The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood, 2008. 111(2): p. 517-24.
    81. Govindaswami, M., et al., Delta 2-specific opioid receptor agonist and hibernating woodchuck plasma fraction provide ischemic neuroprotection. Acad Emerg Med, 2008. 15(3): p. 250-7.
    82. Koch, L., et al., Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest, 2008. 118(6): p. 2132-47.
    83. Fox, D.L. and D.J. Good, Nescient helix-loop-helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Mol Endocrinol, 2008. 22(6): p. 1438-48.
    84. Kim, S.Y., et al., Ischemic preconditioning-induced expression of gp130 and STAT3 in astrocytes of the rat hippocampus. Brain Res Mol Brain Res, 2004. 129(1-2): p. 96-103.
    85. Shyu, W.C., et al., Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest, 2008. 118(1): p. 133-48.
    86. Maruvada, R., Y. Argon, and N.V. Prasadarao, Escherichia coli interaction with human brain microvascular endothelial cells induces signal transducer and activator oftranscription 3 association with the C-terminal domain of Ec-gp96, the outer membrane protein A receptor for invasion. Cell Microbiol, 2008.
    87. Yang, X.S., W. Zhang, and Q.F. Gong, Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2008. 26(6): p. 323-6.
    88. Yang, X.S., et al., Differential activation of mitogen-activated protein kinase in PC 12 cells apoptosis induced by electromagnetic irradiation. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2005. 23(3): p. 167-71.
    89.陈纯海;杨学森;郝玉通;张广斌;余争平。电磁辐射对海马小胶质细胞及JAKs活化的影响。中国辐射卫生2008; 17(2): 129-131
    90. Wang, W., et al., STAT3 as a biomarker of progression in atypical nevi of patients with melanoma: dose-response effects of systemic IFNalpha therapy. J Invest Dermatol, 2008. 128(8): p. 1997-2002.
    91. Wei, J., et al., Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochem Pharmacol, 2007. 74(5): p. 787-800.
    92. Suh, H.S., M.O. Kim, and S.C. Lee, Inhibition of granulocyte-macrophage colony-stimulating factor signaling and microglial proliferation by anti-CD45RO: role of Hck tyrosine kinase and phosphatidylinositol 3-kinase/Akt. J Immunol, 2005. 174(5): p. 2712-9.
    93. Kim, H.Y., et al., Raft-mediated Src homology 2 domain-containing proteintyrosine phosphatase 2 (SHP-2) regulation in microglia. J Biol Chem, 2006. 281(17): p. 11872-8.
    94. Chen, H.F., H.Y. Deng, and W.K. Fan, [Effect of Janus kinase inhibitor AG490 on invasion and metastasis of human breast cancer cells]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2008. 39(1): p. 63-5, 83.
    95. Lucet, I.S., et al., The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood, 2006. 107(1): p. 176-83.
    96. Johnson, F.M., et al., Abrogation of signal transducer and activator of transcription 3 reactivation after Src kinase inhibition results in synergistic antitumor effects. ClinCancer Res, 2007. 13(14): p. 4233-44.
    97. Huang, C., et al., Inhibitory effect of AG490 on invasion and metastasis of human pancreatic cancer cells in vitro. Zhonghua Zhong Liu Za Zhi, 2006. 28(12): p. 890-3.
    98. Lukong, K.E. and S. Richard, Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration. Cell Signal, 2008. 20(2): p. 432-42.
    99. Tan, Q.R., et al., Differential effects of classical and atypical antipsychotic drugs on rotenone-induced neurotoxicity in PC12 cells. Eur Neuropsychopharmacol, 2007. 17(12): p. 768-73.
    100. Ng, Y.P., Z.H. Cheung, and N.Y. Ip, STAT3 as a downstream mediator of Trk signaling and functions. J Biol Chem, 2006. 281(23): p. 15636-44.
    101. Deng, H., et al., The electroporation effects of high power pulse microwave and electromagnetic pulse irradiation on the membranes of cardiomyocyte cells and the mechanism therein involved. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2005. 22(4): p. 672-6, 694.
    102. Pincheira, R., et al., Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity. J Immunol, 2008. 181(2): p. 1288-98.
    103. Ivanov, V.N., et al., Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res, 2008. 314(5): p. 1163-76.
    104. Yu, C., A.J. Kastin, and W. Pan, TNF reduces LIF endocytosis despite increasing NFkappaB-mediated gp130 expression. J Cell Physiol, 2007. 213(1): p. 161-6.
    105. Chang, L.C., et al., Inhibition of nitric oxide production by the carbazole compound LCY-2-CHO via blockade of activator protein-1 and CCAAT/enhancer-binding protein activation in microglia. Biochem Pharmacol, 2008. 76(4): p. 507-19.
    106. Kim, O.S., et al., JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. J Biol Chem, 2002. 277(43): p. 40594-601.
    107.杨学森龚茜芬张广斌余争平余晓东电磁辐射诱导PC1 2细胞凋亡中丝裂原活化蛋白激酶的差别激活中华劳动卫生职业病杂志2005 5.23(6):167-170
    108. Raung, S.L., et al., Tyrosine kinase inhibitors attenuate Japanese encephalitis virus-induced neurotoxicity. Biochem Biophys Res Commun, 2005. 327(2): p.399-406.
    109. Niu, G., et al., Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res, 2008. 6(7): p. 1099-105.
    110. Dougherty, U., et al., Epidermal growth factor receptor controls flat dysplastic aberrant crypt foci development and colon cancer progression in the rat azoxymethane model. Clin Cancer Res, 2008. 14(8): p. 2253-62.
    111. Vigneron, A., E. Gamelin, and O. Coqueret, The EGFR-STAT3 oncogenic pathway up-regulates the Eme1 endonuclease to reduce DNA damage after topoisomerase I inhibition. Cancer Res, 2008. 68(3): p. 815-25.
    112. Tang, Y., et al., Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A, 2008. 105(7): p. 2445-50.
    113. Scotti, M.L., et al., Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. Breast Cancer Res Treat, 2008. 111(2): p. 241-50.
    114. Liebetanz, D., et al., Safety aspects of chronic low-frequency transcranial magnetic stimulation based on localized proton magnetic resonance spectroscopy and histology of the rat brain. J Psychiatr Res, 2003. 37(4): p. 277-86.
    1. Quinton, L.J., et al., Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia. Am J Respir Cell Mol Biol, 2008. 38(6): p. 699-706.
    2. Stepkowski, S.M., et al., STAT3: an important regulator of multiple cytokine functions. Transplantation, 2008. 85(10): p. 1372-7.
    3. Mukhopadhyay, S., et al., Cytoplasmic provenance of STAT3 and PY-STAT3 in the endolysosomal compartments in pulmonary arterial endothelial and smooth muscle cells: implications in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol, 2008. 294(3): p. L449-68.
    4. Uozumi, H., et al., gp130 plays a critical role in pressure overload-induced cardiac hypertrophy. J Biol Chem, 2001. 276(25): p. 23115-9.
    5. Cheranov, S.Y., et al., An essential role for SRC-activated STAT-3 in 14,15-EET- induced VEGF expression and angiogenesis. Blood, 2008. 111(12): p. 5581-91.
    6. Bai, Y., et al., Interferon-gamma induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. J Biol Chem, 2008. 283(11): p. 6832-42.
    7. Sen, U., et al., Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling. Clin Chem Lab Med, 2007. 45(12): p. 1771-6.
    8. Sachot, C., et al., The role of the vagus nerve in mediating the long-term anorectic effects of leptin. J Neuroendocrinol, 2007. 19(4): p. 250-61.
    9. Castermans, K., et al., Angiostatic activity of the anti-tumor cytokine interleukin-21. Blood, 2008.
    10. Stromberg, H., S.P. Svensson, and O. Hermanson, Distribution of the transcription factor signal transducer and activator of transcription 3 in the rat central nervous system and dorsal root ganglia. Brain Res, 2000. 853(1): p. 105-14.
    11. Yao, C., et al., Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Inj, 2008. 22(10): p. 723-32.
    12. Toth, C., et al., Local erythropoietin signaling enhances regeneration in peripheral axons. Neuroscience, 2008. 154(2): p. 767-83.
    13. Zang, Y., et al., AICAR induces astroglial differentiation of neural stem cells via activating the JAK/STAT3 pathway independently of AMP-activated protein kinase. J Biol Chem, 2008. 283(10): p. 6201-8.
    14. Satriotomo, I., K.K. Bowen, and R. Vemuganti, JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem, 2006. 98(5): p. 1353-68.
    15. Li, Q., et al., Effect of Neuregulin on Apoptosis and Expressions of STAT3 and GFAP in Rats Following Cerebral Ischemic Reperfusion. J Mol Neurosci, 2008.
    16. Zaheer, S., et al., Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis. Neurochem Res, 2007. 32(12): p. 2123-31.
    17. Ren, W., et al., Down-regulation of Stat3 induces apoptosis of human glioma cell: a potential method to treat brain cancer. Neurol Res, 2008. 30(3): p. 297-301.
    18. Yamada, M., et al., Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease. Neuropsychopharmacology, 2008. 33(8): p. 2020-32.
    19. Takagi, Y., et al., STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury. J Cereb Blood Flow Metab, 2002. 22(11): p. 1311-8.
    20. de la Iglesia, N., et al., Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev, 2008. 22(4): p. 449-62.
    21. Kong, L.Y., et al., A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin Cancer Res, 2008. 14(18): p. 5759-68.
    22. Zhang, J., et al., Leptin antagonist reveals that the normalization of caloric intake and the thermic effect of food after high-fat feeding are leptin dependent. Am J Physiol Regul Integr Comp Physiol, 2007. 292(2): p. R868-74.
    23. Costantino, L. and D. Barlocco, STAT 3 as a target for cancer drug discovery. Curr Med Chem, 2008. 15(9): p. 834-43.
    24. Cuevas, P., et al., Dobesilate inhibits the activation of signal transducer and activator oftranscription 3, and the expression of cyclin D1 and bcl-XL in glioma cells. Neurol Res, 2006. 28(2): p. 127-30.
    25. Ivanova, V., et al., [Effect of modified SHF and acoustic stimulation on spectral characteristics of the electroencephalograms of the cat brain]. Biofizika, 2000. 45(5): p. 935-40.
    26. Knorr, C., et al., Macrophage-activating lipopeptide-2 (MALP-2) induces a localized inflammatory response in rats resulting in activation of brain sites implicated in fever. Brain Res, 2008. 1205: p. 36-46.
    27. Abdulghani, J., et al., Stat3 promotes metastatic progression of prostate cancer. Am J Pathol, 2008. 172(6): p. 1717-28.
    1. Dell'Albani P, Santangelo R, Torrisi L, Nicoletti VG, Giuffrida Stella AM. Role of the JAK/STAT signal transduction pathway in the regulation of gene expression in CNS. Neurochem Res. 2003 Jan; 28(1):53-64。
    2. Guazzi, M. C., Velasquez, L., McKendry, R., Mogensen, K. E., Fellous, M., and Pellegrini, S. 1996. Interferon-a-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 271:20494–20500.
    3. Feng, J., Witthuhn, B. A., Matsuda, T., Kohlhuber, F., Kerr,I. M., and Ihle, J. N. 1997. Activation of JAK2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop.Mol. Cell Biol. 17:2497–2501.
    4. Fujitani, Y., Hibi, M., Fukada, T., Takahashitezuka, M., Yoshida,H., Yamaguchi, T., Suiyama, K., Yamanaka, Y., Nakajima, K.,and Hirano, T. 1997. An alternative pathway for STAT activationthat is mediated by the direct interaction between JAK and STAT.Oncogene 14:751–761.
    5. Frank, S. J., Gilliland, G., Kraft, A. S., and Arnold, C. S. 1994.Interaction of the growth hormone receptor cytoplasmic domainwith the JAK2 tyrosine kinase. Endocrinology 135:2228–2239.
    6. Duhè, R. J. and Farrar W. L. 1998. Structural and mechanistic aspectsof Janus kinases: How the two-faced god wields a doubleedgedsword. J. Interferon Cytokine Res. 18:1–15.
    7. Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M.,MiyaJima, A., Griffin, J. D., and Ihle, J. N. 1994. JAK2 associateswith the beta c chain of the receptor for granulocyte-JAK/STAT and CNS Gene Expression 6 Mol. Cell Biol. 14:4335–4341.
    8. Lai, C. F., Ripperger, J., Morella, K. K., Wang, Y., Gearing,D. P., Fey, G. H., and Baumann, H. 1995. Separate signalingmechanisms are involved in the control of STAT protein activationand gene regulation via the interleukin 6 response elementby the box
    3 motif of gp130. J. Biol. Chem. 270:14847–14850.
    9. Rodig, S., Meraz, M. A., White, J. M., Lampe, P. A., Riley,J. K., Arthur, C. D., King, K. L., Sheehan, K. C. F., Yin, L.,Pennica, D., Johnson, E. M., Jr., and Schreiber, R. D.1998. Disruption of the JAK1 gene demonstrates obligatory and nonredundant roles of the JAKs in cytokine-induced biologic responses.Cell 93:373–383.
    10. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., andPfeffer, K. 1998. JAK2 deficiency defines an essential developmentalcheckpoint in definitive hematopoiesis. Cell 93:397– 409.
    11. Parganas, E., Wang, D., Stravopodis, D., Topham, D. J., Marine,J. C., Teglund, S., Vanin, E., Bodner, S., Colomonici, O. R., vanDeursen, J. M., Grosveld, G., and Ihle, J. N. 1998. JAK 2 is essentialfor signaling through a variety of cytokine receptors. Cell 93:385–395.
    12. Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., and Berg,L. J. 1995. Defects in B lymphocyte maturation and T lymphocyteactivation in mice lacking JAK3. Science 270:794–797.
    13. Yan, R., Small, S., Desplan, C., Dearolf, C. R., and Darnell, J. E.1996. Identification of a STAT gene that function in Drosophiladevelopment. Cell 84:421–430.
    14. Barillas-Mury, C., Han, Y.-S., Seely, D., and Kafatos, F. C.1999. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.EMBO J. 18:959–967.
    15. Ueno, H., Sasaki, K., Miyagawa, K., Honda, H., Mitani, K.,Yazaki, Y., and Hirai, H. 1997. Antisense repression of protooncogene c-Cbl enhances activation of the JAK-STAT pathway but not the Ras pathway in epidermal growth factor receptor signalling. J. Biol. Chem. 272:8739–8743.
    16. Kawata, T., Shevchenko, A., Fukuzawa, M., Jermyn, K. A.,Totty, N. F., Zhukovskaya, N. V., Sterling, A. E., Mann, M.,and Williams, J. G. 1997. SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium. Cell 89:909–916.
    17. Copeland, N. G., Gilbert, D. J., Schindler, C., Zhong, Z., Wen,Darnell, J. E., Jr., Mui, A. L., Miyajima, A., Quelle, F. W., Ihle,J. N., et al. 1995. Distribution of the mammalian STAT gene family in mouse chromosomes. Genomics 29:225–228.
    18. Schaefer, T. S., Sanders, L. K., and Nathans, D. 1995. Cooperative transcriptional activity of Jun and STAT3b, a short form of STAT3. Proc. Natl. Acad. Sci. U.S.A. 92:9097.
    19. Durbin, J. E., Hackenmiller, R., Simon, M. C., and Levy, D. E.1996. Targeted disruption of the mouse STAT1 gene results in compromised innate immunity to viral disease. Cell 84:443–450.
    20. Meraz, M. A., White, J. M., Sheehan, K. C., Bach, E. A., Rodig,S. J., Dighe, A. S., Kaplan, D. H., Riley, J. K., Greenlund, A. C.,Campbell, D., Carver-Moore, K., DuBois, R. N., Clark, R.,Aguet, M., and Schreiber, R. D. 1996. Targeted disruption of the STAT1 gene in mice reveals unexpected physiologic specificity in the JAK/STAT signal pathway. Cell 84:431– 442.
    21. Park, C., Li, S., Cha, E., and Schindler, C. 2000. Immune response in STAT2 knockout mice. Immunity 13:795–804.
    22. Takeda, K., Noghuchi, K., Shi, W., Tanaka, T., Matsumoto, M.,Yoshida, N., Kishimoto, T., and Akira, S. 1997. Targeted disruptionof the mouse STAT3 gene leads to early embryonic lethality.Proc. Natl. Acad. Sci. U.S.A. 94:3801–3804.
    23. Kaplan, M. H., Sun, Y.-L., Hoey, T., and Grusby, M. J. 1996. ImpairedIL-12 responses and enhanced development of Th2 cells inSTAT4-deficient mice. Nature 382:171–174.
    24. Thierfelder, W. E., van Deursen, J. M., Yamamoto, K., Tripp,R. A., Sarawar, S. R., Carson, R. T., Sangster, M. Y., Vignali,D. A., Doherty, P. C., Grosveld, G. C., and Ihle, J. N. 1996. Requirementof STAT4 in interleukin-12 mediated responses of naturalkiller and T cells. Nature 382:171–174.
    25. Liu, X., Robis Robinson, G. W., Wagner, K. U., Garrett, L.,Wynshaw-Boris, A., and Hennighausen, L. 1997. STAT5a ismandatory for adult mammary gland development and lactogenesis.Genes Dev. 15:179–186.
    26. Udy, G. B., Towers, R. P., Snell, R. G., Wilkins, R. J., Park,S. H., Ram, P. A., Waxman, D. J., and Davey, H. W. 1997. Requirementof STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. U.S.A. 8:7239–7244.
    27. Teglund, S., McKay, C., Schuetz, E., van Deursen, J. M.,Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G.,and Ihle, J. N. 1998. STAT5a and STAT5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850.
    28. Yang, X., Chung, D. and Cepko, C. (1993) J. Neurosci. 13,3006–3017
    29. De.Fraja C , Conti L , Magrassi L , et al. Members of JAK/STAT proteins areexpressed and regulated during develop2 ment in the mammalian forebrain. J Neurosci Res , 1998 ,54:320~330.
    30. De.Fraja C , Conti L , Govoni S , et al. STAT signaling in the mature and aging brain. Int J Neurosci , 2000 , 18: 439~446.
    31. Monroe,-R-K; Halvorsen,-S-W Mercury abolishes neurotrophic factor-stimulated JAK-STAT signaling in nerve cells by oxidative stress. Toxicol-Sci. 2006 Nov; 94(1): 129-38
    32. Giunta,-B; Obregon,-D; Hou,-H; Zeng,-J EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: role of JAK/STAT1 signaling and implications for HIV-associated dementia.Brain-Res. 2006 Dec 6; 1123(1): 216-25.
    33. Nakamichi,-K; Saiki,-M; Kitani,-H; Kuboyama,-Y; Morimoto,-K; Takayama-Ito,-M; Kurane,-I Suppressive effect of simvaSTATin on interferon-beta-induced expression of CC chemokine ligand 5 in microglia. Neurosci-Lett. 2006 Oct 30; 407(3): 205-10.
    34. Sriram,-K; Benkovic,-S-A; Hebert,-M-A; Miller,-D-B; O'Callaghan,-J-P Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo?J-Biol-Chem. 2004 May 7; 279(19): 19936-47.
    35. Li,-J; Li,-W; Calhoun,-H-C; Xia,-F; Gao,-F-B; Li,-W-XPatterns and functions of STAT activation during Drosophila embryogenesis.Mech-Dev. 2003 Dec; 120(12): 1455-68.
    36. Sanchez-Margalet,-V; Martin-Romero,-C Human leptin signaling in human peripheral blood mononuclear cells: activation of the JAK-STAT pathway. Cell-Immunol. 2001 Jul 10; 211(1): 30-6.
    37. Dell'Albani,-P; Santangelo,-R; Torrisi,-L; Nicoletti,-V-G; de-Vellis,-J; Giuffrida-Stella, -A-M J-Neurosci-Res. JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures 2001 Sep 1; 65(5): 417-24.
    38. L. E., MacLennan, J., Carlsson, B., Orwar, O., and Eriksson, P. S.2001. Selective introduction of antisense oligonucleotides intosingle adult CNS progenitor cell using electroporation demonstrates the requirement of STAT3 activation for CNTF-induced gliogenesis. Mol. Cell Neurosci. 17:426–443.
    39. Kahn, M. A., Huang, C. J., Caruso, A., Barresi, V., Nazarian, R.,Condorelli, D. F., and de Vellis, J. 1997. Ciliary neurotrophic factor activates JAK/STAT signal transduction cascade and induces transcriptional expression of glial fibrillary acidic protein in glial cells. J. Neurochem. 68:1413–1423.
    40. Liva, S. M., Kahn, M. A., Dopp, J. M., and de Vellis, J. 1999.Signal transduction pathways induced by GM-CSF in microglia: Significance in the control of proliferation. Glia. 26:344–352.
    41. Yu, C.-L., Jin, Y.-J., and Burakoff, S. J. 2000. Cytosolic tyrosine Sine dephosphorylation of STAT5. J. Biol. Chem. 275:599–604.
    42. Woetmann, A., Nielsen, M., Christensen, S. T., Brockdorff, J.,Kaltoft, K., Engel, A. M., Skov, S., Brender, C., Geisler, C., Svejgaard,A., Rygaard, J., Leick, V., and Odum, N. 1999. Inhibitionof protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition ofSTAT3. Proc. Natl. Acad. Sci. U.S.A. 96:10620–10625.
    43. Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N. A., Gilbert,D. J., Copeland, N. G., Hara, T., and Miyajima, A. 1995 A novelcytokine-inducible gene CIS encodes an SH2-containing proteinthat binds to tyrosine-phosphorylated interleukin 3 and erythropoietinreceptors. EMBO J. 14:2816–2826.
    44. Yoshimura, A. 1998. The CIS/JAB family: A novel negative regulatorsof JAK signalling pathways. Leukemia 12:1851–1857.
    45. Endo, T. A., Masuhara, M., Yocouchi, M., Suzuki, R., Sakamoto,H., Mitsui, K., Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa,H., Miyazaki, T., Leonor, N., Taniguchi, T., Fujita, T.,Kanakura, Y., Komiya, S., and Yashimura, A. 1997. A new proteincontaining an SH2 domain that inhibits JAK kinases. Nature 387:921–924.
    46. Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto,S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K,Akira, S., and Kishimoto, T. 1997. Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924–929.
    47. Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., andShuai, K. 1997. Specific inhibition of STAT3 signal transduction by PIAS3. Science 278:1803–1805.
    48. Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang,D. D., and Shuai, K. 1998. Inhibition of STAT1-mediated gene activationby PIAS1. Proc. Natl. Acad. Sci.U.S.A. 95:10626–10631
    49. Haspel, R. L., Salditt, G. M., and Darnell, J. E., Jr. 1996. The rapid inactivation of nuclear tyrosine phosphorylated STAT1 depends upon a protein tyrosine phosphatase. EMBO J. 22:6262–6268.
    50. Taga, T. and Kishimoto, T. 1997. Gp130 and the interleukin-6family of cytokines. Annu. Rev. Immunol. 15:797–819.
    51. Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F.,and Graeve, L. 1998. Interleukin-6-type cytokine signaling through the gp130/JAK/STAT pathway. Biochem. J. 334:297–314.
    52. Rayanade, R. J., Ndubuisi, M. I., Etlinger, J. D., and Sehgal,P. B. 1998. Regulation of IL-6 signaling by p53: STAT3- andSTAT5-masking in p53-Val135-containing human hepatomaHep3B cell lines. J. Immunol. 161:325–334.
    1. Aid, S., Langenbach, R., Bosetti, F., 2008. Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. Journal of neuroinflammation 5: 17.
    2. Ammari, M., Brillaud, E., Gamez, C., Lecomte, A., Sakly, M., Abdelmelek, H., de Seze, R., 2008. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomedicine & pharmacotherapy 62(4): 273-281.
    3. Baker-Cairns, B., Meyers, K., Hamilton, R., Smith, C., Tornatore, C., 1996. Immunohistochemical staining of fixed tissue using antigen retrieval and a thermal cycler. Biotechniques 20(4): 641-650.
    4. Baker, B. J., Qin, H., Benveniste, E. N., 2008. Molecular basis of oncostatin M-induced SOCS-3 expression in astrocytes. Glia 56(11): 1250-1262.
    5. Borges, S., Moudilou, E., Vouyovitch, C., Chiesa, J., Lobie, P., Mertani, H., Raccurt, M., 2008. Involvement of a JAK/STAT pathway inhibitor: cytokine inducible SH2 containing protein in breast cancer. Advances in experimental medicine and biology 617: 321-329.
    6. Brzozowski, T., Konturek, P. C., Moran, A. P., Kwiecien, S., Pajdo, R., Konturek, S. J., Drozdowicz, D., Ptak, A., Pawlik, W., Hahn, E. G., 2003. Enhanced resistance of gastric mucosa to damaging agents in the rat stomach adapted to Helicobacter pylori lipopolysaccharide. Digestion 67(4): 195-208.
    7. Cavaliere, F., Dinkel, K., Reymann, K., 2005. Microglia response and P2 receptor participation in oxygen/glucose deprivation-induced cortical damage. Neuroscience 136(3): 615-623.
    8. Cheranov, S. Y., Jaggar, J. H., 2006. TNF-alpha dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation. American journal of physiology. Cell physiology 290(4): C964-971.
    9. Crouzier, D., Debouzy, J. C., Bourbon, F., Collin, A., Perrin, A., Testylier, G., 2007. Neurophysiologic effects at low level 1.8 GHz radiofrequency field exposure: a multiparametric approach on freely moving rats. Pathol Biol (Paris) 55(3-4): 134-142.
    10. D'Andrea, J. A., Chou, C. K., Johnston, S. A., Adair, E. R., 2003. Microwave effects on the nervous system. Bioelectromagnetics Suppl 6: S107-147.
    11. D'Arcangelo, G., Tancredi, V., Onofri, F., D'Antuono, M., Giovedi, S., Benfenati, F., 2000. Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. European Journal of Neuroscience 12(4): 1241-1252.
    12. Dimayuga, F. O., Reed, J. L., Carnero, G. A., Wang, C., Dimayuga, E. R., Dimayuga, V. M., Perger, A., Wilson, M. E., Keller, J. N., Bruce-Keller, A. J., 2005. Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. Journal of neuroimmunology. 161(1-2): 123-136.
    13. Hou, Y., Wu, C. F., Yang, J. Y., He, X., Bi, X. L., Yu, L., Guo, T., 2006. Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Prog Neuropsychopharmacol Biol Psychiatry 30(8): 1523-1528.
    14. Hughes, J. T., 1994. Electromagnetic fields and brain tumours: a commentary. Teratogenesis, carcinogenesis, and mutagenesis 14(5): 213-217.
    15. Jauchem, J. R., 2008. Effects of low-level radio-frequency (3kHz to 300GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. nternational journal of hygiene and environmental health 211(1-2): 1-29.
    16. Jeon, S. B., Ji, K. A., You, H. J., Kim, J. H., Jou, I., Joe, E. H., 2005. Nordihydroguaiaretic acid inhibits IFN-gamma-induced STAT tyrosine phosphorylation in rat brain astrocytes. Biochemical and biophysical research communications 328(2): 595-600.
    17. Justicia, C., Gabriel, C., Planas, A. M., 2000. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30(3): 253-270.
    18. Kim, Y. R., Byun, H. S., Won, M., Park, K. A., Kim, J. M., Choi, B. L., Lee, H., Hong, J. H., Park, J., Seok, J. H., Kim, D. W., Shong, M., Park, S. K., Hur, G. M., 2008. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer 8: 144.
    19. Kong, L. Y., Abou-Ghazal, M. K., Wei, J., Chakraborty, A., Sun, W., Qiao, W., Fuller, G. N., Fokt, I., Grimm, E. A., Schmittling, R. J., Archer, G. E., Jr., Sampson, J. H., Priebe, W., Heimberger, A. B., 2008. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clinical cancer research 14(18): 5759-5768.
    20. Li, L., Gao, Y., Zhang, L. L., He, D. L., 2008a. Concomitant activation of the JAK/STAT3 and ERK1/2 signaling is involved in leptin-mediated proliferation of renal cell carcinoma Caki-2 cells. Cancer biology & therapy 7(11): 1787 - 1792.
    21. Li, Q., Zhang, R., Guo, Y. L., Mei, Y. W., 2009. Effect of Neuregulin on Apoptosis andExpressions of STAT3 and GFAP in Rats Following Cerebral Ischemic Reperfusion. Journal of molecular neuroscience 37(1):67-73
    22. Lin, J. C., Wang, Z., 2007. Hearing of microwave pulses by humans and animals: effects, mechanism, and thresholds. Health physics 92(6): 621-628.
    23. Liu, Y. P., Tan, Y. N., Wang, Z. L., Zeng, L., Lu, Z. X., Li, L. L., Luo, W., Tang, M., Cao, Y., 2008. Phosphorylation and nuclear translocation of STAT3 regulated by the Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. International journal of molecular medicine 21(2): 153-162.
    24. Liva, S. M., Kahn, M. A., Dopp, J. M., de Vellis, J., 1999. Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia 26(4): 344-352.
    25. Mausset-Bonnefont, A. L., Hirbec, H., Bonnefont, X., Privat, A., Vignon, J., de Seze, R., 2004. Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiology of disease 17(3): 445-454.
    26. McKinney, P. A., 2005. Central nervous system tumours in children: epidemiology and risk factors. Bioelectromagnetics Suppl 7: S60-68.
    27. Norkina, O., Dolganiuc, A., Catalano, D., Kodys, K., Mandrekar, P., Syed, A., Efros, M., Szabo, G., 2008. Acute Alcohol Intake Induces SOCS1 and SOCS3 and Inhibits Cytokine-Induced STAT1 and STAT3 Signaling in Human Monocytes. Alcoholism, clinical and experimental research 32(9):1565-1573
    28. Obelenis, V., Malinauskiene, V., 2007. The influence of occupational environment and professional factors on the risk of cardiovascular disease. Medicina (Kaunas) 43(2): 96-102.
    29. Onishi, A., Chen, Q., Humtsoe, J. O., Kramer, R. H., 2008. STAT3 signaling is induced by intercellular adhesion in squamous cell carcinoma cells. Experimental cell research 314(2): 377-386.
    30. Paulraj, R., Behari, J., 2006. Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagnetic biology and medicine 25(1): 61-70.
    31. Pawate, S., Shen, Q., Fan, F., Bhat, N. R., 2004. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. Journal of neuroscience research 77(4): 540-551.
    32. Planas, A. M., Gorina, R., Chamorro, A., 2006. Signalling pathways mediating inflammatory responses in brain ischaemia. Biochemical Society transactions 34(6): 1267-1270.
    33. Sanosaka, T., Namihira, M., Asano, H., Kohyama, J., Aisaki, K., Igarashi, K., Kanno, J., Nakashima, K., 2008. Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells. Neuroscience 155(3): 780-788.
    34. Sinczuk-Walczak, H., Bortkiewicz, A., Zmyslony, M., 2004. Effects of electromagnetic fields generated by mobile phones on the nervous system. Medycyna pracy 55(5): 435-438.
    35. Su, C. R., Shen, Y. C., Kuo, P. C., Leu, Y. L., Damu, A. G., Wang, Y. H., Wu, T. S., 2006. Total synthesis and biological evaluation of viscolin, a 1,3-diphenylpropane as a novel potent anti-inflammatory agent. Bioorganic & medicinal chemistry letters 16(24): 6155-6160.
    36. Urban, K., Hewicker-Trautwein, M., 1994. Fixation-dependent vimentin immunoreactivity of mono- and polyclonal antibodies in brain tissue of cattle, rabbits, rats and mice. Acta histochemica 96(4): 365-377.
    37. Xiong, H., Zhang, Z. G., Tian, X. Q., Sun, D. F., Liang, Q. C., Zhang, Y. J., Lu, R., Chen, Y. X., Fang, J. Y., 2008. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10(3): 287-297.
    38. Yu, L. J., Wu, M. L., Li, H., Chen, X. Y., Wang, Q., Sun, Y., Kong, Q. Y., Liu, J., 2008. Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 10(7): 736-744.
    39. Zhadin, M. N., 2001. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22(1): 27-45.
    40. Zhadobov, M., Sauleau, R., Le Coq, L., Debure, L., Thouroude, D., Michel, D., Le Drean, Y., 2007. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics 28(3): 188-196.
    41. Zhavoronkov, L. P., Kolganova, O. I., Dubovik, B. V., Matrenina, V. L., Posadskaia, V. M., 2003. Effects of microwave radiation on conditioned behavior of rats. Radiatsionnaia biologiia, radioecologiia 43(1): 75-81.