以PAMAM为间隔臂的仿生物特异性免疫吸附材料的点击法制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以氨基酸为配体,树枝状大分子聚酰胺-胺(PAMAM)为间隔臂,根据点击化学的原理设计和制备对免疫球蛋白(IgG)具有高选择性,且成本低廉、安全、吸附性能与蛋白A吸附材料相当的新型免疫吸附材料。通过系统地考察含不同间隔臂的免疫吸附材料对人血浆中IgG的吸附性能,研究免疫吸附材料的间隔臂长度、结构和刚/柔性等对配体偶联和免疫吸附材料的吸附性能的影响,从而探索一条能简单,高效、可控地制备仿生物特异性的非蛋白类免疫吸附材料的新途径。
     用廉价、稳定、安全且具有可修饰性的的氨基酸小分子为仿生配体代替常用的蛋白A制备免疫吸附材料,可避免蛋白类免疫吸附材料价格高昂、易脱落,存在安全隐患等缺陷;采用点击化学——Huisgen1,3-偶极环加成反应来实现配体与活性载体的偶联,可大大增强这两者间的反应选择性,从而增加配体的固载量和稳定性。此外,点击反应条件温和,在较宽范围的溶剂、温度和pH下均可发生,且对很多官能团呈惰性,因而很少甚至没有副产物,能尽量保持配体官能团的完整性和活性,从而保持其对抗体的亲和力。另一方面,选择外层带有大量活性官能团的PAMAM树枝状大分子为间隔臂,则可望利用这些官能团键接比线型间隔臂多得多的配体,从而提高所设计和制备的免疫吸附材料的配体含量,并改善其吸附性能。
     基于上述研究背景和思路,本课题主要开展了以下几个方面的研究和探索:
     (1)以琼脂糖凝胶(Sep)为载体,用常规法制备了分别以不同氨基酸(AA)为仿生配体的免疫吸附材料Sep-AA;测定了它们的配体含量,并通过对人血浆中IgG的吸附试验,对比分析了Sep-AA和用相同方法制备的蛋白A免疫吸附材料Sep-PA的吸附性能。
     (2)基于Huisgen1,3-偶极环加成反应的原理和要求,分别将载体Sep和配体AA通过适宜的化学修饰制备成―可点击‖的叠氮化活性载体Sep-N_3与含炔基的配体;将二者偶联制备了仿生物特异性的非蛋白类免疫吸附材料Sep-triazole-AA;表征了Sep-triazole-AA的配体含量和对人血浆中IgG的吸附性能,并与常规法制备的免疫吸附材料Sep-AA进行对比分析,研究了点击化学对吸附材料的结构和性能的影响。
     (3)以炔丙胺为核心,采用发散法合成了0.5~4.0代端基炔化的PAMAM树状大分子,并表征和分析了所得产物的结构,为将PAMAM用作免疫吸附材料的间隔臂奠定了基础。
     (4)通过树状大分子PAMAM外层的官能团与配体AA的反应,制得带端炔基树状间隔臂的“可点击”配体,并将这一配体偶联到―可点击‖的活性载体Sep-N_3上,以制备带树状间隔臂的免疫吸附材料Sep-PAMAM-AA;表征了其结构、配体含量和吸附性能,并与间隔臂为线型分子链的相应的吸附材料Sep-triazole-AA进行对比分析,研究了树枝状间隔臂PAMAM的结构与免疫吸附材料的IgG吸附性能之间的关系。从本课题的研究可得到的主要研究结果如下:
     (1)在免疫吸附材料Sep-AA的常规法制备中,琼脂糖载体上的活性基团含量随着环氧化、胺化、醛基化和配体的偶联等一系列反应的进行而逐步减少,使得所制备的分别以L-组氨酸(His)、L-苯丙氨酸(Phe)和L-色氨酸(Trp)为配体的免疫吸附材料Sep-His、Sep-Phe和Sep-Trp的配体含量较低。它们对IgG的吸附容量分别为2.88、2.62和2.53mg/g,远低于蛋白A吸附材料Sep-PA的IgG吸附容量22.97mg/g;所制备的Sep-AA对人血浆中的IgG有较高的选择性,几乎没有非特异性吸附。这一结果证明了氨基酸作为仿生配体的可行性。
     (2)用点击化学的方法成功地合成了三种以不同氨基酸为配体的免疫吸附材料Sep-triazole-His、Sep-triazole-Phe和Sep-triazole-Trp。它们的配体含量和对人血浆中IgG的吸附容量均明显地优于相应的用常规法制备的免疫吸附材料Sep-AA;其中,Sep-triazole-His的IgG吸附容量最高,达到16.49mg/g,但仍比不上Sep-PA。研究进一步证明,Sep-triazole-His具有与Sep-PA相当的对IgG的高吸附选择性;其间隔臂结构中由点击反应生成的三唑环能够促进IgG的结合而不引起非特异性吸附。
     (3)成功地设计与合成了G1.0~G4.0共4代外层带大量氨基的炔化PAMAM;并用点击化学的方法制备了带有不同的树状间隔臂和不同的氨基酸配体的免疫吸附材料Sep-PAMAM-AA。对产物结构的分析表明,在四种间隔臂G1.0~G4.0PAMAM中,以G3.0PAMAM键接的配体数最多,键接效率也最高。氨基酸修饰的PAMAM与活性载体Sep-N_3的点击反应选择性很高,反应效率接近100%;所得免疫吸附材料Sep-PAMAM-AA对人血浆中IgG的吸附容量均较高,大部分能与蛋白A免疫吸附材料相媲美。其中,用G3.0PAMAM作间隔臂的免疫吸附材料Sep-G3-His具有优异的吸附选择性和高达28.43mg/g的IgG吸附容量,是较理想的免疫吸附材料。
     总之,本研究探索了一种简单、高效、可控的方法来设计和制备更安全、更有效、更经济的免疫吸附材料。该方法不仅能克服常规制备法固有的缺陷,还能提高免疫吸附材料的偶联效率和吸附性能。研究结果为新型免疫吸附材料的设计、制备以及在IgG分离和血液净化方面的应用奠定了坚实的理论和实验基础,可望产生极大的社会效益和经济效益。
In this work, using amino acids as ligands and polyamidoamine (PAMAM) dendrimersas spacer-arms, a novel immunoadsorbent possessing pseudo-biospecific affinity forimmunoglobulin (IgG), which is cheap, safe and reliable and can have an adsorptionperformance comparable to protein A immunoadsorbent, was designed and prepared via clickchemistry. The IgG adsorption performance of the immunoadsorbents with different spacer-arms from human plasma were systematically investigated and the effects of the length,structures and rigidity/flexibility of the spacer-arms on their adsorption performance werealso studied, thus, exploring a novel route to preparing pseudo-biospecific non-proteinousimmunoadsorbents by a simple, efficient and controllable method.
     As biomimetic or pseudo-biospecific ligands, small molecular amino acids with low cost,high chemical and physical stability, good safety and modifiability are promising alternativesto protein A ligand for preparing immunoadsorbents, which can help to overcome the defectsof proteinaceous immunoadsorbents in the cost and potential safety hazards. Click chemistry—the Huisgen1,3-dipolar cycloaddition reaction used to achieve the coupling between theligand and the activated support can greatly enhance the reaction selectivity, therebyincreasing the density and stability of the ligands immobilized onto the support. Besides, clickreaction can be conducted under mild conditions and it is inert to most chemicalfunctionalities and stable to wide ranges of solvent, temperature and pH. Consequently, itgenerates little or no by-products and the integrity and activity of the functional group of theligand immobilized onto the support via the click reaction can be maintained as far as possible,so keeping the affinity of the ligand. On the other hand, choosing the PAMAM dendrimerswith a great number of reactive groups on the peripheral ends as spacer-arms will make itpossible to bond much more ligands by use of these functional groups than the linear spacer-arms with one reactive end groups, thus leading to an increase in the ligand density and animprovement in the adsorption performance of the designed and prepared immunoadsorbent.
     Based on the above-mentioned research background and ideas, the main research workincludes the following aspects:(1) A group of immunoadsorbents, Sep-AA, were prepared by a conventional method using
     sepharose (Sep) as a support and different amimo acids (AA) as pseudo-biospecific
     ligands, respectively. The ligand density of the prepared immunoadsorbents was
     determined, and the adsorption performance of them and the protein A immunoadsorbent Sep-PA prepared by the same method was compared and analyzed through an adsorptionexperiment of IgG from human plasma.
     (2) According to the principle of Huisgen1,3-dipolar cycloaddition reaction, sepharose as asupport and amino acids as ligands were transformed into the―clickable‖reactive supportor azidated sepharose (Sep-N_3) and the―clickable‖alkyne-containing ligands via suitablechemical modifications, respectively; and then each of the―clickable‖ligands wascoupled with the―clickable‖reactive support to prepare pseudo-biospecific non-proteinous immunoadsorbents Sep-triazole-AA. The ligand density and IgG adsorptionperformance of Sep-triazole-AA were characterized and compared with those of theimmunoadsorbents Sep-AA prepared by the conventional method. The influence of clickchemistry on the structure and the properties of the immunoadsorbents was also discussed.
     (3) A series of PAMAM dendrimers with terminal alkyne from generation0.5(G0.5) togeneration4.0(G4.0) was synthesized by the divergent strategy using2-propynylamineas the core; and the structure of the products was characterized and analyzed, therebylaying the foundation for using the PAMAM dendrimers as the spacer-arms ofimmunoadsorbents.
     (4) The―clickable‖ligands combined with alkyne-containing dendritic spacer-arms wereprepared by the reaction between the functional groups on the peripheral ends of thePAMAM dendrimers and an amino acid ligand, and coupled with the―clickable‖reactivesupport Sep-N_3to prepare the immunoadsorbents Sep-PAMAM-AA bearing dendriticspacer-arms. Their structure, ligand density and adsorption performance werecharacterized and compared with those of the corresponding immunoadsorbents Sep-triazole-AA whose spacer-arm is a linear molecular chain. The relationship between thestructure of the PAMAM dendritic spacer-arms and the IgG adsorption performance of theimmunoadsorbents Sep-PAMAM-AA was also studied.
     The main conclusions drawn from this study are as follows:
     (1) In the conventional preparation of immunoadsorbents Sep-AA, the content of activegroups in the sepharose support will decrease gradually as a series of reactions, includingthe epoxidization of Sep and the amination, hydroformylation and coupling reaction ofmodified Sep, are conducted, thus resulting in low ligand density of the products Sep-His,Sep-Phe and Sep-Trp, whose ligands are L-histidine (His), L-phenylalanine (Phe) and L-tryptophan (Trp), respectively. The IgG adsorption capacity of Sep-His, Sep-Phe and Sep-Trp was measured to be2.88,2.62and2.53mg/g, respectively, which are much lower than that of the protein A immunoadsorbent Sep-PA, or22.97mg/g. All of the preparedimmunoadsorbents Sep-AA, Sep-His, Sep-Phe and Sep-Trp, can exhibit high adsorptionselectivity for IgG from human plasma and almost have no non-specific adsorption. Itproves the feasibility of using amino acids as the pseudo-biospecific ligand ofimmunoadsorbents.
     (2) The immunoadsorbents Sep-triazole-His, Sep-triazole-Phe and Sep-triazole-Trp weresuccessfully prepared by click chemistry using three kinds of amino acids His, Phe andTrp as the ligand, respectively. They are obviously superior in the ligand density and theadsorption capacity to the corresponding immunoadsorbents Sep-AA prepared by aconventional method. Among the three immunoadsorbents, Sep-triazole-His shows thehighest IgG adsorption capacity, which is as high as16.49mg/g, but still lower than thatof Sep-PA. The further studies prove that Sep-triazole-His can exhibit high adsorptionselectivity for IgG comparable to Sep-PA and that the1,2,3-triazole ring in its spacer-arm, which is produced via the click reaction between Sep-N_3and L-histidine withterminal alkyne, can facilitate the binding of IgG without non-specific adsorption.
     (3) Generation1.0~4.0(G1.0~4.0) PAMAM dendrimers with terminal alkyne and multipleamino groups on the peripheral ends were successfully designed and synthesized; and thenthe immunoadsorbents with different dendritic spacer-arms and different amino acids asligands, Sep-PAMAM-AA, were prepared via click chemistry. The structure analyses ofthe products show that among the four spacer-arms, G1.0~4.0PAMAM dendrimers, G3.0PAMAM can covalently combine with the most number of ligands and achieve thehighest bonding efficiency; and that the click reaction between the dendritic PAMAMmodified amino acids, PAMAM-AA, and the activated support Sep-N_3possesses veryhigh selectivity and the reaction efficiency is almost close to100%. The preparedimmunoadsorbents Sep-PAMAM-AA all possess high adsorption capacity of IgG fromhuman plasma, and most of them can exhibit an IgG adsorption capacity comparable tothat of Sep-PA. By comparison, the immunoadsorbent Sep-G3-His, whose spacer-arm isG3.0PAMAM, possesses an excellent adsorption selectivity for IgG and the adsorptioncapacity up to28.43mg/g, so it is an ideal immunoadsorbent.
     In a word, a simple, efficient and controllable method has been explored in this study todesign and prepare safe, effective and inexpensive immunoadsorbents. This method can notonly overcome the inherent defects of conventional methods, but also improve theimmobilization efficiency and adsorption performance of the immunoadsorbents. Theobtained research results lay a solid theoretical and experimental foundation for the design and preparation of novel immunoadsorbents and their applications in the fields of IgGseparation and blood purification, which will be expected to generate great social andeconomic benefits.
引文
[1] Drexhage H A, Wulffraat N M. Endocrine autoimmune diseases[J]. The Netherlandsjournal of medicine,1994,45(6):285-293.
    [2] Mieli-Vergani Giorgina, Vergani Diego. Autoimmune paediatric liver disease[J]. WorldJournal of Gastroenterology,2008,14(21):3360-3367.
    [3] Huang Wei, Hu Chaojun, Zeng Haipan, et al. Novel systemic lupus erythematosusautoantigens identified by human protein microarray technology[J]. Biochemical andBiophysical Research Communications,2012,418(2):241-246.
    [4] Robinson Marcia, Cook Sarah Sheets, Currie Leanne M. Systemic lupus erythematosus: Agenetic review for advanced practice nurses[J]. Journal of the American Academy ofNurse Practitioners,2011,23(12):629-637.
    [5] Leite M. Isabel, Waters Patrick, Vincent AnSepa. Diagnostic use of autoantibodies inmyasthenia gravis[J]. Autoimmunity,2010,43(5-6):371-379.
    [6] Huang Sha, Tan Li-Ming. Research advancement in immunopathogenesis of myastheniagravis [J]. Neuroscience Bulletin,2010,26(1):85-89.
    [7] Liu Jinqi, Mehmet Huseyin. Emerging therapies in the treatment of rheumatoid arthritis[J].Drug Development Research,2011,72(80):805-816.
    [8] Toni Kline. Handbook of affinity chromatography[M]. Marcel Dekker Inc,1993.
    [9] Pascal Bailon, George K. Ehrlich, Wen-Jian Fung, et al. Affinity chromatography:methods and protocols[M]. Humana Press,2000.
    [10] Peter Mohr, Martin Holtzhauer, Gunter Kaiser. Immunosorption techniques:fundamentals and applications[M]. Wiley VCH,1992.
    [11] That T. Ngo. Molecular interactions in bioseparations[M]. Springer-Verlag New York,LLC,2007.
    [12] William H. Scouten. Affinity chromatography: bioselective adsorption on inertmatrices[M]. Wiley-Blackwell,1981.
    [13] Paul Matejtschuk. Affinity separations: a practical approach[M]. Oxford University Press,1997.
    [14] Rolf Axen, Jerker Porath, Sverker Emback. Chemical coupling of peptides and proteinsto polysaccharides by means of cyanogens halides[J]. Nature,1967,214:1302-1304.
    [15]严希康。生化分离技术[M]。上海:华东理工大学出版社,1996:93-94。
    [16] Burnouf, T., H. Goubran, M. Radosevich. Application of bioaffinity technology intherapeutic extracorporeal plasmapheresis and large-scale fractionation of humanplasma[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical andLife Sciences,1998,715(1):65-80.
    [17] Jaroslava Turkova. Bioaffinity chromatography[M]. Elsevier Science,1993.
    [18] P. D. G. Dean, W. S. Johnson, F. A. Middle. Affinity chromatography: a practicalapproach[M]. Oxford University Press,1985.
    [19] Cuatrecasas P, Wilchek M. ingle-step purification of avidin from egg white by affinitychromatography on biocytin-sepharose columns[J]. Biochemical and BiophysicalResearch Communications,1968,33(2):235-239.
    [20]赵永芳。生物化学技术原理及应用(第三版)[M]。北京:科学出版社,2002:151-163。
    [21] Rodney R. Walters. High-performance affinity chromatography: pore-size effects[J].Journal of Chromatography A,1982,249(1):19-28.
    [22] Salvalaglio Matteo, Cavallotti Carlo. Molecular modeling to rationalize ligand-supportinteractions in affinity chromatography[J]. Journal of Separation Science,212,35(1):7-19.
    [23] M. I. Shtilman. Immobilization on Polymers, New concepts in Polymer science[M]. VSPInternational Science Publishers,1993,137.
    [24] Jaulmes A, Vidal-Madjar C, Pantazaki A. Adsorption kinetics of human serum albuminon various types of chromatographic support[J]. Chromatographia,2001,53: S417-S423.
    [25] Mazid M A, Kaplan M. An improved affinity support and immunoadsorbent with asynthetic blood group oligosaccharide and polymer coating for hemoperfusion[J].Journal of applied biomaterials: an official journal of the Society for Biomaterials,1992,3(1):9-15.
    [26] Kundu S K, Roy S K. Aminopropyl silica Sep as a solid support for preparation ofglycolipid immunoadsorbent and purification of antibodies[J]. Journal of lipid research,1979,20(7):825-833.
    [27]时钧。膜技术手册[M]。北京:化学工业出版社,2003:21-30。
    [28]刘国诠。生物工程下游技术[M]。北京:化学工业出版社,2003:252-265。
    [29] Mohimen A, Maitra T K, Jalan K N. Use of periodate activated sepharose4Bimmunoadsorbent in purification of anti Entamoeba histolytica antibody[J]. Indianjournal of experimental biology,1985,23(11):644-646.
    [30] Heinzel W, Rahimi-Laridjani I, Grimminger H. Immunoadsorbents: non-specific bindingof proteins to albumin-sepharose[J]. Journal of immunological methods,1976,9(3-4):337-344.
    [31] Kong D L, Schuett W, Boeden H F, et al. Development of a DNA immunoadsorbent:Coupling DNA on sepharose4FF by an efficient activation method[J]. ARTIFICIALORGANS,2000,24(11):845-851.
    [32] Yan WR, Yu YT, Yang L, et al. Studies on new immunoadsorbent for MyastheniaGravis[J]. Chemical Journal of Chinese Universities-Chinese,2002,23(10):1887-1890.
    [33] Kong DL, Dai J, Chen CZ, et al. Coupling of DNA to bead type cellulose asimmunoadsorbent[J]. Chemical Journal of Chinese Universities-Chinese,2000,21(12):1848-1851.
    [34] Rodriguez P E, Cumar F A. Gangliosides noncovalently bound to DEAE-Sephadex:application to purification of anti-ganglioside antibodies[J]. Analytical biochemistry,1990,188(1):48-52.
    [35] Mejan O, Fert V, Delezay M, et al. Immunopurification of human factor VIII/vWFcomplex from plasma[J]. Thrombosis and haemostasis,1988,59(3):364-71.
    [36] Yu YH, He BL. The preparation of immunoadsorbents and their adsorption properties foranti-DNA antibodies in SLE serum[J]. Reactive&Functional Polymers,1999,41(1-3):191-195.
    [37]章杰。以壳聚糖为载体亲和层析胰蛋白酶[D]。四川大学,2006。
    [38] Bonillaca. Adsorption of lysozyme to polyacrylamide gel (bio-gel P-2)[J]. Journal ofchromatography B,1970,47(3):499-501.
    [39] Hanczyc Piotr; Norden Bengt; Akerman Bjorn. DNA in a Polyvinyl Alcohol Matrix andInteractions with Three Intercalating Cyanine Dyes[J]. Journal of Physical Chemistry B,2011,115(42):12192-12201.
    [40] Seoudi R., El Mongy S. Abd, Shabaka A. A. Effect of polyvinyl alcohol matrices on thestructural and spectroscopic studies of CdSe nanoparticles[J]. Physica B-CondensedMatter,2008,403(10-11):1781-1786.
    [41] A. Krishna Mallia, Paul K. Smith, Greg T. Hermanson, et al. Immobilized affinity ligandtechniques[M]. San Diego: Academic Press,1992:137-275.
    [42] Clarke W, Chowdhuri A R, Hage D S. Analysis of free drug fractions by ultra-fastimmunoaffinity chromatography[J]. Analytical Chemistry,2001,73:2157-2164.
    [43] Wiepz G J, Guadaramma A G, Fulgham D L, et al. Purification and assay of kinase-active EGF receptor from mammalian cells by immunoaffinity chromatography[J].Methods in Molecular Biology,2006,327:25-38.
    [44] Walker J M. The protein protocols Handbook[M].2ndedition. Totowa: Human Press,2002:993.
    [45] Lei Genhu; Liu Liting; Xiong Xiaohu, et al. New alpha-amino phenylalanine tetrazoleligand for immobilized metal affinity chromatography of proteins[J]. Journal ofSeparation Science,2008,31(16-17):3002-3008.
    [46] Madoery R, Minchiotti M. Cibacron Blue-Eupergit. an affinity matrix for soybean(Glycine max) phospholipase A(2) purification[J]. Enzyme and Microbial Technology,2006,38(7):869-872.
    [47] Rudd P M, Elliott T, Cresswe U P, et al. Glycosylation and the immune system[J].Science,2001,291:2370-2376.
    [48] K.霍斯泰特曼,A.马斯顿,M.霍斯泰特曼。制备色谱技术—在天然产物分离中的应用(赵维民,张天佑译)[M]。北京:科学出版社,2000:271-277。
    [49]贾凌云。用于血液净化的蛋白A免疫吸附材料的合成方法[P]。中国专利,2001,01106107.3。
    [50] Terman D S, Yamamoto T, Tillquist R L, et al. Tumorieidal response induced bycytosine arabinoside after plasma perfusion over protein A[J]. Science,1980,209(4462):1257-1259.
    [51] Nilsson I M, Jonsson S, Sundqvist et al. A procedure for removing high titer antibodiesby extracorporeal protein A-sepharose absorption in hemophilia[J]. Blood,1981,58(l):38-44.
    [52] Christie D J, Howe R B, Lennon S S, et al. Treatment of refractoriness to platelettransfusion by protein a column therapy[J]. Transfusion,1993,33(11):234-242.
    [53] Gj rstrup P, Watt R M. Therapeutic Protein A Immunoadsorption[J]. TransfusionScience,1990,11(3-4):281-302.
    [54] Fahrner R L, Whitney D H, Vanderlaan M, et al. Performance comparison of protein Aaffinity-chromatography sorbents for purifying recombinant monoclonal antibodies[J].Biotechnology and Applied Biochemistry,1999,30(2):121-128.
    [55] Ghose S, Nagrath D, Hubbard B, et al. Use and optimization of a dual-flow rate loadingstrategy to maximize throughput in protein A affinity chromatography[J]. BiotechnologyProgress,2004,20(3):830-840.
    [56] Braun N, Boseh T. Immunoadsorption, current status and future developments[J]. ExpertOpinion on Biological Therapy,2000,9(9):2017-2038.
    [57] Gerber B, Tinguely C, Bovin N V, et al. Differences between synthetic oligosaccharideimmunoabsorbents in depletion capacity for xenoreactive anti-Galalpha1-3Galantibodies from human serum[J]. Xenotransplantation,2001,(8):106-114.
    [58] Hutchens T W, Porath J. Thiophilic adsorption of immunoglobulins-analysis ofconditions optimal for selective immobilization and purification[J]. AnalyticalBiochemistry,1986,159(1):217-226.
    [59]王玉祥,孟繁平,俞耀庭等。重症肌无力特异性免疫吸附材料的制备及对患者血清的静态吸附作用[J]。中国神经免疫病学杂志,2005,12(2):73-75。
    [60] Noriko H, Toshiji K, Naokuni Y. Immusorba TR and PH[J]. Therapeutic Apheresis andDialysis,2003,7(1):85-90.
    [61]邹汉法,罗权舟,孔亮等。组氨酸在血液净化亲合吸附介质中的应用[P]。中国专利,2004,10021373.3。
    [62] Kamalanathan A S, Vijayalakshmi M A. Molecular studies of rheumatoid factor usingpseudobioaffinity membrane chromatography[J]. Journal of Molecular Recognition,2009,22(2):146-153.
    [63] Assem Elkak, Sanaa Ismail, Lokman Uzun, et al. Adsorption study of immunoglobulin Gsubclasses from different species by pseudobioaffinity separation on histidyl–bisoxirane–sepharose[J]. Journal of Chromatography A,2009,69(11-12):1161-1167.
    [64] Ozturk N, Tabak A, Akgol S, et al. Newly synthesized bentonite-histidine (Bent-His)micro-composite affinity sorbents for IgG adsorption[J]. Colloids and Surfaces A,2007,301(1-3):490-497.
    [65] Bayramoglu G,. Senel A U, Arica M Y. Adsorption of IgG on spacer-arm and L-arginineligand attached Poly(GMA/MMA/EGDMA) beads[J]. Journal of Applied PolymerScience,2007,104:672–679.
    [66] Fassina G,Ruvo M, Palombo G et al. Novel ligands for the affinity-chromatographicpurification of antibodies[J]. Journal of Biochemical and Biophysical Methods,2001,49(1-3):481-490.
    [67] Ehr1ich G K, Bailon P. Identification of model peptides as affinity ligands for thepurification of humanized monoclonal antibodies by means of phage display[J]. Journalof Biochemical and Biophysical Methods,2001,49(l-3):443-454.
    [68] Haiou Yang, Patrick V, GurSep, et al. Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography[J]. Journal of Chromatography A,2009,1216(6):910-918.
    [69] Verdoliva A, Pannone F, Rossi M, et al. Affinity purification of polyclonal antibodiesusing a new all-D synthetic peptide ligand: comparison with protein A and protein G[J].Journal of Immunological Methods,2002,271(1-2):77-88.
    [70]俞耀庭,王永健,魏佼。球形氨基酸吸附剂及其制备方法[P]。中国专利,2003,03130403.6。
    [71] Teng S F, Sproule K, Husain A, et al. Affinity chromatography on immobilized"biomimetic" ligands synthesis, immobilization and chromatographic assessment of animmunoglobulin G-binding ligand[J]. Journal of Chromatography B,2000,740(l):1-15.
    [72] Boi C, Busini V, Salvalaglio M. Understanding ligand–protein interactions in affinitymembrane chromatography for antibody purification[J]. Journal of Chromatography A,2009,1216(50):8687-8696.
    [73] Porath J, Maisano F, Belew M. Thiophilic adsorption-a new method for proteinfractionation[J]. FEBS Letters,1985,185(2):306-310.
    [74] Berna P P, Berna N, Porath J, et al. Comparison of the protein adsorption selectivity ofsalt-promoted agarose-based adsorbents Hydrophobic, thiophilic and electron donor-acceptor adsorbents[J]. Journal of Chromatography A,1998,800(2):151-159.
    [75] Schwart W, Judd D, Wysocki M, et al. Comparison of hydrophobic charge inductionchromatography with affinity chromatography on protein A for harvest and purificationof antibodies[J]. Journal of Chromatography A,2001,908(1-2):251-263.
    [76] Jun Ren, Lingyun Jia, Li Xu, et al. Removal of autoantibodies by4-mercaptoethylpyridine-based adsorbent[J]. Journal of Chromatography B,2009,877(11-12):1200-1204.
    [77] Igor Tadeu Lazzarotto Bresolin, Mariana Borsoi-Ribeiro, Juliana Rodrigues Caro, et al.Adsorption of human serum proteins onto TREN-agarose: Purification of human IgG bynegative chromatography[J]. Journal of Chromatography B,2009,877(1-2):17-23.
    [78]蒋中华,张津辉。生物分子固定化技术及应用[M]。北京:化学工业出版社,1998,p218。
    [79] Anspach F B, Petsch D. Purification of murine IgG1on group specific affinity sorbents[J].Bioseparation,1996,6:165-184.
    [80] Chi-Yu Lee, Nathan O. Kapalan. Characteristics of8-Substituted adenine nucleotidederivatives utilized in affinity chromatography[J]. Archives of biochemistry andbiophysics,1975,168:665-676.
    [81] Harry W. Jarreu. Afinity chromatography with nucleic acid polymers[J]. Journal ofChromatography B,1993,618:315-339.
    [82] Barry J. Hunt. New directions in chromatography. New directions in Sep permeationchromatography[J]. Analytical Proceedings,1993,30(8):338-340.
    [83] Anspach, Friedrich Birger. Endotoxin removal by affinity sorbents[J]. Journal ofBiochemical and Biophysical Methods.2001,49:665-681.
    [84] Akdemir Zumrut Seden, Demir Serap, Kahraman M. Vezir, et al. Preparation andcharacterization of UV-curable polymeric support for covalent immobilization ofxylanase enzyme[J]. Journal of Molecular Catalysis B-Enzymatic,2011,68(1):104-108.
    [85] Hasirci Nesrin, Aksoy Serpil, Tumturk Hayrettin. Activation of poly(dimer acid-co-alkylpolyamine) particles for covalent immobilization of alpha-amylase[J]. Reactive&Functional Polymers,2006,66(12):1546-1551.
    [86] Shenoy N R, Bailey J M, Shively J E. Carboxylic acid-modified polyethylene: a novelsupport for the covalent immobilization of polypeptides for C-terminal sequencing[J].Protein science: a publication of the Protein Society,1992,1(1):58-67.
    [87] Murza A, Fernandez-Lafuente R, Guisan JM. Essential role of the concentration ofimmobilized ligands in affinity chromatography: Purification of guanidinobenzoatase onan ionized ligand[J] Journal of Chromatography B,2000,740(2):211-218.
    [88] Mateo Cesar; Palomo Jose M.; Fuentes Manuel; et al. Glyoxyl agarose: A fully inert andhydrophilic support for immobilization and high stabilization of proteins[J]. Enzyme andMicrobial Technology,2006,39(2):274-280.
    [89] Highsmith F, Regan T, Clark D, et al. Evaluation of CNBr, FMP and hydrazide resins forimmunoaffinity purification of factor IX[J]. Biotechniques,1992,12(3):418-23.
    [90] Hofer Stefan, Ronacher Alexander, Horak Jeannie, et al. Static and dynamic bindingcapacities of human immunoglobulin G on polymethacrylate based mixed-modal,thiophilic and hydrophobic cation exchangers[J]. Journal of Chromatography A,2011,1218(49):8925-8936.
    [91] Houen G, Jensen O M. Conjugation to preactivated proteins using divinylsulfone andiodoacetic acid[J]. Journal of immunological methods,1995,181(2):187-200.
    [92] Xia Hai-Feng, Lin Dong-Qiang, Wang Li-Ping, et al. Preparation and Evaluation ofCellulose Adsorbents for Hydrophobic Charge Induction Chromatography[J]. Industrial&Engineering Chemistry Research,2008,47(23):9566-9572.
    [93] Benito-Pena E, Moreno-Bondi MC, Orellana G, et al. Development of a novel andautomated fluorescent immunoassay for the analysis of beta-lactam antibiotics[J].Journal of Agricultural and Food Chemistry,2005,53(17):6635-6642.
    [94] Nadkarni V D, Pervin A, Linhardt R J. Directional immobilization of heparin ontobeaded supports[J]. Analytical biochemistry,1994,222(1):59-67.
    [95] Wimalasena R L, Wilson G S. Factors affecting the specific activity of immobilizedantibodies and their biologically active fragments[J]. Journal of chromatography B,1991,572(1-2):85-102.
    [96] Hylarides MD, Mallett RW, Meyer DL. A robust method for the preparation andpurification of antibody/streptavidin conjugates[J]. Bioconjugate Chemistry,2001,12(3):421-427.
    [97] Orford C D, Adlard M W, Perry D. Isolation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine from culture broths by covalent chromatography[J]. Journal of chemicaltechnology and biotechnology,1991,50(4):523-533.
    [98] Martinelli Marisa, Calderon Marcelo, Alvarez Cecilia I., et al. Functionalised supportswith sugar dendritic ligand[J]. Reactive&Functional Polymers,2007,67(10):1018-1026.
    [99] Akkaya Berrin, Sahin Ferat, Demirel Goekhan, et al. Functional polymeric supports forimmobilization of cholesterol oxidase[J]. Biochemical Engineering Journal,2009,43(3):333-337.
    [100] Li Juan, Duan Ming, Zhang Liehui, et al. Click chemistry and its applications[J].Progress in Chemistry,2007,19(11):1754-1760.
    [101] Kolb H C,Sharpless K B. The growing impact of click chemistry on drug discovery[J].Drug Discovery Today,2003,8(24):112-1137.
    [102] John E. Moses, Adam D. Moorhouse. The growing applications of click chemistry[J].Chemical Society Reviews,2007,36:1249–1262.
    [103] Wolfgang H. Binder, Robert Sachsenhofer. Click‘Chemistry in Polymer and MaterialsScience[J]. Macromolecular Rapid Communications,2007,28:15–54.
    [104] Christopher D. Hein, Xin-Ming Liu, Dong Wang. Click Chemistry, A Powerful Toolfor Pharmaceutical Sciences[J]. Pharmaceutical Research,2008,25(10):2216-2230.
    [105] Kolb H C, Finn M G, Sharpless K B. Click chemistry: Diverse chemical function froma few good reactions[J]. Angewandte Chemie-International Edition,2001,40(11):2004-2021.
    [106] Jean-Francois Lutz.1,3-Dipolar Cycloadditions of Azides and Alkynes: A UniversalLigation Tool in Polymer and Materials Science[J]. Angewandte Chemie-InternationalEdition,2007,46:1018–1025.
    [107] Amblard Franck, Cho Jong Hyun, Schinazi Raymond F. Cu(I)-Catalyzed HuisgenAzide-Alkyne1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, andOligonucleotide Chemistry[J]. Chemical Reviews,2009,109(9):4207-4220.
    [108] Tanaka Katsunori, Kageyama Chika, Fukase Koichi. Acceleration of Cu(I)-mediatedHuisgen1,3-dipolar cycloaddition by histidine derivatives[J]. TETRAHEDRONLETTERS,2007,48(7):6475-6479.
    [109] Dedola Simone, epogodiev Sergey A., Field Robert A. Recent applications of the Cu(I)-catalysed Huisgen azide-alkyne1,3-dipolar cycloaddition reaction in carbohydratechemistry[J]. Organic&Biomolecular Chemistry,2007,5(7):1006-1017.
    [110] Victoria D. Bock, Henk Heimsha, Jan H. Van Maarseveen. CuI-catalyzed alkyne-azideclick cycloadditions from a mechanistic and synthetic perspective[J]. European Journalof Organic Chemistry,2006(1):51-68.
    [111] Gong Young-Dae, Min Kyung Hoon, Lee Taeho. An Efficient Solid-Phase Synthesis ofalpha-1,2,3-Triazoloamide Derivatives via Click Chemistry[J]. Bulletin of the KoreanChemical Society,2011,32(7):2453-2456.
    [112] Savonnet Marie; Kockrick Emanuel; Camarata Aurelie, et al. Combinatorial synthesisof metal-organic frameworks libraries by click-chemistry[J]. New Journal of Chemistry,2011,35(9):1892-1897.
    [113] Rodriguez-Borges Jose E., Goncalves Sofia, do Vale Maria Luisa, et al. Click chemistryapproach to assembly proline mimetic libraries containing1,4-substituted1,2,3-triazoles[J]. Journal of Combinatorial Chemistry,2008,10(3):372-375.
    [114] Sharpless K. Barry, Manetsch Roman. In situ click chemistry: a powerful means forlead discovery[J]. Expert Opinion on Drug Discovery,2006,1(6):525-538.
    [115] Kirsi Harju, Mikko Vahermo, Ilpo Mutikainen, et al. Solid-Phase Synthesis of1,2,3-Triazoles via1,3-Dipolar Cycloaddition[J]. Journal of Combinatorial Chemistry,2003,5(6):826-833.
    [116] Bogdan Khanetskyy, Doris Dallinger, C. Oliver Kappe. Combining BiginelliMulticomponent and Click Chemistry: Generation of6-(1,2,3-Triazol-1-yl)-Dihydropyrimidone Libraries[J]. Journal of Combinatorial Chemistry,2004,6(6):884-892.
    [117] Raimo Franke, Christian Doll, Jutta Eichler. Peptide ligation through click chemistryfor the generation of assembled and scaffolded peptides[J]. Tetrahedron Letters,2005,46(26):4479-4482.
    [118] Jie Yang, Dirk Hoffmeister, Lesley Liu, et al. Natural product glycorandomization[J].Bioorganic&Medicinal Chemistry,2004,12(7):1577-1584.
    [119] Wilkinson, Brendan Luke Bornaghi, Laurent Houston, et al. Click Chemistry inCarbohydrate-Based Drug Development﹠Glycobiology[M]. New York: NovaScience Publishers,2007.
    [120] Francisco Pérez-Balderas, Mariano Ortega-Mu oz, Julia Morales-Sanfrutos, et al.Multivalent Neoglycoconjugates by Regiospecific Cycloaddition of Alkynes andAzides Using Organic-Soluble Copper Catalysts[J]. Organic Letters,2003,5(11):1951-1954.
    [121] Lac V. Lee, Michael L. Mitchell, Shih-Jung Huang, et al. A Potent and HighlySelective Inhibitor of Human-1,3-Fucosyltransferase via Click Chemistry[J]. Journalof the American Chemical Society,2003,125(32):9588-9589.
    [122] Ashraf Brik, John Muldoon, Ying-Chuan Lin, et al. Rapid Diversity-Oriented Synthesisin Microtiter Plates for In Situ Screening of HIV Protease Inhibitors[J]. ChemBioChem,2003,4(11):1246-1248.
    [123] Pedro Lois Suarez, Zoila Gándara, Generosa Gómez, et al. Vitamin D and clickchemistry. Part1: A stereoselective route to vitamin D analogues with triazole rings intheir side chains[J]. Tetrahedron Letters,2004,45(24):4619-4621.
    [124] Byung-Chul Suh, HeungBae Jeon, Gary H. Posner, et al. Vitamin D side chain triazoleanalogs via cycloaddition`click' chemistry[J]. Tetrahedron Letters,2004,45(24):4623-4625.
    [125] Vincent Ladmiral, Giuseppe Mantovani, Guy J. Clarkson, et al. Synthesis ofNeoglycopolymers by a Combination of―Click Chemistry‖and Living RadicalPolymerization[J]. Journal of the American Chemical Society,2006,128(14):4823-4830.
    [126] Boyd A. Laurent, Scott M. Grayson. An Efficient Route to Well-Defined MacrocyclicPolymers via―Click‖Cyclization[J]. Journal of the American Chemical Society,2006,128(13):4238-4239.
    [127] Michael R. Whittaker, Carl N. Urbani, Michael J. Monteiro. Synthesis of3-MiktoarmStars and1st Generation Mikto Dendritic Copolymers by―Living‖RadicalPolymerization and―Click‖Chemistry[J]. Journal of the American Chemical Society,2006,128:11360-11361.
    [128] Andrew P. Vogt, Brent S. Sumerlin. An Efficient Route to Macromonomers via ATRPand Click Chemistry[J]. Macromolecules,2006,39(16):5286-5292.
    [129] Haifeng Gao, Krzysztof Matyjaszewski. Synthesis of Star Polymers by a Combinationof ATRP and the―Click‖Coupling Method[J]. Macromolecules,2006,39(15):4960-4965.
    [130] Michael Malkoch, Kristin Schleicher, Eric Drockenmuller, et al. Structurally DiverseDendritic Libraries: A Highly Efficient Functionalization Approach Using ClickChemistry[J]. Macromolecules,2005,38(9):3663-3678.
    [131] Dmitri A. Ossipov, J ns Hilborn. Poly(vinyl alcohol)-Based HydroSeps Formed by―Click Chemistry‖[J]. Macromolecules,2006,39(5):1709-1718.
    [132] Anders D. Thomsen, Eva Malmstr m, S ren Hvilsted. Novel polymers with a highcarboxylic acid loading[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2006,44(21):6360-6377.
    [133] Ozcan Altintas, Gurkan Hizal, Umit Tunca. ABC-type hetero-arm star terpolymersthrough―Click‖chemistry[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2006,44(19):5699-5707.
    [134] Qingchun Liu, Yongming Chen. Synthesis of well-defined macromonomers by thecombination of atom transfer radical polymerization and a click reaction[J]. Journal ofPolymer Science, Part A: Polymer Chemistry,2006,44(20):6103-6113.
    [135] Chunmei Li, M. G. Finn. Click chemistry in materials synthesis. II. Acid-swellablecrosslinked polymers made by copper-catalyzed azide–alkyne cycloaddition[J]. Journalof Polymer Science, Part A: Polymer Chemistry,2006,44(19):5513-5518.
    [136] Jae Wook Lee, Jung Hwan Kim, Byung-Ku Kim, et al. Synthesis of Fréchet typedendritic benzyl propargyl ether and Fréchet type triazole dendrimer[J]. Tetrahedron,2006,62(5):894-900.
    [137] Peng Wu, Alina K. Feldman, Anne K. Nugent, et al. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation ofAzides and Alkynes[J]. Angewandte Chemie International Edition,2004,43(30):3928-3932.
    [138] Jean-Francois Lutza, Hans G. B rner. Modern trends in polymer bioconjugatesdesign[J]. Progress in Polymer Science,2008,33:1–39.
    [139] Hans G. B rner. Strategies exploiting functions and self-assembly properties ofbioconjugates for polymer and materials sciences[J]. Progress in Polymer Science,2009,34:811–851.
    [140] Christian W. Torn e, Caspar Christensen, Morten Meldal. Peptidotriazoles on SolidPhase:[1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed1,3-DipolarCycloadditions of Terminal Alkynes to Azides[J]. The Journal of Organic Chemistry,2002,67(9):3057-3064.
    [141] Vsevolod V. Rostovtsev, Luke G. Green, Valery V. Fokin, et al. A Stepwise HuisgenCycloaddition Process: Copper(I)-Catalyzed Regioselective―Ligation‖of Azides andTerminal Alkynes[J]. Angewandte Chemie International Edition,2002,41(14):2596-2599.
    [142] Johannes Gierlich, Glenn A. Burley, Philipp M. E. Gramlich, et al. Click Chemistry as aReliable Method for the High-Density Postsynthetic Functionalization of Alkyne-Modified DNA[J]. Organic Letters,2006,8(17):3639-3642.
    [143] Timothy R. Chan, Robert Hilgraf, K. Barry Sharpless, et al. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis[J]. Organic Letters,2004,6(17):2853-2855.
    [144] Raimo Franke, Christian Doll, Jutta Eichler. Peptide ligation through click chemistryfor the generation of assembled and scaffolded peptides[J]. Tetrahedron Letteers,2005,46(26):4479-4482.
    [145] Xue-Long Sun, Cheryl L. Stabler, Chrystelle S. Cazalis, et al. Carbohydrate and ProteinImmobilization onto Solid Surfaces by Sequential Diels Alder and Azide AlkyneCycloadditions[J]. Bioconjugate Chemistry,2006,17(1):52.
    [146] Qian Wang, Timothy R. Chan, Robert Hilgraf, et al. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition[J]. Journal of the American ChemicalSociety,2003,125(11):3192-3193.
    [147] Sayam Sen Gupta, Jane Kuzelka, Pratik Singh, et al. Accelerated BioorthogonalConjugation: A Practical Method for the Ligation of Diverse Functional Molecules to aPolyvalent Virus Scaffold[J]. Bioconjugate Chemistry,2005,16(6):1572-1579.
    [148] Anna E. Speers, Gregory C. Adam, Benjamin F. Cravatt. Activity-Based ProteinProfiling in Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition[J].Journal of the American Chemical Society,2003,125(16):4686-4687.
    [149] Nicholas J. Agard, Jennifer A. Prescher, Carolyn R. Bertozzi. A Strain-Promoted [3+2]Azide Alkyne Cycloaddition for Covalent Modification of Biomolecules in LivingSystems[J]. Journal of the American Chemical Society,2004,126(46):15046-15047.
    [150] Stefan L ber, Pilar Rodriguez-Loaiza, Peter Gmeiner. Click Linker: Efficient andHigh-Yielding Synthesis of a New Family of SPOS Resins by1,3-DipolarCycloaddition[J]. Organic Letters,2003,5(10):1753-1755.
    [151] Jun-Cai Meng, Claudia Averbuj, Warren G. Lewis, et al. Cleavable Linkers for PorousSilicon-Based Mass Spectrometry[J]. Angewandte Chemie International Edition,2004,43(10):1255-1260.
    [152] Fabio Fazio, Marian C. Bryan, Ola Blixt, et al. Synthesis of Sugar Arrays in MicrotiterPlate[J]. Journal of the American Chemical Society,2002,124(48):14397-14402.
    [153] Huaming Li, Fuyong Cheng, Andy M. Duft, et al. Functionalization of Single-WalledCarbon Nanotubes with Well-Defined Polystyrene by―Click‖Coupling[J]. Journal ofthe American Chemical Society,2005,127(41):14518-14524.
    [154] Rachel K. O'Reilly, Maisie J. Joralemon, Craig J. Hawker, et al. Facile syntheses ofsurface-functionalized micelles and shell cross-linked nanoparticles[J]. Journal ofPolymer Science, Part A: Polymer Chemistry,2006,44(17):5203-5217.
    [155] Georgina K. Such, John F. Quinn, Anthony Quinn, et al. Assembly of UltrathinPolymer Multilayer Films by Click Chemistry[J]. Journal of the American ChemicalSociety,2006,128(29):9318-9319.
    [156] David D. Díaz, Sreenivas Punna, Philipp Holzer, et al. Click chemistry in materialssynthesis.1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition[J].Journal of Polymer Science, Part A: Polymer Chemistry,2004,42(17):4392-4403.
    [157] Sreenivas Punna, Eiton Kaltgrad, M. G. Finn.―Clickable‖Agarose for AffinityChromatography[J]. Bioconjugate Chemistry,2005,16(6):1536-1541.
    [158] Ruth Duncan, Lorella Izzo. Dendrimer biocompatibility and toxicity[J]. Advanced DrugDelivery Reviews,2005,57(15):2215-2237.
    [159] M. S. Urdea, T. Horn. Dendrimer development[J]. Science,1993,261(5121):534.
    [160] D. K. Smith. Recent developments in dendrimer chemistry-Preface[J]. Tetrahedron,2003,59(22):3797-3798.
    [161] Jack P. Gunning, Jack W. Levell, Mark F. Wyatt, et al. The development of poly(dendrimer)s for advanced processing[J]. Polymer Chemistry,2010,1(5):730-738.
    [162] Jun Yang, Tengling Ye, Dongge Ma, et al."Click" chemistry synthesis of carbazoledendrimer as host material for electrophosphorescent device[J] Synthetic Metals,2011,161(3-4):330-334.
    [163] Douglas G. Mullen, Daniel Q. McNerny, Ankur Desai, et al. Design, Synthesis, andBiological Functionality of a Dendrimer-Based Modular Drug Delivery Platform[J].Bioconjugate Chemistry,2011,22(4):679-689.
    [164] Marina S. Polinskaya, Oleg V. Borshchev, Yuriy N. Luponosov, et al. Synthesis andproperties of a new luminescent oligoarylsilane dendrimer[J]. MendeleevCommunications,2011,21(2):89-91.
    [165] Wu Lei, Ling Jie, Wu Zong-Quan. A Highly Active and Recyclable Catalyst: PhosphineDendrimer-Stabilized Nickel Nanoparticles for the Suzuki Coupling Reaction[J].Advanced Synthesis&Catalysis,2011,353(9):1452-1456.
    [166] George R. Newkome, Zhong Qi Yao, Gregory R. Baker, et al. Micelles. Part1. Cascademolecules: a new approach to micelles. A [27]-arborol[J]. The Journal of OrganicChemistry,1985,50(11):2003-2004.
    [167] Craig J. Hawker, Karen L. Wooley, Jean M. J. Fréchet. Solvatochromism as a probe ofthe microenvironment in dendritic polyethers: transition from an extended to a globularstructure[J]. Journal of the American Chemical Society,1993,115(10):4375-4376.
    [168] Hans-Bernhard Mekelberger, Fritz V gtle, Wilfried Jaworek. Dendrimers, arborols, andcascade molecules: break through into generations of new materials[J]. AngewandteChemie International Edition in English,1992,31(12):1571-1576.
    [169] Virgil Percec, Masaya Kawasumi. Synthesis and characterization of a thermotropicnematic liquid crystalline dendrimeric polymer[J]. Macromolecules,1992,25(15):3843-3850.
    [170] M. Francesca Ottaviani, Stefan Bossmann, Nicholas J. Turro, et al. Characterization ofstarburst dendrimers by the EPR technique.1. copper complexes in water solution[J].Journal of the American Chemical Society,1994,116(2):661-671.
    [171] Christopher P. Palmer. Micellc Polymers, polymer surfactants and dendrimers aspseudostationary phases in micellar electrokinetic chromatography[J]. Journal ofChromatography A,1997,780(1-2):75-92.
    [172] Nonbuo Tanaka, Hiromobu Iwasaki, Takeshi Fukutome, et al. Starburst dendrimer-supported pseudostationary phases for electrodinetic chromatography[J]. Journal ofHigh Resolution Chromatography,1997,20(10):529-538.
    [173] Donald A. Tomalia, H. Dupont Durst. Genealogically directed synthesis:Starburst/cascade dendrimers and hyperbranched structures[J]. Topics in CurrentChemistry,1993,165:193-313.
    [174] Newkome G. R., Moorefield C. N., V gtle F.. Dendritic Macromolecules: Concepts,Syntheses, Perspectives[J]. Journal of Chemical Education,1999,76(1):31.
    [175] Scott M. Grayson, Jean M. J. Fréchet. Convergent Dendrons and Dendrimers: fromSynthesis to Applications[J]. Chemical Reviews,2001,101(12):3819-3868.
    [176] George R. Newkome, Gergory R. Baker, James K. Young, et al. A systematicnomenclature for cascade polymers[J]. Journal of Polymer Science Part A: PolymerChemistry,1993,31(3):641-651.
    [177] Tomalia D A, Baker H, Dewald J, et al. A New Class of Polymers: Starburst-dendriticMacromolecules[J]. Polymer,1985,17(1):117-132.
    [178] Giovanni M. Pavan, Lorenzo Albertazzi, Andrea Danani. Ability to Adapt: DifferentGenerations of PAMAM Dendrimers Show Different Behaviors in Binding siRNA[J].Journal of Physical Chemistry B,2010,114(8):2667-2675.
    [179] Surojit Pande, Richard M. Crooks. Analysis of Poly(amidoamine) Dendrimer Structureby UV-Vis Spectroscopy[J]. Langmuir,2011,27(15):9609-9613.
    [180]曾云龙。聚酰胺-胺-生物/纳米功能复合物的合成及其在分析化学中的应用[D]。湖南大学博士学位论文,2007。
    [181] Jae Wook Lee, Jung Hwan Kim, Byung-Ku Kim, et al. Convergent synthesis ofPAMAM dendrimers using click chemistry of azide-functionalized PAMAMdendrons[J]. Tetrahedron,2006,62(39):9193–9200.
    [182] Lee J W, Kim J H, Kim B K. Synthesis of azide-functionalized PAMAM dendrons atthe focal point and their application for synthesis of PAMAM-like dendrimers[J].Tetrahedron Letters,2006,47(16):2683-2686.
    [183] Lee J W, Kim B K, Kim H J, et al. Convergent synthesis of symmetrical andunsymmetrical PAMAM dendrimers[J]. Macromolecules,2006,39(6):2418-2422.
    [184] Lee Jae Wook, Kim Jung Hwan, Kim Byung-Ku, et al. Convergent synthesis ofPAMAM-like dendrimers from azide-functionalized PAMAM[J]. Bulletin of TheKorean Chemical Society,2006,27(11):1795-1800.
    [185] Raghavendra S. Navath, Anupa R. Menjoge, Bing Wang, et al. Amino acid-functionalized dendrimers with hetero-bifunctional chemoselective peripheral groupsfor drug delivery applications[J]. Biomacromolecules,2010,11(6):1544–1563.
    [186] Nam Hye Yeong, Hahn Hwa Jeong, Nam Kihoon, et al. Evaluation of generations2,3and4arginine modified PAMAM dendrimers for gene delivery[J]. InternationalJournal of Pharmaceutics,2008,363(1-2):199-205.
    [187] Choi J S, Nam K, Park J Y, et al. Enhanced transfection efficiency of PAMAMdendrimer by surface modification with L-arginine[J]. Journal of Controlled Release,2004,99(3):445-456.
    [188] Neal Pollock, Greg Fowler, Lance J. Twyman, et al. Synthesis and characterization ofimmobilized PAMAM dendrons[J]. Chemical Communications,2007,24:2482-2484.
    [189] Siming Wang, Ping Su, Hongjun E, et al. Polyamidoamine dendrimer as a spacer forthe immobilization of glucose oxidase in capillary enzyme microreactor[J]. AnalyticalBiochemistry,2010,405(2):230-235.
    [190] Guo Ling-Xiang, Gao Qiu-Duan. Synthesis and Performance of PAMAM-LysDendrimer[J]. Chemical Journal of Chinese Universities,2012,33(1):176-181.
    [191] Yu Gwang Sig, Bae Yun Mi, Choi Hye, et al. Synthesis of PAMAM DendrimerDerivatives with Enhanced Buffering Capacity and Remarkable Gene TransfectionEfficiency[J]. Bioconjugate Chemistry,2011,22(6):1046-1055.
    [192] Huang Baohua, Desai Ankur, Zong Hong, et al. Copper-free click conjugation ofmethotrexate to a PAMAM dendrimer platform[J]. Tetrahedron Letters,2011,52(13):1411-1414.
    [193] Mark A. Johnson, Jyotsna lyer, Paula T. Hammond. Microphase segregation of PEO-PAMAM linear-dendritic diblock copolymers[J]. Macromolecules,2004,37(7):2490-2501.
    [194] István J. Majoros, Andrzej Myc, Thommey Thomas, et al. PAMAM dendrimer-basedmultifunctional conjugate for cancer therapy: Synthesis, characterization andfunctionality[J]. Biomacromolecules,2006,7(2):572-579
    [195] Chang Yulei, Meng Xinlei, Zhao Yili, et al. Novel water-soluble and pH-responsiveanticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached tosuperparamagnetic iron oxide nanoparticles (IONPs)[J]. Journal of Colloid andInterface Science,2011,363(1):403-409.
    [196] Hu Hui, Fan Xiao-dong, Cao Zhong-lin. Thermo-and pH-sensitive dendrimerderivatives with a shell of poly(N, N-dimethylaminoethyl methacrylate) and study oftheir controlled drug release behavior[J]. Polymer,2005,46(22):9514-9522.
    [197] You-Liang Zhao, Qing Cai,Jing Jiang, et al. Synthesis and thermal properties of novelstar-shaped poly(L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator[J].Polymer,2002,43(22):5819-5825.
    [198] Wang Fei, Bronich Tatiana K., Kabanov Alexander V., et al. Synthesis and evaluationof a star amphiphilic block copolylmer from Poly(epsilon-caprolactone) andpoly(ethylene glycol) as a potential drug delivery carrier[J]. Bioconjugate Chemistry,2005,16(2)397-405.
    [199]温玉婷,潘仕荣,郭振寰。组氨酸修饰聚酰胺-胺型树状高分子提高血清中基因转染效率的研究[J]。中国生物医学工程学报,2010,29(1):129-136。
    [200]雷姝蕾。用作生物大分子分析的树状间隔臂亲和色谱固定相的合成[D]。北京化工大学硕士学位论文,2000。
    [201]袁毅,王燕铭,俞耀庭。Dendrimer PAMAM为手臂的LDL吸附材料制备及性能研究[J]。离子交换与吸附,2008,24(1):1-9。
    [202]王永健,刘鉴峰,多佳等。高配体吸附材料的制备新途径[J]。科学通报,2005,50(20):2191-2194。
    [203]王燕铭,宋瑜,孔德领等。光谱法研究聚酰胺-胺型树枝状高分子与DNA的相互作用[J]。科学通报,2005,50(13):1323-1327。
    [204]王永健,王连永,俞耀庭。类风湿关节炎吸附材料的制备及间隔臂作用的研究[J]。中国生物医学工程学报,2005,24(4):486-491。
    [205]王燕铭,宋瑜,孔德领等。荧光法研究聚酰胺-胺型树枝状高分子及其衍生物与牛血清白蛋白的相互作用[J]。科学通报,2005,50(17):1839-1844。
    [206] Fassina G, Verdoliva A, Odierna M R, et al. Protein A mimetic peptide1igand foraffinity purification of antibodies[J]. Journal of Molecular Recognition,1996,9(5-6):564-569.
    [207] Sproule K, Morrill P, Pearson J C, et al. New strategy for the design of1igands for thepurification of pharmaceutical proteins by affinity chromatography[J]. Journal ofChromatography B,2000,740(1):17-33.
    [208] Affinity Chromatography: Principles and Methods, Handbooks from AmershamBiosciences, Edition AD:18-1022-29, p.26.
    [209] Isa Santos Duarte, Ricardo de Lima Zollner, Sonia Maria Alves Bueno. Protein L-agarose for Adsorption of Autoantibodies: A Potential Tool for ExtracorporealTreatment[J]. Artificial Organs,2005,29(4):313-323.
    [210] Bo Huang, Fu-Feng Liu, Xiao-Yan Dong, et al. Molecular Mechanism of the AffinityInteractions between Protein A and Human Immunoglobulin G1Revealed byMolecular Simulations[J]. The journal of physical chemistry B,2011,115:4168-4176.
    [211] K. Swinnen, A. Krul, I. Van Goidsenhoven, et al. Performance comparison of protein Aaffinity resins for the purification of monoclonal antibodies[J]. Journal ofChromatography B,2007,848:97-107.
    [212] T. Burnouf, H. Goubranm, M. Radosevich. Application of bioaffinity technology intherapeutic extracorporeal plasmapheresis and large-scale fractionation of humanplasma[J]. Journal of Chromatography B,1998,715:65-80.
    [213] Thierry Burnouf, Mirjana Radosevich. Affinity chromatography in the industrialpurification of plasma proteins for therapeutic use[J]. Journal of Biochemical andBiophysical Methods,2001,49:575-586.
    [214] Klaus Huse, Hans-Joachim B hme, Gerhard H. Scholz. Purification of antibodies byaffinity chromatography[J] Journal of Biochemical and Biophysical Methods,2002,51:217-231.
    [215] Sanchayita Ghose, Brian Hubbard, Steven M Cramer. Evaluation and comparison ofalternatives to Protein A chromatography Mimetic and hydrophobic charge inductionchromatographic stationary phases[J]. Journal of Chromatography A,2006,1122:144-152.
    [216] Handan Yavuz, Sinan Akg l, Ridvan Say, et al. Affinity separation of immunoglobulinG subclasses on dye attached poly(hydroxypropyl methacrylate) beads[J]. InternationalJournal of Biological Macromolecules,2006,39(4-5):303-309.
    [217] M. A. Vijayalakshmi. Antibody Purification Methods[J]. Applied Biochemistry andBiotechnology,1998,75:93-102.
    [218] Gülay Bayramoglu, Aysegul U. Senel, M. Yakup Arica. Adsorption of IgG on Spacer-Arm and L-Arginine Ligand Attached Poly(GMA/MMA/EGDMA) Beads[J]. Journalof Applied Polymer Science,2007,104:672-679.
    [219] Karsten Haupt, M. A. Vijayalakshmi. Interaction of catechol-2,3-dioxygenase ofPseudomonas putida with immobilized histidine and histamine[J]. Journal ofChromatography A,1993,644(2):289-297.
    [220] A. S. Kamalanathan, M. A. Vijayalakshmi. Molecular studies of rheumatoid factorusing pseudobioaffinity membrane chromatography[J]. Journal of MolecularRecognition,2009,22:146-153.
    [221] Cecilia I. Alvarez I, Miriam C. Strumia, Héctor E. Bertorello. Preparation of adsorbentsapplicable to pseudobiospecific ligabd affinity chromatography using different spacersand ligands[J]. Reactive&Functional Polymers,1997,34:103-111.
    [222] Serpil zkara, Sinan Akg l, Yal n anak, et al. A Novel Magnetic Adsorbent forImmunoglobulin-G Purification in a Magnetically Stabilized Fluidized Bed[J].Biotechnology Progress,2004,20:1169-1175.
    [223] Erkut Yilmaz, Lokman Uzun, Abbas Yousefirad, et al. Specific adsorption of theautoantibodies from rheumatoid arthritis patient plasma using histidine-containingaffinity beads[J]. Journal of Biomaterials Science, Polymer Edition,2008,19(7):875-892.
    [224] Gulay Bayramoglu, Aysegul Ulku Senel, M. Yakup Arica. Effect of spacer-arm andCu(II) ions on performance of l-histidine immobilized on poly(GMA/MMA) beads asan affinity ligand for separation and purification of IgG[J]. Separation and PurificationTechnology,2006,50:229-239.
    [225] Gülay Bayramoglu, G kce Celik, M. Yakup Arica. Immunoglobulin G adsorptionbehavior of l-histidine ligand attached and Lewis metal ions chelated affinitymembranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,287:75-85.
    [226] M. Yakup Arica, Emine Yal m, Gülay Bayramoglu. Preparation and characterisation ofsurfaces properties of poly(hydroxyethylmethacrylate-co-methacrylolyamido-histidine)membranes: application for purification of human immunoglobulin G[J]. Journal ofChromatography B,2004,807:315-325.
    [227] Assem Elkak, Sanaa Ismail, Lokman Uzun, et al. Adsorption Study of ImmunoglobulinG Subclasses from Different Species by Pseudobioaffinity Separation on Histidyl–Bisoxirane–Sepharose[J]. Chromatographia,2009,69:1161-1167.
    [228] A. ElKak, S. Manjini, M. A. Vijayalakshmi. Interaction of immunoglobulin G withimmobilized histidine: mechanistic and kinetic aspects[J]. Journal of ChromatographyA,1992,604(1):29-37.
    [229] Sonia M. A. Bueno, Karsten Haupt, M. A. Vijayalakshmi. Separation ofimmunoglobulin G from human serum by pseudobioaffinity chromatography usingimmobilized L-histidine in hollow fibre membranes[J]. Journal of Chromatography B,1995,667:57-67.
    [230] Nevra ztürk, Ahmet Tabak, Sinan Akg l, et al. Newly synthesized bentonite–histidine(Bent–His) micro-composite affinity sorbents for IgG adsorption[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2007,301:490-497.
    [231] Serpil zkara, Handan Yavuz, Süleyman Pat r, et al. Separation of human-immunoglobulin-G from human plasma with l-histidine immobilized pseudo-specificbioaffinity adsorbents[J]. Separation Science and Technology,2002,37(3):717-731.
    [232]汪志刚。琼脂糖为载体的蛋白A免疫吸附材料的制备及其研究[D]。华南理工大学,2007。
    [233] Lars Sundberg, Jerker Porath. Preparation of adsorbents for biospecific affinitychromatography: I. Attachment of group-containing ligands to insoluble polymers bymeans of bifunctional oxiranes[J]. Journal of Chromatography A,1974,90(1):87-98.
    [234] Jerker Porath, Jan-Christer Janson, Torgny Laas. Agarose derivatives forchromatography, electrophoresis and Sep-bound enzymes:1. Desulphated and reducedcross-linked agar and agarose in spherical bead form[J]. Journal of Chromatography A,1971,60:167-177.
    [235]余晓,赵睿,方梅,等。单分散非多孔交联聚甲基丙烯酸环氧丙酯微球作为亲和色谱载体的研究[J]。分析化学,2000,5(28):544-548。
    [236] Yan-Bo Yang, Kervin Harrison. Influence of column type and chromatographicconditions on the ion-exchange chromatography of immunoglobulins[J]. Journal ofChromatography A,1996,743:171-180.
    [237] Frank C. Hay, Olwyn M. R. Westwood. Practical Immunology[M]. Blackwell Science,4th edition,2002, p.4.
    [238] Hans Hjelm, J rgen Sj dahl, John Sj quist. Immunologically Active and StructurallySimilar Fragments of Protein A from Staphylococcus aureus[J]. European Journal ofBiochemistry,1975,57(2):395-403.
    [239] John E. Moses, Adam D. Moorhouse. The growing applications of click chemistry[J].Chemical Society Reviews,2007,36:1249–1262.
    [240] Rolf Huisgen. Kinetics and reaction mechanisms: selected examples from theexperience of forty years[J]. Pure and Applied Chemistry,1989,51(4):613-628.
    [241] Hartmuth C. Kolb, M. G. Finn, K. Barry Sharpless. Click Chemistry: Diverse ChemicalFunction from a Few Good Reactions[J]. Angewandte Chemie International,2001,40:2004-2021.
    [242] Hartmuth C. Kolb, K. Barry Sharpless. The growing impact of click chemistry on drugdiscovery[J]. Drug Discovery Today,2003,8(24):1128-1137.
    [243] Vsevolod V. Rostovtsev, Luke G. Green, Valery V. Fokin, et al. A Stepwise HuisgenCycloaddition Process: Copper(I)-Catalyzed Regioselective―Ligation‖of Azides andTerminal Alkynes[J]. Angewandte Chemie International,2002,41(14):2596-2599.
    [244] Sreenivas Punna, Eiton Kaltgrad, M. G. Finn.―Clickable‖Agarose for AffinityChromatography[J]. Bioconjugate Chemistry,2005,16:1536-1541.
    [245] Jeannie Horak, Stefan Hofer, Wolfgang Lindner. Optimization of a ligandimmobilization and azide group endcapping concept via―Click-Chemistry‖for thepreparation of adsorbents for antibody purification[J]. Journal of Chromatography B,2010,878:3382-3394.
    [246] Laura Zamolo, Matteo Salvalaglio, Carlo Cavallotti, et al. Experimental and TheoreticalInvestigation of Effect of Spacer Arm and Support Matrix of Synthetic AffinityChromatographic Materials for the Purification of Monoclonal Antibodies[J]. TheJournal of Physical Chemistry,2010,114(29):9367-9380.
    [245] S. R. Jameela, S. Lakshmi, Nirmala R. James, et al. Preparation and Evaluation ofPhotocrosslinkable Chitosan as a Drug Delivery Matrix[J]. Journal of Applied PolymerScience,2002,86:1873–1877.
    [246] Ruta Kulbokaite, Gediminas Ciuta, Milos Netopilik, et al. N-PEG‘ylation of chitosanvia―click chemistry‖reactions[J]. Reactive&Functional Polymers,2009,69:771–778.
    [247] Yu Zhang, Hongkun He, Chao Gao. Clickable Macroinitiator Strategy to BuildAmphiphilic Polymer Brushes on Carbon Nanotubes[J]. Macromolecules,2008,41:9581-9594.
    [248] George W. Anderson, JOAN E. Zimmerman, Francis M. Callahan. The Use of Esters ofN-Hydroxysuccinimide in Peptide Synthesis[J]. Journal of the American ChemicalSociety,1964,86:1839-1842.
    [249] Gulay Bayramoglu, Aysegul Ulku Senel, M. Yakup Arica. Effect of spacer-arm andCu(II) ions on performance of l-histidine immobilized on poly(GMA/MMA) beads asan affinity ligand for separation and purification of IgG[J]. Separation and PurificationTechnology,2006,50:229–239.
    [250] W. Seth Horne, Maneesh K. Yadav, C. David Stout, et al. Heterocyclic PeptideBackbone Modifications in an r-Helical Coiled Coil[J]. Journal of the AmericanChemical Society,2004,126:15366-15367.
    [251] Michael H. Palmer, Robert H. Findlay, Antony J. Gaskell. Electronic chargedistribution and moments of five-and six-membered heterocycles[J]. Journal of theChemical Society, Perkin Transactions2,1974,(4):420-428.