聚合物基新型复合吸附材料的制备及对水体中重金属污染物的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文综述了重金属水污染的现状与危害,重金属废水的处理技术与方法的国内外研究及进展,吸附法处理重金属废水的研究进展及复合型吸附材料的设计,开发与应用。人类的生产和生活活动产生的含有重金属的废水由于某些原因未经处理或处理未达标就排向自然环境,由此导致的重金属水污染已经对生态环境,公众健康和社会经济的可持续发展造成严重威胁。各种有效去除水体中的重金属的处理技术与方法受到了世界各国政府和研究者们的极大关注。采用吸附技术来处理含重金属的废水是一种非常有效和具有发展前景的方法之一。因此,设计,研究和开发具有特殊或优异性能的吸附材料,是该领域最前沿和最引人注目的研究热点之一。正是基于吸附技术的高效和易操作性,设计并合成了一系列吸附量大,去除效率高,吸附速率快,对某种金属离子具有特殊选择性识别,易于分离,重复利用率高,价格低廉,制备简单,对环境无污染的聚合物基新型复合吸附材料。并运用电镜扫描,X-射线衍射,傅立叶红外光谱等手段对新型吸附剂的物理化学性质进行表征。在静态吸附模式下,考察了不同的操作条件对聚合物基新型复合型吸附材料吸附净化水溶液中重金属效果的影响,以获得新型吸附剂吸附重金属的最佳条件和最佳效果。并在此基础上,运用各种等温线模型,动力学模型和热力学模型对吸附平衡进行分析,研究吸附过程的性质,控速步骤及热力学行为。同时借助傅立叶红外光谱和光电子能谱对吸附净化机理进行探讨。再次,对吸附剂的解吸,再生及重复使用性能进行了研究。考察不同的解吸剂及浓度对解吸效果的影响,优化解吸操作,使新型吸附剂的吸附-解吸-再吸附操作能够持续进行。最后采用动态固定床工艺研究了新型吸附剂吸附净化重金属的效果与流速和进水金属浓度之间的关系,并采用动态数学模型对穿透曲线进行分析,为新型吸附剂的实际运用提供理论依据。本学位论文取得的主要研究结果如下:
     1.以CaCO3为发泡剂联合冻融循环方法制备了聚乙烯醇/壳聚糖(PVA/CS)复合型泡沫,通过批吸附实验研究了PVA/CS泡沫对水溶液中的Cu2+离子的吸附性能。研究结果显示,CS的引入不仅增强了PVA/CS泡沫的机械,化学和热力学稳定性,还提高了吸附能力,而且PVA, CaCO3和CS的不同配比对PVA/CS泡沫的吸附性能也产生了明显影响。PVA/CS泡沫对Cu2+的最大吸附量可达193.39mg/g,对含低浓度的Cu2+溶液去除效率高,吸附平衡符合Langmuir等温线模型,并且吸附是一种自发和吸热的过程。PVA/CS泡沫对Cu2+离子具有快的吸附速率,其吸附动力学遵循准二级化学反应模型,粒子内扩散是限速步骤,吸附过程同时涉及到化学吸附和物理吸附,这与PVA/CS泡沫的大网络结构和存在大量氨基和羟基有关。最后,考察了各种解吸剂的解吸效率,6个吸附-解吸循环对吸附剂的可重用性进行了评估。
     2.以CaCO3为开孔剂,以硼酸为交联剂制备了PVA/CS大孔复合球,通过批吸附实验研究了PVA/CS大孔球对Cu2+,Pb2+,Zn2+和Cd2+离子的去除性能。研究显示,PVA/CS复合球具有大孔三维网络状结构。在吸附过程中,PVA和CS呈现出一种协同增强效应。该复合球吸附四种金属离子的能力为:Cu2+>Pb2+>Cd2+>Zn2+,动力学显示Pb2+和Cd2十的吸附速率要快于Cu2+和Zn2+。PVA/CS球呈现出明显的选择性,可从混合金属溶液中选择性去除Cu2+。为了拓宽PVA/CS大孔复合球的使用范围,同时制备了有机P掺杂的PVA/CS/ATMPZ大孔复合球明显增强了对Pb2+的吸附容量和选择性,加快了吸附速率,使pH的适用范围更宽广。在此基础上,采用Langmuir, Freundlich, Tempkin和D-R等温线;准一级反应,准二级反应和粒子内扩散方程来研究PVA/CS球和PVA/CS/ATMPZ球吸附过程的性质与限速步骤。对新型吸附剂的解吸与重复使用性能进行了评估。最后考察了动态实验条件下,PVA/CS/ATMPZ大孔复合球实际去除Pb2+的能力。
     3.首先制备了-]NH2功能化的ZrO2(ZrN),耳将其包埋在PVA中形成大孔球状PVA/ZrN来增强复合材料的使用性能。采用批吸附模式研究了ZrN和PVA/ZrN对水溶液中金属离子的吸附性能。结果发现,氨基的引入明显增强了对Hg2+,Ag+,Cu2+离子的吸附能力。ZrN和PVA/ZrN对Hg2+,Ag+,Cu2+离子的最大吸附容量要高于很多其他类型的吸附剂,可以更好地去除废水中的重金属离子。ZrN吸附三种金属离子的平衡数据最符合Langmuir等温线模型,而PVA/ZrN则复合Freundlich等温线。同时,ZrN和PVA/ZrN的吸附动力学可以用准二级动力学来解释,吸附过程是一个复杂的过程,涉及到表面吸附,孔内扩散和化学反应过程。FTIR和XPS分析显示,羟基和金属表面羟基中的O原子和氨基中的N原子与重金属离子之间发生了螯合和/或离子交换。
     4.合成了包含大量功能团如氨基,羟基,羧酸盐基的新型PVA/CNTs-NC大孔复合球,并通过批吸附和柱吸附实验考察了PVA/CNTs-NC去除净化水溶液中Pb2+和Cu2+的性能。研究发现,氨基和羧酸盐功能团的引入极大地增强了CNTs-NC对Pb2+和Cu2+的吸附性能,呈现出高的去除率,快的吸附速率和宽的pH适用性。PVA/CNTs-NC的吸附量稍低于CNTs-NC,但是球形吸附剂的使用性能更强,易于分离和重复使用。CNTs-NC和PVA/CNTs-NC吸附Pb2+和Cu2+的平衡数据符合Langmuir单分子层吸附等温线。PVA/CNTs-NC对Pb2+的吸附速率明显快于Cu2+,表面吸附和粒子内扩散是两个主要的吸附机制。FTIR和XPS分析显示Pb2+和Cu2+离子与氨基的N和羧酸盐基团的O之间发生了络合反应。在动态吸附操作中,降低流速和进水金属浓度可以获得更高的吸附量和去除效率。另外,PVA/CNTs-NC的解吸-再生-再吸附操作呈现出高的重复使用效率。
     5.制备了一种新型磁性Zr(Ⅳ)交联海藻酸盐聚合物凝胶球(Fe3O4@SA-Zr),并考察了其对水中Pb2+的去除性能。合成的Fe3O4@SA-Zr具有大孔球形结构,良好的稳定性,还易于磁分离。实验结果表明,当初始Pb2+浓度低于200mg/L时,Fe3O4@SA-Zr几乎可以去除废水中100%的Pb2+。在Cu2+,Zn2+,Cd2+,Hg2+存在下,Fe3O4@SA-Zr可以选择性去除Pb2+。Fe3O4@SA-Zr对Pb2+的吸附非常符合Langmuir等温线模型,最大吸附量可达333.33mg/g。Pb2+的吸附动力学最符合准二级反应动力学模型。动态工艺研究发现,流速和进水金属浓度严重影响了穿透曲线的形状,较大的流速和较高的金属浓度将会使床层穿透和饱和加快。10个吸附-解吸循环之后,Fe3O4@SA-Zr对Pb2+吸附量仍可达到92%。
     6.首先以Zr(IV)与多乙烯多胺(EDA/DETA/TETA)反应制备了无机基聚合物Zr-(EDA/DETA/TETA),将其包埋在TA和SA-Ca形成的有机聚合物网络中形成有机/无机离子交联聚合物凝胶球,并以其作为新型吸附剂通过批吸附和柱吸附模式来考察对水溶液中的Pb(Ⅱ),Hg(Ⅱ),Cr(Ⅵ)离子的去除能力。对比实验结果显示,以Zr-DETA/TA/SA-Ca的吸附效率最高,对Pb(Ⅱ),Hg(Ⅱ)和Cr(Ⅵ)离子的最大吸附容量分别为379.75,421.15和131.15mg/g。三种重金属离子的吸附平衡最符合Langmuir等温线方程,吸附动力学显示,Pb(Ⅱ)和Hg(Ⅱ)离子的吸附速率要明显快于Cr(Ⅵ)离子,三种离子的动力学数据均符合准二级动力学模型,说明化学吸附是限速步骤。同时考察了Zr-DETA/TA/SA-Ca处理实际电镀含铬废水的效率,结果显示,废水中的Cr(Ⅵ)的去除率高达97%以上,出水中Cr(Ⅵ)的浓度≤0.5mg/L,符合废水排放标准,说明Zr-DETA/TA/SA-Ca具有非常好的实际应用的潜力。
The wastewater containing heavy metals produced from various human activities was discharged into the natural environment and caused soil, surface water and groundwater pollution, which has become the serious threat to the ecological environment, public health and the sustainable development of social economy. How to effectively remove the heavy metals in aqueous solution, various treatment technologies and methods have been attracted great attention by researchers and the governments around the world. Adsorption is one of the most effective and promising technologies used to remove heavy metals due to its simplicity, high efficiency, easy handing and no sludge generation. In recent years, various efforts have been focused on the research and development of novel adsorption materials with excellent properties such as large adsorption capacity and high selectivity, fast adsorption rate, easy separation and reusability, low cost, simple preparation, no secondary pollution.
     This paper summarized the present situation and the harm of heavy metals pollution, the development of technologies and methods for treatment of heavy metals at home and abroad, the development of adsorption technology for removal of heavy metals from aqueous solutions, and the preparation and application of novel composite adsorption materials. Based on the excellent properties of polymer, poly(vinyl alcohol) and sodium alginate were chosen as the supporter. Seven different kinds of polymer-based composite adsorbents were prepared including PVA/CS foam, PVA/CS beads, PVA/CS/ATMPZ beads, PVA/ZrN beads, PVA/CNTs-NC beads, Fe3O4@SA-Zr beads and Zr-DETA/TA/SA-Ca beads. These new adsorbents were characterized by FTIR, XRD, SEM, TGA, XPS, and so on. Tests were then conducted to study their adsorption performance for heavy metal ions and the effects of experimental parameters such as solution pH, initial metal concentration, contact time, temperature, ionic strength, humic acid and competitive ions on the removal of heavy metal ions were investigated in batch systems. Isotherms, kinetic and thermodynamic models were used to fit the experimental data to understand the adsorption mechanisms and the rate-limiting step. FTIR and XPS were used to analyze the mechanisms involved in the adsorption of heavy metals. Desorption efficiency and regeneration potential of novel adsorbents were studied by using various desorbing agents and several adsorption-desorption cycles were repeated to evaluate the reusability. The ability of novel adsorbents to remove heavy metal ions was further conducted by using the fixed-bed continuous column and breakthrough curves were analyzed at different flow rates and influent metal concentrations. Thomas model was used to analyze the dynamics of the adsorption column.
     1. A novel composite foam of PVA and CS was prepared by using CaCO3as forming agent and cryogenic-thawed treatment. Batch adsorption experiments were carried out to study the ability of PVA/CS foam to remove heavy metal ions from aqueous solution. The results showed that the introduction of CS not only enhanced mechanical strength, chemical and thermodynamic stability, but also improved the adsorption capacity. Different mass rations of PVA/CaCO3/CS had a significant effect on the adsorption of PVA/CS foam. The maximum adsorption capacity of PVA/CS foam was193.39mg/g, and removal efficiency of Cu2+was higher at lower metal concentration. Equilibrium data of Cu2+onto PVA/CS foam was best described by Langmuir isotherm and adsorption was a spontaneous and endothermic process. PVA/CS foam exhibited rapid adsorption rate, kinetic data was followed the pseudo-second order model, intraparticle diffusion was the rate limiting step and chemical and physical adsorption were involved in the adsorption process, which may be due to the network structure and many functional groups such as amine and hydroxyl groups. Finally, desorption efficiency and reusability of PVA/CS foam were assessed based on six consecutive adsorption-desorption cycles.
     2. Novel macroporous PVA/CS beads were prepared by using CaCO3as pore-forming agent and boric acid as cross-linking agent. Batch adsorption experiments were carried out to study the ability of PVA/CS beads for the removal of heavy metal ions from aqueous solution. The results showed that PVA/CS beads had the macroporous and three-dimensional network structure. PVA and CS exhibited a synergistic effect on removal of heavy metal ions. PVA/CS beads adsorbed heavy metals in the following order:Cu2+>Pb2+>Cd2+>Zn2+and showed faster kinetics for Pb2+and Cd2+than for Cu2+and Zn2+. PVA/CS beads could selectively remove Cu2+ions from the mixed-metal solution. In order to broaden the scope of application of PVA/CS beads, organic P doped PVA/CS/ATMPZ macroporous beads were prepared. PVA/CS/ATMPZ beads significantly enhanced the adsorption capacity and selectivity towards Pb2+ions, improved the adsorption rate and the efficiency in a wide range of pH. Various isotherm models (Langmuir, Freundlich, Tempkin and D-R), kinetic model (pseudo-first order, pseudo-second order and intraparticle diffusion) and thermodynamic models were used to study the mechanism and the rate-limiting step. The desorption efficiency and reusability of the adsorbents were assessed based on the consecutive adsorption-desorption cycles. Finally, dynamic experiments were conducted by using the fixed-bed continuous-flow column to further evaluate the potential of PVA/CS/ATMPZ for Pb2+removal.
     3. Amine functionalized ZrO2(ZrN) was prepared and was then embedded into PVA to form spherical macroporous adsorbent (PVA/ZrN). The adsorption performances of ZrN和PVA/ZrN for heavy metal ions in aqueous solution were studied in batch mode. It was found that the introduction of amine significantly improved the adsorption capacities for Hg2+, Ag+, Cu2+ions. The maximum adsorption capacities of PVA/ZrN beads for Hg2+, Ag+. Cu2+were higher than several adsorbents reported in the literature. The adsorption data of Hg2+, Ag+, Cu2+onto ZrN was best fitted the Langmuir isotherm while those onto PVA/ZrN followed the Freundlich isotherm. The kinetics was found to follow the pseudo-second order kinetic model. Surface adsorption, intraparticle diffusion and chemical reaction were involved in the adsorption process. From FTIR and XPS results, new complexes were formed between metal ions and nitrogen in amine groups and oxygen in hydroxyl groups through chelation and/or ion exchange.
     4. This work evaluated the macroporous PVA/CNTs-NC beads containing hydroxyl, carboxylate and amine groups for removing target pollutants Pb2+and Cu2+from aqueous solutions in batch and column modes. CNTs-NC exhibited higher adsorption capacities and efficiencies, rapid adsorption rate and wide application of pH for Pb2+and Cu2+ions. While adsorption capacities of PVA/CNTs-NC for Pb2+and Cu2+were lower than those of CNTs-NC. However, the spherical adsorbents were very easily separated from the solution and reused, which was especially important for continuous flow operations. The adsorption of Pb2+and Cu2+onto CNTs-NC and PVA/CNTs-NC was well described by Langmuir isotherm, indicating a monolayer adsorption. it was found that the adsorption rate of Pb2+was faster than that of Cu2+, surface adsorption and intraparticle diffusion were involved in Pb2+and Cu2+adsorption. FTIR and XPS indicated that nitrogen in amine groups and oxygen in carboxylate groups were the main active sites for metal ions binding. In column studies, PVA/CNTs-NC exhibited excellent performances in the removal of Pb2+, higher adsorption capacity and efficiency were obtained at low influent metal concentration and flow rate. Moreover, adsorption-desorption operations showed that PVA/CNTs-NC was a good reusable adsorption material.
     5. A novel magnetic sodium alginate-zirconium(IV) composite beads (Fe3O4@SA-Zr) were prepared by using Zr(IV) as the crosslinking ions and used as an adsorbent for the selective removal of Pb2+from aqueous solution by batch and fixed-bed column systems. The prepared Fe3O4@SA-Zr had the spherical and macroreticular structure, good stability and magnetic separation. Almost100%of Pb2+was removed by Fe3O4@SA-Zr when the initial metal concentration was lower than200mg/L. The competitive adsorption showed that Fe3O4@SA-Zr beads had good adsorption selectivity for Pb2+with the coexistence of Cu2+, Zn2+, Cd2+, Hg2+. Langmuir isotherm fitted the experimental data well and the maximum adsorption capacity was333.33mg/g. The kinetics was found to follow the pseudo-second-order model and the adsorption rate was controlled by a chemical sorption process. In the column study, flow rate and influent metal concentration significantly affected the shape of breakthrough curves, higher flow rate and influent metal concentration resulted in the earlier breakthrough time and exhaustion time. The dynamic adsorption of Pb2+by Fe3O4@SA-Zr followed the Thomas model. The adsorption capacity of Fe3O4@SA-Zr for Pb2+ions was maintained92%after10successive adsorption-desorption cycles.
     6. A novel polymer based on inorganic hybrid, Zr-(EDA/DETA/TETA), was prepared through the reaction Zr(Ⅳ) with three types of amine (EDA/DETA/TETA), which was then embedded into TA and SA-Ca organic polymer network and formed organic/inorganic ionically crosslinked polymer gel beads. The adsorption properties of Zr-(EDA/DETA/TETA)/TA/SA-Ca for Pb(Ⅱ), Hg(Ⅱ),Cr(Ⅵ) ions were studied by using the batch and column operations. Zr-DETA/TA/SA-Ca had the highest adsorption efficiencies for Pb(Ⅱ), Hg(Ⅱ) and Cr(VI) among all the beads prepared and the maximum adsorption capacities were reached to379.75,421.15和131.15mg/g, respectively. The equilibrium data of Pb(Ⅱ), Hg(Ⅱ) and Cr(Ⅵ) ions was fitted the Langmuir isotherm, indicating a monolayer adsorption. From kinetic studies, it was found that the adsorption rate of Pb(Ⅱ) and Hg(Ⅱ) was faster than that of Cr(VI) ions and reached the equilibrium around120,120and780min, respectively. For all the metal ions studied, chemical reaction may be the rate-controlling step and the pseudo-second-order kinetic model provided the best correlation of the experimental data. Importantly, Zr-DETA/TA/SA-Ca was able to remove97%of Cr(Ⅵ) in actual electroplating wastewater containing Cr(Ⅵ). Cr(Ⅵ) concentration in the effluent was0.5mg/L or less which was lower than the wastewater discharge standard, indicating that Zr-DETA/TA/SA-Ca had the very good potential in practical application.
引文
[1]http://www.chinawater.net.cn/waterforum/show.asp?s=606(中国水利科技网)
    [2]http://news.xinhuanet.com/newscenter/2004-03/22/content_1377574.htm(新华网)
    [3]Barbosa,A.C., Jardim,W.,Dorea, J.G., Fosberg,B., Souza, J. Hair mercury speciation as a function of gender, age, and bodymass index in inhabitants of the Negro River basin, Amazon, Brazil [J]. Archives of Environmental Contamination and Toxicology.2001, 40:439-44.
    [4]Kowalski, Z. Treatment of chromic tannery wastes [J]. Journal of Hazardous Materials.1994, 37(1):137-141.
    [5]Thella,K., Verma,B., Srivastava,V.C., Srivastava, K.K. Electrocoagulation study for the removal of arsenic and chromium from aqueous solution[J]. Journal of Environmental Science and Health Part A.2008,43(5):554-562.
    [6]邹家庆.工业废水处理技术[M].北京:化学工业出版社.2003.
    [7]Tuppurainen, K. O.,Vaisnena, A. O., Rintala, J. A. Zinc removal in anaerobic sulphate-reducing liquid substrate process[J]. Minerals Engineering.2002,15(11):847-852.
    [8]Golder,A.K., Chanda,A.K., Samanta,A. N., Ray, S. Removal of Cr(Ⅵ) from Aqueous Solution: Electrocoagulation vs Chemical Coagulation[J]. Separation Science and Technology.2007, 42(10):2177-2193.
    [9]黄海金,邹如意,宋继明.电化学法处理含铜废水的实验研究[J].沈阳师范大学学报(自然科学版).2011,29(3):425-427.
    [10]郝学奎,王三反.三维电极法处理含铜废水的方法研究[J].兰州铁道学院学报(自然科学版).2002,21(6):96-98.
    [11]朱小梅,赵娜,刘晓星,公维民,孙冰.高压脉冲电絮凝法处理电镀废水[J].河北大学学报(自然科学版).2007,27(增):94-97.
    [12]Cheng, H.Cu(Ⅱ) Removal from lithium bromide refrigerant by chemical precipitation and electrocoagulation[J]. Separation and Purification Technology.2006,52(1):191-195.
    [13]Krishnani, K.K., Xiaoguang,M.X., Christodoulatos,C., Boddu,V.M. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk[J]. Journal of Hazardous Materials.2008,153(3):1222-1234.
    [14]Yasemin,B., Zeki, T. Removal of heavy metals from aqueous solution by sawdust adsorption[J]. Journal of Envirnnmental Sciences.2007,19(2):160-166.
    [15]Iqbal,M., Saeed,A., Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste[J]. Journal of Hazardous Materials.2009,164(1):161-171.
    [16]Lu,S., Gibb,S.W., Cochrane, E. Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent[J]. Journal of Hazardous Materials.2007,149(1):208-217.
    [17]Du,Y., Zhu, L., Shan, G Removal of Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions[J]. Journal of Colloid and Interface Science.2012,367(1):378-382.
    [18]Sen,A.K., Arnab,K.D. Adsorption of mercury on coal fly-ash[J]. Water Research.1987,21(8): 885-887.
    [19]L6pez,E., Soto,B,. Arias,M., Nu'nez,A., Rubinos, D., Barral,M.T. Adsorbent properties of red mud and its use for wastewater treatment J]. Water Research.1998,32(4):1314-1322.
    [20]Srivastava,S.K., Gupta,V.K., Mohan,D. Removal of lead and chromium by activated slag-a blast-furnace waste[J]. Journal of Environmental Engineering,ACSE.1997,123:461-468.
    [21]Asencios,Y.J.O., Sun-Kou, M.R. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals:Pb(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) [J]. Applied Surface Science.2012,258(24):10002-10011.
    [22]Zheng, Y.M., Lim,S.F., Chen, J. P. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. Journal of Colloid and Interface Science. 2009,338(1):22-29.
    [23]Dou,B., Dupont,V., Pan,W., Chen, B. Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite[J]. Chemical Engineering Journal.2011,166(2): 631-638
    [24]Chen,A-H., Liu,S.C., Chen, C.Y., Chen, C.Y. Comparative adsorption of Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin[J]. Journal of Hazardous Materials.2008,154(1-3):184-191.
    [25]Huang,G., Zhang,H., Shi,J.X., Langrish, T.A.G. Adsorption of Chromium(Ⅵ) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads[J]. Industrial and Engineering Chemistry Research.2009,48(5):2646-2651.
    [26]Li,W., Tang,Y., Zeng,Y., Tong,Z., Liang,D., Cui, W. Adsorption behavior of Cr(Ⅵ) ions on tannin-immobilized activated clay[J]. Chemical Engineering Journal.2012,193-194:88-95.
    [27]Ayhan Sengil,I., Ozacar, M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin[J]. Journal of Hazardous Materials.2009,166 (2-3):1488-1494.
    [28]Zabihia,M., Haghighi Asla,A., Ahmadpour, A. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell[J]. Journal of Hazardous Materials.2010,174(1-3):251-256.
    [29]Ren,X., Shao,D., Yang,S., Hu,J., Sheng,G., Tan,X., Wang, X. Comparative study of Pb(Ⅱ) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions[J]. Chemical Engineering Journal.2011,170(1):170-177.
    [30]Zhao,D., Chen,S., Yang,S., Yang,X., Yang, S. Investigation of the sorption behavior of Cd(Ⅱ) on GMZ bentonite as affected by solution chemistry [J]. Chemical Engineering Journal. 2011,166(3):1010-1016.
    [31]Wang,W., Chen,H., Wang, A. Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology.2007,55(2):157-164.
    [32]Bhattacharyya,K.G., Gupta, S.S.Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science.2007,310(2):411-424.
    [33]Freitas,O.M.M., Martins,R.J.E., Delerue-Matos, C. M., Boaventura,R.A.R. Removal of Cd(Ⅱ), Zn(Ⅱ) and Pb(Ⅱ) from aqueous solutions by brown marine macro algae:Kinetic modeling[J]. Journal of Hazardous Materials.2008,153(1-2):493-501.
    [34]Beolchini,F., Pagnanelli, F., Toro,L., Veglio,R Ionic strength effect on copper biosorption by Sphaerotilus natans:equilibrium study and dynamic modelling in membrane reactor[J]. Water Reaearch.2006,40(1):144-152.
    [35]Mukhopadhyay,M., Noronha,S.B., Suraishkumar, G.K. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass[J]. Bioresource Technology.2007,98(9): 1781-1787.
    [36]王志忠,高以烜,凌爱莲.反渗透技术处理镀镜废水的探讨[J].工业水处理.1985,5(5):17-23.
    [37]Velizarova, E.,Ribeiro,A.B.,Ottosen,L.M. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes[J]. Journal of Hazardous Materials.2002,94(2):147-160.
    [38]Tzanetakis,N., Taama,W.M., Scott,K., Jachuck, R.J.J., Slade,R.S., Varcoe,J. Comparative performance of ion exchange membrane forelectrodialysis of nickel and cobalt[J]. Separation and Purification Technology.2003,30(2):113-127.
    [39]许振良,张永锋..络合-超滤-电解集成技术处理重金属废水的研究进展[J].膜科学与技术.2003,23(4):141-144.
    [40]Peng,C., Meng,H., Song,S., Lu, S., Lopez-Valdivieso, A. Elimination of Cr(Ⅵ) from Electroplating Wastewater by Electrodialysis Following Chemical Precipitation[J]. Separation Science and Technology.2005,39(7):1501-1517
    [41]张建梅,韩志萍,王亚军.重金属废水的生物处理技术[J].环境污染治理技术与设备.2003,4(4):75-78.
    [42]王旭明,王理想.两栖蓼对含锌废水的挣化研究[J].农业环境与发展.2002,3:35-36.
    [43]李卫平,王军,李文,王俊初.应用水葫芦去除电镀废水中的重金属的研究[J].生态学杂志.1995,14(4):30-35.
    [44]Miretzky,P., Saralegui,A., Cirelli, A.F. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina) [J]. Chemosphere.2004,57(8):997-1005.
    [45]王改娟,周志平.纳米孔聚乙酸乙烯酯-活性炭复合材料的制备及吸附性能研究[J].炭素.2008,3:34-37.
    [46]Tong,S., Zhao,S., Zhou,W., Li,R., Jia, Q. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions[J]. Microchim Acta.2011,174:257-264.
    [47]Vukovic,G.D., Marinkovic,A.D., Skapin,S.D., Ristic,M.D., Aleksic,R., Peric-Grujic,A.A., Uskokovic, P.S. Removal of lead from water by amino modified multi-walled carbon nanotubes[J]. Chemical Engineering Journal.2011,173(3):855-865.
    [48]Cui, Y., Hu, Z.J., Yang,J.X., Gao, H.W. Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium[J]. Microchim Acta.2012,176:359-366.
    [49]詹旭,刘大银,钟康年,蔡鹤生.改性累托石对废液中Pb2+吸附研究[J].环境科学与技术.2005,28(4):16-17.
    [50]Luo,P., Zhang,J., Zhang, B., Wang,J., Zhao.Y., Liu, J. Preparation and Characterization of Silane Coupling Agent Modified Halloysite for Cr(VI) Removal[J]. Industrial and Engineering Chemistry Research.2011,50(17):10246-10252.
    [51]Liu,P., Wang, T. Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions[J]. Journal of Hazardous Materials.2007,149(1):75-79.
    [52]Liu,P., Guo, J. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(Ⅱ) ion and dyes[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,282-283:498-503.
    [53]Biswas, B.K., Inoue,K., Ghimire,K.N., Harada,H., Ohto,K., Kawakita, H. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium[J]. Bioresource Technology.2008,99(18):8685-8690.
    [54]Biswas,B.K., Inoue,J., Inoue,K., Ghimire,K.N., Harada,H., Ohto,K., Kawakita, H. Adsorptive removal of As(V) and As(Ⅲ) from water by a Zr(Ⅳ)-loaded orange waste gel[J]. Journal of Hazardous Materials.2008,154(1-3):1066-1074.
    [55]Paudyal,H., Pangeni,B., Inoue,K., Kawakita,H., Ohto,K., Harada,H., Alamb, S. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions[J]. Journal of Hazardous Materials.2011,192(2):676-682.
    [56]Biswas,B.K., Inoue,K., Ghimire,K.N., Ohta,S., Harada,H., Ohto,K., Kawakita, H. The adsorption of phosphate from an aquatic environment using metal-loaded orange waste[J]. Journal of Colloid and Interface Science.2007,312(2):214-223.
    [57]Balaji,T., Yokoyama,T., Matsunaga, H. Adsorption and removal of As(V) and As(Ⅲ) using Zr-loaded lysine diacetic acid chelating resin[J]. Chemosphere.2005,59(8):1169-1174.
    [58]Gandhi,M.R., Meenakshi, S. Preparation and characterization of La(Ⅲ) encapsulated silica gel/chitosan composite and its metal uptake studies[J]. Journal of Hazardous Materials. 2012,203-204:29-37.
    [59]Li,Z.C., Fan,H.T., Zhang,Y., Chen,M.X., Yu, Z.Y., Cao,X.Q., Sun, T. Cd(Ⅱ)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(Ⅱ) from aqueous solution[J]. Chemical Engineering Journal.2011,171(2):703-710.
    [60]Luo,X., Luo.S., Zhan,Y, Shu,H., Huang,Y., Tu, X. Novel Cu (Ⅱ) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process[J]. Journal of Hazardous Materials.2011,192(3):949-955.
    [61]Yantasee,W., Warner, C.L., Sangvanich,T., Addleman,R. S., Carter,T.G, Wiacek,R.J., Fryxell,GE., Timchalk,C., Warner, M. A.G Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles[J]. Environmental Science and Technology.2007,41(14):5114-5119.
    [62]Parham,H., Zargar,B., Shiralipour, R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole[J], Journal of Hazardous Materials.2012,205-206:94-100.
    [63]Lazaridis, N.K., Hourzemanoglou, A., Matis, K.A. Flotation of metal-loaded clay anion exchangers. Part Ⅱ:The case of arsenates[J]. Chemosphere.2002,47 (3),319-324.
    [64]Prasanna, S.V., Rao, R.A.P., Kamath, P.V. Layered double hydroxides as potential chromate scavengers[J]. Journal of Colloid and Interface Science.2006,304 (2):292-299.
    [65]Mahmood,T., Saddique,M.T., Naeem,A., Mustafa,S., Dilara,B., Raza, Z.A. Cation exchange removal of Cd from aqueous solution by NiO[J]. Journal of Hazardous Materials. 2011,185(2-3):824-828.
    [66]Zheng,Y.M., Zou,S.W., Nanayakkara,K.G. N., Matsuura,T., Chen, J. P. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane[J]. Journal of Membrane Science.2011,374(1-2):1-11.
    [67]Dou,B., Dupont,V., Pan,W., Chen, B.Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and Ti02/montmorillonite[J]. Chemical Engineering Journal.2011,166(2): 631-638.
    [68]Li, X., Ye,Z., Zhang,Y, Ma, X., Yang,L., Li, Y. Efficient Removal of Hg(Ⅱ) by Polymer-Supported Hydrated Metal Oxides from Aqueous Solution[J]. Separation Science and Technology.2012,47(5):729-741.
    [69]Fan,H.T., Li, J., Li,Z.C., Sun, T. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (Ⅱ) from aqueous solution[J]. Applied Surface Science.2012,258(8):3815-3822.
    [70]Zhang,L., Yu,C., Zhao,W., Hua,Z., Chen,H., Li,L., Shi, Ji. Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption[J]. Journal of Non-Crystalline Solids.2007,353(44-46):4055-4061.
    [71]Yan,W.L., Bai, R. Adsorption of lead and humic acid on chitosan hydrogel beads [J]. Water Research.2005,39(4):688-698.
    [72]Atia, A.A. Studies on the interaction of mercury(Ⅱ) and uranyl(Ⅱ) with modified chitosan resins[J]. Hydrometallurgy.2005,80(1-2):13-22.
    [73]Albadarin,A.B., Al-Muhtaseb,A.H., Al-laqtah,N.A., Walker,GM., Allen,S.J., Ahmad,M. N.M. Biosorption of toxic chromium from aqueous phase by lignin:mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal.2011,169(1-3):20-30
    [74]Deze,E.G., Papageorgiou,S.K., Favvas,E.P., Katsaros, F.K.Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions:Effect of porosity in Cu2+ and Cd2+ ion sorption[J]. Chemical Engineering Journal.2012,209:537-546.
    [75]Gotoh,T., Matsushima,K., Kikuchi, K.I. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions[J]. Chemosphere.2004,55(1):135-140.
    [76]Chen, C.Y., Chiang, C.L., Huang, P.C. Adsorptions of heavy metal ions by a magnetic chelating resin containing hydroxy and iminodiacetate groups[J]. Separation and Purification Technology.2006,50(1):15-21.
    [77]Chen, C.Y., Lin, M.S., Hsu, K.R. Recovery of Cu(Ⅱ) and Cd(Ⅱ) by a chelating resin containing aspartate groups[J]. Journal of Hazardous Materials.2008,152(3):986-993.
    [78]Atia,A.A.,Donia,A.M.,Elwakeel,K.Z. Selective separation of mercury (Ⅱ) using a synthetic resin containing amine and mercaptan as chelating groups[J]. Reactive and Functional Polymers.2005,65(3):267-275.
    [79]刘传富,孙润仓,张爱萍,任俊莉.农林废弃物处理工业废水的研究进展[J].现代化工.2006,26(增刊):84-87.
    [80]Chen, J.P., Yang, L. Chemical modification Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption[J]. Industrial and Engineering Chemistry Research.2005.44(26):9931-9942.
    [81]Mata,Y.N., Blazquez,M.L., Ballester,A., Gonzalez,F., Munoz, J.A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus [J]. Journal of Hazardous Materials.2009,163(2-3):555-562.
    [82]Wilkinson, S. C.,Goulding, K. H.,Robinson, P. K.Mercury accumulation and volatilizationin immobilized algal cell systems[J].Biotechnology Letters.1989,11(12):861-864.
    [83]Mata,Y.N., Blazquez, M.L., Ballester,A., Gonzalez, F., Munoz, J.A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus [J]. Journal of Hazardous Materials.2009,163(2-3):555-562.
    [84]Sheng,P.X., Wee,K.H., Ting,Y.P., Chen, J. P. Biosorption of copper by immobilized marine algal biomass[J]. Chemical Engineering Journal.2008,136(2-3):156-163.
    [85]Nakamura, S., Amano, M. Preparation of hydrazinodeoxycellulose and carboxyalkyl hydrazinodeoxycelluloses and their adsorption behavior toward heavy metal ions [J]. Journal of Polymer Science Part A:Polymer chemistry.1997,35(16):3359-3363.
    [86]Repo,E., Warchol,J. K., Kurniawan,T.A., Sillanpaa, M.E.T. Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA- and/or DTPA-modified chitosan:Kinetic and equilibrium modeling[J]. Chemical Engineering Journal.2010,161(1-2):73-82.
    [87]Chen,Y., Wang J. The characteristics and mechanism of Co(Ⅱ) removal from aqueous solution by a novel xanthate-modified magnetic chitosan[J]. Nuclear Engineering and Design. 2012,242:452-457.
    [88]Wang,X., Chung,Y. S., Lyoo,W.S., Min, B.G. Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption[J]. Polymer International. 2006,55(11):1230-1235.
    [89]Sone,H., Fugetsu,B., Tanaka, S. Selective elimination of lead(Ⅱ) ions by alginate/polyurethane composite foams[J]. Journal of Hazardous Materials.2009,162(1):423-429.
    [90]Lima, I.S., Lazarin, A.M., Airoldi, C. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions[J]. International Journal of Biological Macromolecules.2005,36(1-2):79-83.
    [91]Chen,J.H., Lin,H., Luo,Z.H., He,Y.S., Li, G.P. Cu(Ⅱ)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(Ⅱ) ions from aqueous solution[J]. Desalination.2011,277(1-3):265-273.
    [92]Li,X., Li,Y., Ye, Z. Preparation of macroporous bead adsorbents based on poly(vinylalcohol)/chitosan and their dsorption properties for heavy metals from aqueous solution [J]. Chemical Engineering Journal.2011,178:60-68.
    [93]Ma,X., Li,Y., Li, X., Yang,L., Wang, X. Preparation of novel polysulfone capsules containing zirconium phosphate and their properties for Pb2+ removal from aqueous solution[J]. Journal of Hazardous Materials.2011,188 (1-3):296-303.
    [94]Chen,A.H., Liu,S.C., Chen, C.Y., Chen, C.Y. Comparative adsorption of Cu(Ⅱ), Zn(Ⅱ), and Pb(II) ions in aqueous. solution on the crosslinked chitosan with epichlorohydrin[J]. Journal of Hazardous Materials.2008,154(1-3):184-191.
    [95]Zhao,Y., Chen,Y., Li, M., Zhou,S., Xue,A., Xing, W. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite[J]. Journal of Hazardous Materials.2009,171(1-3): 640-646.
    [96]Machida,M., Fotoohi,B., Amamo,Y., Mercier, L. Cadmium(Ⅱ) and lead(Ⅱ) adsorption onto hetero-atom functional mesoporous silica and activated carbon[J]. Applied Surface Science. 2012,258(19):7389-7394.
    [97]Zhou,L., Shang,C., Liu,Z., Huang,G., Adesina, A.A. Selective adsorption of uranium(Ⅵ) from aqueous solutions using the ion-imprinted magnetic chitosan resins[J]. Journal of Colloid and Interface Science.2012,366(1):165-172.
    [98]Chang,Y., Liu,H., Zha,F., Chen,H., Ren,X., Lei, Z. Adsorption of Pb(Ⅱ) by N-methylimidazole modified palygorskite[J]. Chemical Engineering Journal.2011,167(15): 183-189.
    [99]An, B., Liang,Q., Zhao, D. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J]. Water Research.2011,45(5):1961-1972.
    [100]王琼生,万清黎.粘土-壳聚糖复合吸附剂吸附铬(Ⅵ)离子性能的研究[J].福建师范大学学报(自然科学版).2006.22(2):64-67.
    [101]Cao,F., Bai,P., Li,H., Ma,Y., Deng,X., C Zhao, H. Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A[J]. Journal of Hazardous Materials.2009,162(2-3):791-798.
    [102]杨柳燕.有机蒙脱土和微生物联合处理有机污染物的机理与应用[M].北京:中国环境科学出版社.2004.
    [103]陈维璞,张恩浩,林永波.海藻酸-钙-铁凝胶球对Cr2072-吸附的研究[J].环境保护科学.2010,36(2):14-16.
    [104]Ren,Y., Zhang,M., Zhao, D. Synthesis and properties of magnetic Cu(Ⅱ) ion imprinted composite adsorbent for selective removal of copper[J]. Desalination.2008,228(1-3): 135-149.
    [105]杭瑚,胡博路,马兵,赵小凡,余季金.膨润土吸附-絮凝法处理污中的重金属离子[J].环境科学研究.1994,7(1):48-52.
    [106]Ren,Y., Li,N., Feng,J., Luan,T., Wen, Q., Li,Z., Zhang, M. Adsorption of Pb(Ⅱ) and Cu(Ⅱ) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science.2012,367(1):415-421.
    [107]Kragovic,M., Dakovic,A., Sekuli6,Z., Trgo,M., Ugrina,M., Peri6,J., Diego Gatta, G. Removal of lead from aqueous solutions by using the natural and Fe(Ⅲ)-modified zeolite[J]. Applied Surface Science.2012,258(8):3667-3673.
    [108]Caliskan,N., Kul, A.R., Alkan,S., Sogut,E.G., Alacabey, I. Adsorption of Zinc(Ⅱ) on diatomite and manganese-oxide-modified diatomite:A kinetic and equilibrium study[J]. Journal of Hazardous Materials.2011,193:27-36.
    [109]Zheng,Y.M., Lim,S.F., Chen, J. P. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. Journal of Colloid and Interface Science. 2009,338(1):22-29.
    [1]Futalan,C.M., Kan,C.C., Dalida,M.L., Hsien,K.J., Pascua,C., Wan, M.W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite [J]. Carbohydrate Polymers.2011,83(2):528-536.
    [2]Ghassabzadeh,H., Mohadespour,A., Torab-Mostaedi,M., Zaheri, P., Maragheh,M. G., Taheri, H. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite [J]. Journal of Hazardous Materials.2010,177(1-3):950-955.
    [3]Kobya,M., Demirbas,E., Senturk,E., Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone [J]. Bioresource Technology. 2005,96(13):1518-1521.
    [4]Li,Y.H., Ding,J., Luan,Z., Di,Z., Zhu,Y., Xu,C., Wu,D., Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes [J]. Carbon.2003,41(14):2787-2792.
    [5]Laus,R., Costa,T.G, Szpoganicz,B., Favere, V.T. Adsorption and desorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent [J]. Journal of Hazardous Materials.2010,183(1-3):233-241.
    [6]Apiratikul,R., Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash [J]. Chemical Engineering Journal.2008,144(2):245-258.
    [7]Wong,K.K., Lee,C.K., Low,K.S., Haron, M.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions[J]. Chemosphere.2003,50(1):23-28.
    [8]Amarasinghe,B.M.W.P.K., Williams, R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater[J]. Chemical Engineering Journal.2007,132(1-3):299-309.
    [9]Witek-Krowiak,A., Szafran,R.G., Modelski, S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent[J]. Desalination.2011,265(1-3): 126-134.
    [10]Vaghetti,J. C.P., Lima,E.C., Royer,B., da Cunha,B. M., Cardoso, N.F., Brasil,J.L., Dias,S. L.P.. Pecan nutshell as biosorbent to remove Cu(Ⅱ), Mn(Ⅱ) and Pb(Ⅱ) from aqueous solutions[J]. Journal of Hazardous Materials.2009,162(15):270-280.
    [11]Tang,H., Chang,C., Zhang,L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway[J]. Chemical Engineering Journal. 2011,173(3):689-697.
    [12]Chen,C.Y., Syong Lin,M., Hsu, K.R. Recovery of Cu(Ⅱ) and Cd(Ⅱ) by a chelating resin containing aspartate groups[J]. Journal of Hazardous Materials.2008,152(3):986-993.
    [13]Abd El-Ghaffar,M.A., Abdel-Wahab,Z.H., Elwakeel, K.Z. Extraction and separation studies of silver(Ⅰ) and copper(Ⅱ) from their aqueous solution using chemically modified melamine resins[J]. Hydrometallurgy.2009,96(1-2):27-34.
    [14]Hawari, A.H., Mulligan, C.N. Biosorption of lead(Ⅱ), cadmium(Ⅱ), copper(Ⅱ) and nickel(Ⅱ) by anaerobic granular biomass[J]. Bioresource Technology.2006,97(4):692-700.
    [15]Li,X., Xu,Q., Han,G, Zhu,W., Chen,Z., He,X., Tian, X. Equilibrium and kinetic studies of copper(Ⅱ) removal by three species of dead fungal biomasses[J]. Journal of Hazardous Materials.2009,165(1-3):469-474.
    [16]Bai,X., Ye,Z., Li,Y., Zhou, L., Yang, L. Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms[J]. Process Biochemistry.2010,45(1):60-66.
    [17]Sarhan,A.A., Ayad,D.M., Badawy,D.S., Monier, M. Phase transfer catalyzed heterogeneous N-deacetylation of chitin in alkaline solution[J]. Reactive Functional Polymers.2009,69(6): 358-363.
    [18]Jin,L., Bai, R. Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads[J]. Langmuir 2002,18(25):9765-9770.
    [19]Kobayashi,M., Kanekiyo,M., Ando, I. A study of molecular motion of PVA/water system by high-pressure 1H pulse-NMR method[J]. Polymer Gels and Networks.1998,6(5):347-354.
    [20]Repo,E., Warchol,J.K., Kurniawan,T.A., Sillanpaa, M.E.T. Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA- and/or DTPA-modified chitosan:Kinetic and equilibrium modeling[J]. Chemical Engineering Journal.2010,161(1-2):73-82.
    [21]Jain,M., Garg,V.K., Kadirvelu, K. Chromium(Ⅵ) removal from aqueous system using Helianthus annuus (sunflower) stem waste[J]. Journal of Hazardous Materials.2009,162(1): 365-372.
    [22]Hu,X., Wang,J., Liu,Y., Li, X., Zeng,G., Bao,Z., Zeng, X., Chen,A., Long, F. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials.2011,185(1):306-314.
    [23]Sari,A.,Tuzen,M. Kinetic and equilibrium studies of biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Amanita rubescens) biomass[J]. Journal of Hazardous Materials.2009,164(2-3):1004-1011.
    [24]Anayurt,R.A.,Sari,A.,Tuzen, M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass[J]. Chemical Engineering Journal.2009,151(1-3):255-261.
    [25]Ho,Y.S., McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood [J]. Process Safety and Environmental Protection.1998,76(2):183-191.
    [26]Ozcimen,D., Ersoy-Mericboyu, A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons[J]. Journal of Hazardous Materials.2009 168(2-3):1118-1125.
    [27]Veli,S., Alytiz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay[J]. Journal of Hazardous Materials.2007,149(1):226-233.
    [28]Swayampakula,K., Boddu,V.M., Nadavala,S.K., Abburi, K. Competitive adsorption of Cu (Ⅱ), Co (Ⅱ) and Ni (Ⅱ) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent[J]. Journal of Hazardous Materials.2009,170(2-3):680-689.
    [29]Zhou,L., Wang,Y., Liu,Z., Huang, Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres[J]. Journal of Hazardous Materials.2009,161(2-3):995-1002.
    [30]Tsekova,K., Todorova,D., Dencheva,V., Ganeva, S. Biosorption of copper(Ⅱ) and cadmium(Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger[J]. Bioresource Technology.2009,101(6):1727-1731.
    [31]Vijayaraghavan,K., Teo,T.T., Balasubramanian,R., Joshi, U.M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff[J]. Journal of Hazardous Materials.2009,164:1019-1023.
    [32]Boujelben,N., Bouzid,J., Elouear, Z. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions:Study in single and binary systems[J]. Journal of Hazardous Materials.2009,163(1):376-382.
    [33]Feng,D., van Deventer,J.S.J., Aldrich, C. Removal of pollutants from acid mine wastewater using metallurgical by-product slags[J]. Separation and Purification Technology.2004, 40(1):61-67.
    [34]Li, W., Zhang,S., Shan, X. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2007,293(1-3):13-19.
    [35]Baraka,A., Hall,P.J., Heslop,M.J. Melamine-formaldehyde-NTA chelating gel resin: Synthesis,characterization and application for copper(Ⅱ) ion removal from synthetic wastewater[J]. Journal of Hazardous Materials.2007,140(1-2):86-94.
    [36]Chen,C.Y., Chiang,C.L., Chen, C.R. Removal of heavy metal ions by a chelating resin containing glycine as chelating groups[J]. Separation Purification Technology.2007,54(3): 396-403.
    [37]Baraka,A., Hall,P.J., Heslop, M.J. Preparation and characterization of amine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater [J]. Reactive Functional Polymers.2007,67(7):585-600.
    [38]Weber, W.J., Morris, J.C. Kinetics of adsorption on carbon solution [J]. J.Sanit. Eng. Div. ASCE.1963,89:31-60.
    [39]Hu,X., Wang,J., Liu,Y., Li,X., Zeng,G., Bao,Z., Zeng,X., Chen,A., Long, F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials.2011,185(1):306-314.
    [40]Hayes,K.F., Papelis,C., Leckie, J.O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces [J]. Journal of Colloid and Interface Science.1988,125(2): 717-726.
    [1]Yu,J., Tong,M., Sun,X., Li,B-A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption[J]. Biochemical Engineering Journal.2007, 33(2):126-133.
    [2]Wan Ngah,W.S., Fatinathan,S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions onto chitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies[J]. Journal of Environmental Management.2010,91(4):958-969.
    [3]Mohan,D., Singh,K.P. Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste[J]. Water Research.2002,36(9): 2304-2318.
    [4]Futalan,C.M., Kan,C.C., Dalida,M.L., Hsien,K.J., Pascua,C., Wan,M.W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite[J]. Carbohydrate Polymers.2011,83(2):528-536.
    [5]Mishra,P,C., Patel, R.K. Removal of lead and zinc ions from water by low cost adsorbents[J]. Journal of Hazardous Materials.2009,168(1):319-325.
    [6]http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html
    [7]Hamidpour,M., Kalbasi,M., Afyuni,M., Shariatmadari,H., Holm,P.E., Hansen, H.C. Sorption hysteresis of Cd(Ⅱ) and Pb(Ⅱ) on natural zeolite and bentonite[J]. Journal of Hazardous Materials.2010,181(1-3):686-691.
    [8]Ghassabzadeha,H., Mohadespour,A., Torab-Mostaedi,M., Zaheri,P., Maragheh,M.G, Taheri,H. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite[J]. Journal of Hazardous Materials.2010,177(1-3):950-955.
    [9]Unuabonah,E.I., Adebowale,K.O., Olu-Owolabi, B.I. Kinetic and thermodynamic studies of the adsorption of lead (Ⅱ) ions onto phosphate-modified kaolinite clay[J]. Journal of Hazardous Materials.2007,144(1-2):386-395.
    [10]Naiya,T.K., Bhattacharya,A.K., Das,S.K. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface Science.2009,333(1): 14-26.
    [11]Martfnez,M., Miralles,N., Hidalgo,S., Fiol,N., Villaescusa,I., Poch, J. Removal of lead(Ⅱ) and cadmium(Ⅱ) from aqueous solutions using grape stalk waste[J]. Journal of Hazardous Materials.2006,133(1-3):203-211.
    [12]Wong, K.K., Lee,C.K., Low,K.S., Haron, M.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions[J]. Chemosphere.2003,50(1):23-28.
    [13]Amarasinghe,B.M.W.P.K., Williams, R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater[J]. Chemical Engineering Journal.2007,132(1-3):299-309.
    [14]Demirbas,A., Pehlivan,E., Gode,F., Altun,T., Arslan, G. Adsorption of Cu(Ⅱ), Zn(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Cd(Ⅱ) from aqueous solution on Amberlite IR-120 synthetic resin[J]. Journal of Colloid and Interface Science.2005,282(1):20-25.
    [15]Sengil,I. A., Ozacar, M. Competitive biosorption of Pb2+,Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin[J]. Journal of Hazardous Materials.2009,166(2-3): 1488-1494.
    [16]Gupta,V.K., Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species:Kinetics and equilibrium studies[J]. Journal of Hazardous Materials.2008,152(1): 407-414.
    [17]Singh,A., Kumar,D., Gaur, J.P. Copper(Ⅱ) and lead(Ⅱ) sorption from aqueous solution by non-living Spirogyra neglecta[J]. Bioresource Technology.2007,98(18):3622-3629
    [18]Khoo, K.M., Ting,Y. P. Biosorption of gold by immobilized fungal biomass[J]. Biochemical Engineering Journal.2001,8(1):51-59.
    [19]Kao,W.C., Wu,J.Y., Chang,C.C., Chang,J.S. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli[J]. Journal of Hazardous Materials.2009,169(1-3): 651-658.
    [20]Bai,X., Ye,Z., Li,Y., Yang,L., Qu,Y., Yang, X. Preparation and characterization of a novel macroporous immobilized micro-organism carrier[J]. Biochemical Engineering Journal.2010, 49(2):264-270.
    [21]Zhang,Y, Li,Y, Yang,L., Ma,X., Wang,L., Ye, Z. Characterization and adsorption mechanism of Zn2+ removal by PVA/EDTA resin in polluted water[J]. Journal of Hazardous Materials. 2010,178(1-3):1046-1054.
    [22]Jin,L., Bai, R. Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads[J]. Langmuir.2002,18(25):9765-9770.
    [23]Liu,C., Bai,R., San Ly, Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent:Behaviors and mechanisms[J]. Water Research. 2008,42(6-7):1511-1522.
    [24]Ricordel,S., Taha,S., Cisse,I., Dorange.G. Heavy metals removal by adsorption onto peanut husks carbon:characterization, kinetic study and modeling[J]. Separation and Purification Technology.2001,24(3):389-401.
    [25]Arias,M., Barral,M.T., Mejuto, J.C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids[J]. Chemosphere.2002,48(10):1081-1088.
    [26]Hayes, K.F., Papelis,C., Leckie, J.O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces[J]. Journal of Colloid and Interface Science.1988,125(2): 717-726.
    [27]Repo,E., Warchol,J.K., Kurniawan,T.A., Sillanpaa, M.E.T. Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA- and/or DTPA-modified chitosan:Kinetic and equilibrium modeling[J]. Chemical Engineering Journal.2010,161(1-2):73-82.
    [28]Jain,M., Garg,V.K., Kadirvelu, K. Chromium(Ⅵ) removal from aqueous system using Helianthus annuus (sunflower) stem waste[J]. Journal of Hazardous Materials.2009,162(1): 365-372.
    [29]Erdem,E., Karapinar, N., Donat, R. The removal of heavy metal cations by natural zeolites[J]. Journal of Colloid and Interface Science.2004,280(2):309-314.
    [30]Bhattacharyya,K.G., Sen Gupta, S. Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science.2007,310(2):411-424.
    [31]Mellah,A., Chegrouche, S. The removal of Zinc from aqueous solutions by natural bentonite[J]. Water Research.1997,31(3):621-629.
    [32]Li,W., Zhang,S., Shan, X. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2007,293(1-3):13-19.
    [33]Chen,C.Y., Lin,M.S., Hsu, K.R. Recovery of Cu(Ⅱ) and Cd(Ⅱ) by a chelating resin containing aspartate groups[J]. Journal of Hazardous Materials.2008,152(3):986-993.
    [34]Lopez-Delgado,A., Perez, C., Lopez, F.A. Sorption of heavy metals on blast furnace sludge[J]. Water Research.1998,32(4):989-996.
    [35]Unlu,N., Ersoz,M. Removal of heavy metal ions by using dithiocarbamated-sporopollenin[J]. Separation and Purification Technology.2007,52(3):461-469.
    [36]Tsekova, K., Todorova,D., Dencheva,V., Ganeva, S. Biosorption of copper(Ⅱ) and cadmium(Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger[J]. Bioresource Technology.2009,101(6):1727-1731.
    [37]Pavasant,P., Apiratikul.R., Sungkhum,V., Suthiparinyanont,P., Wattanachira,S., Marhaba, T. F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology.2006,97(18):2321-2329.
    [38]Laus,R., Costa,T.G., Szpoganicz,B., Favere,V. T. Adsorption and desorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent[J]. Journal of Hazardous Materials.2010,183(1-3):233-241.
    [39]Swayampakula,K., Boddu,V. M., Nadavala, S.K., Abburi, K. Competitive adsorption of Cu (Ⅱ), Co (Ⅱ) and Ni (Ⅱ) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent[J]. Journal of Hazardous Materials.2009,170(2-3):680-689.
    [40]Ho,Y.S., McKay,G. Kinetic models for the sorption of dye from aqueous solution by wood[J]. Process Safety and Environmental Protection.1998,76(2):183-191.
    [41]Hu,X.J., Wang,J.S., Liu,Y.G., Li,X., Zeng,G.M., Bao,Z.L., Zeng,X.X., Chen,A.W., Long,F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials.2011, 185(1):306-314.
    [42]Baraka,A., Hall,P.J., Heslop, M.J. Preparation and characterization of amine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater[J]. Reactive Functional Polymers.2007,67(7):585-600.
    [1]Matoso,E., Kubota,L.T., Cadore, S. Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry[J]. Talanta.2003,60(6):1105-1111.
    [2]Tunali,S.,Cabuk,A.,Akar,T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil[J]. Chemical Engineering Journal.2006,115(3):203-211.
    [3]Sheng,P.X.,Ting,Y.P.,Chen,J.P.,Hong,L. Sorption of lead, copper,cadmium, zinc and nickel by marine algal biomass:characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interface Science.2004,275(1):131-141.
    [4]Suzuki,T.M., Kobayashi,S., Pacheco Tanaka, D.A.,Llosa Tanco, M.A.,Nagase, T.,Onodera,Y. Separation and concentration of trace Pb(Ⅱ) by the porous resin loaded with a-zirconium phosphate crystals[J]. Reactive Functional Polymers.2004,58:131-138.
    [5]Oliveira,F.D., Paula,J.H., Freitas,O.M., Figueiredo, S.A. Copper and lead removal by peanut hulls:equilibrium and kinetic studies[J]. Desalination.2009,248(1-3):931-940.
    [6]Pehlivan, E., Cetin, S., Yanik, B.H. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash[J]. Journal of Hazardous Materials. 2006,135(1-3):193-199.
    [7]Iqbal,M.,Saeed,A.,Zafar,S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste[J]. Journal of Hazardous Materials.2009,164(1):161-171.
    [8]Xuan,Z.,Tang,Y.,Li,X.,Liu,Y.,Luo,F. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel[J]. Biochemical Engineerng Journal.2006,31(2):160-164.
    [9]Naiya,T.K.,Bhattacharya,A.K.,Mandal,S.,Das,S.K. The sorption of lead(Ⅱ) ions on rice husk ash[J]. Journal of Hazardous Materials.2009,163(2-3):1254-1264.
    [10]Sen,A.K., Arnab, K.D. Adsorption of mercury on coal fly-ash[J]. Water Research.1987,21(8): 885-887.
    [11]Srivastava,S.K., Gupta,V.K., Mohan, D. Removal of lead and chromium by activated slag-a blast-furnace waste[J]. Journal of Environmental Engineering.1997,123(5):461-468.
    [12]Gupta,V.K., Gupta,M., Sharma, S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste[J]. Water Research.2001,35(5):1125-1134.
    [13]Shawabkeh,R., Al-Harahsheh,A., Hami,M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel.2004,83(7-8):981-985.
    [14]Wu,Z., Gu,Z., Wang, X., Evans,L., Guo, H. Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid[J]. Environmental Pollution.2003, 121(3):469-475.
    [15]Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M.G., Taheri, H. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite[J]. Journal of Hazardous Materials.2010,177(1-3):950-955.
    [16]Hizal,J., Apak,R. Modeling of copper(Ⅱ) and lead(Ⅱ) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid[J]. Journal of Colloid and Interface Science.2006,295(1):1-13.
    [17]Boyd, S. A., Mortland,M.M.,Chiou,C.T. Sorption characteristics of organic compounds on hexadecytrimethylammonium-smectite[J]. Soil Science Society of Amerian Journal.1988,52(3):652-657.
    [18]Xue,A., Zhou,S., Zhao,Y., Lu,X., Han, P. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes[J]. Journal of Hazardous Materials.2011,194:7-14.
    [19]Mor,S., Ravindra,K., Bishnoi, N.R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal[J]. Bioresource Technology.2007,98(4):954-957.
    [20]Jin,Y., Liu,F., Tong,M., Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles[J]. Journal of Hazardous Materials.2012,227-228: 461-468.
    [21]Mahmood,T., Saddique,M.T., Naeem, A., Mustafa,S., Dilara,B., Raza, Z.A. Cation exchange removal of Cd from aqueous solution by NiO[J]. Journal of Hazardous Materials.2011, 185(2-3):824-828.
    [22]Zou,W., Han,R., Chen,Z., Zhang, J., Shi, J. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,279(1-3):238-246.
    [23]Zhu,H.Y, Fu,Y. Q., Jiangs,R., Jiang,J. H., Xiao,L., Zeng,G. M., Zhao.S.L., Wang, Y. Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal.2011, 173(2):494-502.
    [24]Wan Ngah,W. S., Fatinathan, S. Pb(Ⅱ) biosorption using chitosan and chitosan derivatives beads Equilibrium, ion exchange and mechanism studies[J]. Journal of Environmental Sciences.2010,22(3):338-346.
    [25]Wu,Y, Zhang, S., Guo,X., Huang, H. Adsorption of chromium(Ⅲ) on lignin[J]. Bioresource Technology.2008,99(16):7709-7715.
    [26]Ozacar,M.,Sengil,I. A.,Turkmenler,H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin[J]. Chemical Engineering Journal. 2008,143(1-3):32-42.
    [27]Xiong,C.,Yao,C. Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions[J]. Chemical Engineering Journal.2009,155(3):844-850.
    [28]Seker,A., Shahwan, T., Eroglu,A.E., Yilmaz,S., Demirel,Z., Dalay,M.C. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(Ⅱ), cadmium(Ⅱ) and nickel(Ⅱ) ions on Spirulina platensis[J]. Journal of Hazardous Materials.2008, 154(1-3):973-980.
    [29]Yipmantin,A.,Maldonado,H.J.,Ly,M.,Taulemesse,J.M.,Guibal,E. Pb(Ⅱ) and Cd(Ⅱ) biosorption on Chondracanthus chamissoi (a red alga) [J]. Journal of Hazardous Materials.2011,185(2-3): 922-929.
    [30]Montazer-Rahmati,M.M.,Rabbani,P.,Abdolali,A.,Keshtkar,A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae[J]. Journal of Hazardous Materials.2011,185(15): 401-407.
    [31]Li,X., Ye,Z., Li,Y. Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution[J]. Chemical Engineering Journal.2011,178:60-68.
    [32]Kalavathy,M. H.,Karthikeyan,T.,Rajgopal,S.,Miranda,L.R. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust[J]. Journal of Colloid and Interface Science.2005,292(2):354-362.
    [33]Adebowale,K.O.,Unuabonah,I.E.,Olu-Owolabi,B.I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay[J]. Journal of Hazardous Materials. 2006,134(1-3):130-139.
    [34]Li,W.,Zhang,S.,Shan,X. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2007,293(1-3):13-19.
    [35]Unuabonah, E.I.,Olu-Owolabi, B.I.,Adebowale, K.O.,Ofomaja, A.E. Adsorption of lead and cadmium ions from aqueous solutions by tripolyphosphate-impregnated Kaolinite clay[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,292(2-3):202-211.
    [36]Wan Ngah,W.S., Fatinathan, S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions onto chitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies[J]. Journal of Environmental Management.2010,91(4):958-969.
    [37]Singh,S., Patel,P., Shahi,V.K., Chudasama, U. Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol-gel in aqueous media for electrochemical applications. [J] Desalination.2011,276(1-3):175-183.
    [38]Jia,Y., Zhang,Y., Wang,R., Fan,R, Xu, Q. Studies on adsorptions of metallic ions in water by zirconium glyphosate(ZrGP):Behaviors and mechanisms[J]. Applied Surface Science.2012, 258(7):2551-2561.
    [39]Shu,Z.N., Xiong,C.H., Wang, X. Adsorption behavior and mechanism of amino methylene phosphonic acid resin for Ag(Ⅰ) [J]. Transactions of Nonferrous Metals Society of China.2006, 16(3):700-704.
    [40]Li,W., Zhang,S.,Shan,X. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2007,293(1-3):13-19.
    [41]Wang, K., Xing,B. Adsorption and desorption of cadmium by goethite pretreated with phosphate[J]. Chemosphere.2002,48(7):665-670.
    [42]Liang,X., Xu,Y., Wang,L., Sun,Y, Lin, D., Sun,Y., Qin,X., Wan Q. Sorption of Pb2+ on mercapto functionalized sepiolite[J]. Chemosphere.2013,90(2); 548-555.
    [43]Liang, X.,Hou, W.,Xu, Y.,Sun, G.,Wang, L.,Sun, Y.,Qin, X. Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010,366(1-3):50-57.
    [44]Saeed, A.,Iqbal, M.,Holl, W.H. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk[J]. Journal of Hazardous Materials.2009,168(2-3): 1467-1475.
    [45]Mata, Y.N.,Blazquez, M.L.,Ballester, A.,Gonzalez, F.,Munoz, J.A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus[J]. Journal of Hazardous Materials.2009,163(2-3):555-562.
    [46]Kumar, U.,Bandyopadhyay, M. Sorption of cadmium from aqueous solution using pretreated rice husk[J]. Bioresource Technology.2006,97(1):104-109.
    [47]Fan, T.,Liu, Y.,Feng, B.,Zeng, G.,Yang, C.,Zhou, M.,Zhou, H.,Tan, Z.,Wang, X. Biosorption of cadmium(Ⅱ), zinc(Ⅱ) and lead(Ⅱ) by Penicillium simplicissimum:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials.2008,160(2-3):655-661.
    [48]Kundu, S.,Gupta, A.K. Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)-kinetics, equilibrium and thermodynamic studies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,273(1-3):121-128.
    [49]Anayurt,R.A.,Sari,A.,Tuzen,M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass[J]. Chemical Engineering Journal.2009,151(1-3):255-261.
    [50]Schiewer,S.,Patil, S.B. Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics[J]. Bioresoure Technology.2008,99(6):1896-1903.
    [51]Ozdemir,S.,Kilinc,E.,Poli,A.,Nicolaus,B.,Guven,K. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal.2009,152(1):195-206.
    [52]Malkoc,E., Nuhoglu,Y. Fixed bed studies for the sorption of chromium(VI) onto tea factory waste[J]. Chemical Engineering Science.2006,61(13):4363-4372.
    [53]Lezehari,M., Baudu,M., Bouras, O., Basly,J.P. Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads[J]. Journal of Colloid and Interface Science.2012,379(1):101-106.
    [1]Rao,M.M., Reddy, D.H.K., Venkateswarlu, P., Seshaiah, K. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste[J]. Journal of Environmental Management.2009,90(1):634-643.
    [2]Chen,Q., Yin,D., Zhu,S., Hu, X. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide[J]. Journal of Colloid and Interface Science.2012,367(1):241-248.
    [3]Yantasee,W., Warner.C.L., Sangvanich,T., Addleman,R. S., Carter,T.G., Wiacek,R.J., Fryxell,G.E., Timchalk,C., Warner, M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles[J]. Environmental Science and Technology.2007,41(14):5114-5119.
    [4]Hao, Y.M., Chen, M.,Hu, Z.B. Effective removal of Cu (Ⅱ) ions from aqueous solution by amino-functionalized magnetic nanoparticles[J]. Journal of Hazardous Materials.2010, 184(1-3):392-399.
    [5]Song,J., Kong,H., Jang, J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles[J]. Journal of Colloid and Interface Science.2011,359(2):505-511.
    [6]Pu,X., Jiang,Z., Hu, B., Wang, H. y-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry.2004,19:984-989.
    [7]Zheng,Y.M., Zou,S.W., Nadeeshani Nanayakkara,K.G, Matsuura,T., Paul Chen, J. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane[J]. Journal of Membrane Science.2011,374(1-2):1-11.
    [8]Mandal,S., Padhi,T., Patel, R.K. Studies on the removal of arsenic (Ⅲ) from water by a novel hybrid material[J]. Journal of Hazardous Materials.2011,192(2):899-908.
    [9]Zhang,Y, Li,Y, Yang, L., Ma,X., Wang,L., Ye, Z. Characterization and adsorption mechanism of Zn2+removal by PVA/EDTA resin in polluted waters[J]. Journal of Hazardous Materials.2010,178(1-3):1046-1054.
    [10]Li,X., Ye,Z., Li, Y. Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution[J]. Chemical Engineering Journal.2011,178:60-68.
    [11]Zhang,Y., Kogelnig,D., Morgenbesser,C., Stojanovic, A., Jirsa, F., Lichtscheidl-Schultz, I., Krachler, R., Li, Y., Keppler,B.K. Preparation and characterization of immobilized [A336][MTBA] in PVA beads as novel solid-phase extractants for an efficient recovery of Mercury (Ⅱ) from aquous solutions[J]. Journal of Hazardous Materials.2011,196:201-209.
    [12]Yardim,M.F.,Budinova, T.,Ekinci,E.,Petrov,N.,Razvigorova,M.,Minkova,V. Removal of mercury (Ⅱ) from aqueous solution by activated carbon obtained from furfural[J]. Chemosphere.2003,52(5):835-841.
    [13]Donia,A.M.,Atia,A.A.,Heniesh,A.M. Efficient removal of Hg(Ⅱ) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldeHyde[J]. Separation and Purification Technology.2008,60(1):46-53.
    [14]. Sun,C.,Qu,R.,Ji,C.,Wang,Q.,Wang,C.,Sun,Y.,Cheng,G A chelating resin containing S, N and O atoms:Synthesis and adsorption properties for Hg(Ⅱ) [J].European Polymer Journal.2006,42(1):188-194.
    [15]Lu,X., Yin,Q., Xin, Z., Zhang, Z. Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres[J]. Chemical Engineering Science.2010,65(24): 6471-6477.
    [16]Ma,X., Li,L., Yang,L., Su, C., Wang,K., Yuan,S., Zhou, J. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials:Adsorption isotherms and kinetic studies[J]. Journal of Hazardous Materials.2012,209-210:467-477.
    [17]Tang,H., Chang,C., Zhang, L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway [J]. Chemical Engineering Journal. 2011,173(3):689-697.
    [18]Altin,O.,Ozbelge,H.O.,Dogu,T. Use of general purpose adsorption isotherms for heavy metal-clay mineral interactions[J]. Journal of Colloid and Interface Science.1998,198 (1):130-140.
    [19]Sari,A.,Tuzen,M. Kinetic and equilibrium studies of biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Amanita rubescens) biomass[J]. Journal of Hazardous Materials.2009,164(2-3):1004-1011.
    [20]Saeed,A.,Iqbal,M.,HOll,W.H. Kinetics,equilibrium and mechanism of Cd2+removal from aqueous solution by mungbean husk[J]. Journal of Hazardous Materials.2009,168 (2-3):1467-1475.
    [21]Haghseresht,F.,Lu,G.Q. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents[J]. Energy Fuels.1998,12(6):1100-1107.
    [22]Panda,GC.,Das,S.K.,Bandopadhyay,T.S.,Guha,A.K. Adsorption of nickel on husk of Lathyrus sativus:Behavior and binding mechanism[J]. Colloids Surf B:Biointerfaces.2007, 57 (2):135-142.
    [23]Srividya,K.,Mohanty,K. Biosorption of hexavalent chromium from aqueous solutions by Catla catla scales:Equilibrium and kinetics studies[J]. Chemical Engineering Journal.2009,155(3):666-673.
    [24]Zhou,Y.T., Nie,H.L., Branford-White,C., He.Z.Y., Zhu, L.M. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with a-ketoglutaric acid[J]. Journal of Colloid and Interface Science.2009,330(1):29-37.
    [25]Monier,M., Abdel-Latif, DA.Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) ions from aqueous solutions[J]. Journal of Hazardous Materials.2012,209:240-249.
    [26]Jiang,N., Xu,Y., Dai,Y, Luo,W., Dai, L, Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake[J]. Journal of Hazardous Materials.2012,215:17-24.
    [27]Zhou, L., Wang,Y., Liu,Z., Huang, Q.Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ),and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres[J]. Journal of Hazardous Materials.2009,161(2-3):995-1002.
    [28]Ji,F., Li,C., Tang,B., Xu,J., Lu,G., Liu, P. Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution[J]. Chemical Engineering Journal.2012,209:325-333.
    [29]Chen,J.H., Lin,H., Luo,Z.H., He,Y.S., Li, GP. Cu(Ⅱ)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(Ⅱ) ions from aqueous solution[J]. Desalination.2011,277(1-3):265-273.
    [30]Huo, H.Y., Su, H.J., Tan, T.W. Adsorption of Ag+ by a surface molecular-imprinted biosorbent[J]. Chemical Engineering Journal.2009,150(1):139-144.
    [31]Vijayaraghavan,K., Teo.T.T., Balasubramanian,R,, Joshi, U.M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff[J]. Journal of Hazardous Materials.2009,164(2-3):1019-1023.
    [32]Wu,Y., Zhang,S., Guo,X., Huang, H. Adsorption of chromium(Ⅲ) on lignin [J]. Bioresource Technology.2008,99(16):7709-7715.
    [33]Pehlivan, E., Cetin, S., Yanik, B.H. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash[J]. Journal of Hazardous Materials. 2006,135(1-3):193-199.
    [34]Ghodbane.I., Hamdaoui,O. Removal of mercury (Ⅱ) from aqueous media using eucalyptus bark:kinetic and equilibrium studies[J]. Journal of Hazardous Materials.2008,160(2-3): 301-309.
    [35]Zhu,C.S., Wang,L.P., Chen,W. Removal of Cu(Ⅱ) from aqueous solution by agricultural by-product:peanut hull[J]. Journal of Hazardous Materials.2009,168(2-3):739-746.
    [36]Pehlivan,E., Altun,T., Parlayici,S. Utilization of barley straws as biosorbents for Cu2+and Pb2+ ions[J]. Journal of Hazardous Materials.2009,164(2-3):982-986.
    [37]Banerjee, S.S., Joshi, M.V., Jayaram, R.V. S Removal of Cr(Ⅵ) and Hg(Ⅱ) from aqueous solutions using fly ash and impregnated fly ash[J]. Separation Science and Technology.2004, 39(7):1611-1629.
    [38]Dimitrova, S.V. Metal sorption on blast furnace slag. Water Research.1996,30(1):228-232.
    [39]Apak, R., Guclu, K., Turgut, M.H. Modeling of copper(Ⅱ), cadmium(Ⅱ), and lead(Ⅱ) adsorption on red mud [J]. Journal of Colloid and Interface Science.1998,203(1):122-130.
    [40]Kennedy Oubagaranadin,J.U., Sathyamurthy,N., Murthy,Z.V.P. Evaluation of Fuller's earth for the adsorption of mercury from aqueous solutions:a comparative study with activated carbon[J]. Journal of Hazardous Materials.2007,142(1-2):165-174.
    [41]Mohanty,K., Jha,M., Meikap,B.C., Biswas, M.N. Removal of chromium (Ⅵ) from dilute aqueous solutions by activated carbon developed fromTerminalia arjuna nuts activated with zinc chloride[J]. Chemical Engineering Science.2005,60(11):3049-3059.
    [42]Karabakan, A., Karabulut, S., Denizli, A., Yurum, Y. Removal of silver(Ⅰ) from aqueous solutions with low-rank Turkish coals[J]. Adsorption Science and Technology.2004,22(2): 135-144.
    [43]Akgul, M., Karabakan, A., Acar, O., Yurum, Y. Removal of silver (Ⅰ) from aqueous solutions with clinoptilolite[J]. Microporous and Mesoporous Materials.2006,94(1-3):99-104.
    [44]Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M.G., Taheri, H. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite[J]. Journal of Hazardous Materials.2010,177(1-3):950-955.
    [45]Dou,B., Dupont,V., Pan,W., Chen, B. Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite[J].Chemical Engineering Joumal.2011,166(2): 631-638.
    [46]Bhattacharyya,K.G, Gupta, S.S. Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science.2007,310(2):411-424.
    [47]Yirikoglu, H., Gulfen, M. Separation and recovery of Silver(Ⅰ) ions from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin[J]. Separation Science and Technology.2008,43(2):376-388.
    [48]Shu Z.N.,Xiong C.H., Wang, X. Adsorption behavior and mechanism of amino methylene phosphonic acid resin for Ag(Ⅰ) [J]. Transactions of Nonferrous Metals Society of China.2006, 16(3):700-704.
    [49]Yang, H., Xu, R., Xue, X.M., Li, F.T., Li, G.T. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials.2008,152(2):690-698.
    [50]Wang,J., Zheng,S., Shao,Y., Liu,J., Xu,Z., Zhu, D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal[J]. Journal of Colloid and Interface Science.2010,349(1):293-299.
    [51]Ren,Y., Li,N., Feng,J., Luan,T., Wen,Q., Li,Z., Zhang, M. Adsorption of Pb(Ⅱ) and Cu(Ⅱ) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science.2012,367:415-421.
    [52]Albadarin,A.B., Al-Muhtaseb,A.H., Al-laqtah,N,A., Walker,G.M., Allen,S.J., Ahmad,M. N.M. Biosorption of toxic chromium from aqueous phase by lignin:mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal.2011,169(1-3):20-30.
    [53]Deze,E.G, Papageorgiou,S.K., Favvas,E.P., Katsaros, F.K. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions:Effect of porosity in Cu2+ and Cd2+ion sorption[J]. Chemical Engineering Journal.2012,209:537-546.
    [54]Yu,J., Tong,M., Sun,X., Li, B. Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast [J]. Bioresource Technology.2008,99(7): 2588-2593.
    [55]Liu,F., Li,L., Ling,P., Jing,X., Li,C., Li,A., You, X. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin:Isotherms, thermodynamics and kinetics[J]. Chemical Engineering Journal.2011,173(1):106-114.
    [56]Deng,S., Ting, Y.P. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr() anions:sorption capacity and uptake mechanisms[J]. Environmental Science and Technology.2005,39(21):8490-8496.
    [1]De Lima,L. S., Araujo,M. D. M., Quinaia,S. P., Migliorine,D. W., Garciab,J. R. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design[J]. Chemical Engineering Journal.2011,166(3):881-889.
    [2]Huang,G., Shi,J.X., Langrish,T.A.G. Removal of Cr(Ⅵ) from aqueous solution using activated carbon modified with nitric acid[J]. Chemical Engineering Journal.2009,152(2-3):434-439.
    [3]Dou,B., Dupont,V., Pan,W., Chen,B. Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite[J]. Chemical Engineering Journal.2011,166(2): 631-638.
    [4]Luo,P., Zhang,J., Zhang,B., Wang,J., Zhao,Y., Liu, J. Preparation and Characterization of Silane Coupling Agent Modified Halloysite for Cr(VI) Removal[J]. Industrial and Engineering Chemistry Research.2011,50(17):10246-10252.
    [5]Chen,Q., Yin,D., Zhu,S., Hu,X. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide[J]. Journal of Colloid and Interface Science.2012,367:241-248.
    [6]Wu, Y. W., Zhang, J., Liu,J. F., Chen,L., Deng,Z. L., Han,M. X., Wei,X. S., Yu,A. M., Zhang, H. L. Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(Ⅲ) speciation in environmental and biological samples[J]. Applied Surface Science.2012,258(18):6772-6776.
    [7]Zheng,Y. M., Lim,S. F., Chen,J. P. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. Journal of Colloid and Interface Science. 2009,338(1):22-29.
    [8]Shahbazi,A., Younesi,H., Badiei,A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal. 2011,168(2):505-518.
    [9]Li,Z. C., Fan,H. T., Zhang,Y, Chen,M. X., Yu,Z. Y, Cao,X. Q., Sun, T. Cd(Ⅱ)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(Ⅱ) from aqueous solution[J]. Chemical Engineering Journal.2011,171(2):703-710.
    [10]Luo,X., Luo,S., Zhan,Y, Shu,H., Huang,Y, Tu,X. Novel Cu (Ⅱ) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process[J]. Journal of Hazardous Materials.2011,192(3):949-955.
    [11]Liu,F., Li,L., Ling,P., Jing,X., Li,C., Li,A., You, X. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin:Isotherms, thermodynamics and kinetics[J]. Chemical Engineering Journal.2011,173(1):106-114.
    [12]Ma,X., Li,Y, Ye,Z., Yang,L., Zhou,L., Wang, L. Novel chelating resin with cyanoguanidine group:Useful recyclable materials for Hg(Ⅱ) removal in aqueous environment[J]. Journal of Hazardous Materials.2011,185(2-3):1348-1354
    [13]Paudyal,H., Pangeni,B., Inoue,K., Kawakita,H., Ohto, K., Harada,H., Alam,S. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions[J]. Journal of Hazardous Materials.2011,192(2):676-682
    [14]Saha,S., Sarkar,P. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide[J]. Journal of Hazardous Materials.2012, 227:68-78.
    [15]Plaza Cazon,J., Bernardelli,C., Viera,M., Donati,E., Guibal, E. Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system[J]. Bioresource Technology.2012,116:195-203.
    [16]Awual,M. R., Jyo,A., Ihara,T., Seko,N., Tamada,M., Lim, K. T. Enhanced trace phosphate removal from water by zirconium(Ⅳ) loaded fibrous adsorbent[J]. Water Research. 2011,45(15):4592-4600.
    [17]Zhang,Q., Pan,B., Zhang,W., Pan,B., Lv,L.L., Wang,X., Wu,J., Tao, X. Selective removal of Pb(Ⅱ), Cd(Ⅱ), and Zn(Ⅱ) ions from waters by an inorganic exchanger Zr(HPO3S)2[J]. Journal of Hazardous Materials.2009,170(2-3):824-828.
    [18]Jiang, N., Xu,Y., Dai.Y., Luo,W., Dai, L. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake[J]. Journal of Hazardous Materials.2012,215:17-24.
    [19]Liao,Q., Sun,J., Gao,L. The adsorption of resorcinol from water using multi-walled carbon nanotubes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008, 312(2-3):160-165.
    [20]Chen,G. C., Shan,X. Q., Pei,Z. G, Wang,H., Zheng,L. R., Zhang,J., Xie, Y. N. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead[J]. Journal of Hazardous Materials.2011,188(1-3):156-163.
    [21]Yao,Y., He,B., Xu,F., Chen, X. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes[J]. Chemical Engineering Journal.2011,170(1):82-89.
    [22]Chatterjee,S., Lee,M. W., Woo, S. H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes[J]. Bioresource Technology.2010,101(6):1800-1806.
    [23]Yao,Y., Xu,F., Chen,M., Xu,Z., Zhu, Z. Adsorption behavior of methylene blue on carbon nanotubes[J].Bioresource Technology.2010,101(9):3040-3046.
    [24]Nabid,M. R., Sedghi,R., Bagheri,A., Behbahani,M., Taghizadeh,M., Oskooie,H.A., Heravi, M.M. Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction[J]. Journal of Hazardous Materials.2012,203:93-100.
    [25]Tofighy,M. A., Mohammadi, T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials.2011,185(1):140-147.
    [26]Ren,X., Shao,D., Yang,S., Hu,J., Sheng,G, Tan,X., Wang, X. Comparative study of Pb(Ⅱ) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions[J]. Chemical Engineering Journal.2011,170(1):170-177.
    [27]Cui,Y., Hu,Z.J., Yang, J.X., Gao, H.W. Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium[J]. Microchim Acta.2012,176(3-4):359-366.
    [28]Li, R., Chang,X., Li,Z., Zang,Z., Hu, Z., Li,D., Tu, Z. Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(Ⅱ) ion in water samples[J]. Microchim Acta.2011,172(3-4): 269-276.
    [29]Cui,Y, Liu,S., Hu,Z.J., Liu,X.H., Gao, H.W. Solid-phase extraction of lead(Ⅱ) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine[J]. Microchim Acta. 2011,174(1-2):107-113.
    [30]Zang,Z., Hu, Z., Li, Z., He, Q., Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions[J]. Journal of Hazardous Materials.2009,172(2-3): 958-963
    [31]Wang,S.G, Gong,W.X., Liu,X.W., Yao.Y.W, Gao,B.Y., Yue, Q.Y. Removal of lead(Ⅱ) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes[J]. Separation and Purification Technology.2007,58(1):17-23.
    [32]Peng,X., Luan,Z., Di,Z., Zhang,Z., Zhu, C. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water[J]. Carbon.2005, 43(4):855-894.
    [33]Li,X., Ye, Z., Li,Y. Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution[J]. Chemical Engineering Journal.2011,178:60-68.
    [34]Zhang,Y, Li,Y, Li,X., Yang,L., Bai,X., Ye,Z., Zhou,L., Wang, L. Selective removal for Pb2+ in aqueous environment by using novel macroreticular PVA beads[J]. Journal of Hazardous Materials.2010,181(1-3):898-907.
    [35]Sag,Y, Aktay.Y. Kinetic studies on sorption of Cr(Ⅵ) and Cu(Ⅱ) ions by chitin, chitosan and Rhizopus arrhizus[J]. Biochemical Engineering Journal.2002,12(2):143-153.
    [36]Idris,A., Zain,N.A.M., Suhaimi, M.S. Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique[J]. Process Biochemistry. 2008,43(4):331-338.
    [37]Singh,S., Patel,P., Shahi,V. K., Chudasama, U. Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol-gel in aqueous media for electrochemical applications[J]. Desalination.2011,276(1-3):175-183.
    [38]Thakkar,R., Chudasama, U. Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions[J]. Journal of Hazardous Materials.2009, 172(1):129-137.
    [39]Kyzas,G. Z., Kostoglou,M., Lazaridis, N. K. Copper and chromium(Ⅵ) removal by chitosan derivatives-Equilibrium and kinetic studies[J]. Chemical Engineering Journal.2009, 152(2-3):440-448.
    [40]Jia, Y., Zhang,Y, Wang,R., Fan,F., Xu, Q. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP):Behaviors and mechanisms[J]. Applied Surface Science.2012, 258(7):2551-2561.
    [41]Liang,X., Hou, W., Xu,Y, Sun,G, Wang, L., Sun,Y, Qin,X. Sorption of lead ion by layered double hydroxideintercalated with diethylenetriaminepentaacetic acid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010,366(1-3):50-57.
    [42]Liang,X., Xu,Y, Wang,L., Sun,Y, Lin,D., Sun,Y, Qin,X., Wan, Q. Sorption of Pb2+ on mercapto functionalized sepiolite [J]. Chemosphere.2013.90(2):548-555.
    [43]Jin,Y., Liu,F., Tong,M., Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic Nanoparticles[J]. Journal of Hazardous Materials.2012,227:461-468.
    [44]Repo,E., Warchol, J. K., Kurniawan,T.A., Sillanpaa, M. E.T. Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA-and/or DTPA-modified chitosan:Kinetic and equilibrium modeling[J]. Chemical Engineering Journal.2010,161(1-2):73-82.
    [45]Chen,J. H., Ni,J. C., Liu,Q. L., Li, S. X. Adsorption behavior of Cd(Ⅱ) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent[J]. Desalination.2012,285:54-61.
    [46]Chen,A.H., Liu,S.C., Chen,C.Y., Chen, C.Y .Comparative adsorption of Cu(Ⅱ), Zn(Ⅱ), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin[J]. Journal of Hazardous Materials.2008,154(1-3):184-191.
    [47]Liu,H., Yang,F., Zheng,Y., Kang, J., Qu,J., Chen, J. P. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology [J]. Water Research.2011,45(1):145-154.
    [48]Kannamba,B., Laxma Reddy.K., AppaRao, B.V. Removal of Cu(Ⅱ) from aqueous solutions using chemically modified chitosan[J]. Journal of Hazardous Materials.2010,175(1-3): 939-948.
    [49]Wan Ngah,W.S., Fatinathan, S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions onto chitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies[J]. Journal of Environmetal Management.2010,91(4):958-969.
    [50]Asencios, Y. J.O., Sun-Kou, M. R. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals:Pb(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) [J]. Applied Surface Science.2012,258(24):10002-10011.
    [51]Ren,Y., Li,N., Feng,J., Luan,T., Wen, Q., Li,Z., Zhang, M. Adsorption of Pb(Ⅱ) and Cu(Ⅱ) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science.2012,367:415-421.
    [52]Kragovic,M., Dakovic,A., Sekulic,Z., Trgo,M., Ugrina, M., Perid, J., Diego Gatta, G. Removal of lead from aqueous solutions by using the natural and Fe(Ⅲ)-modified Zeolite[J]. Applied Surface Science.2012,258(8):3667-3673.
    [53]Lin,Y.F., Chen,H.W., Chien, P.S., Chiou,C.S., Liu, C.C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution[J]. Journal of Hazardous Materials.2011,185(1-3):1124-1130.
    [54]Zhu,H.Y., Jiang,R., Xiao,L., Zeng, G.M. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized c-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange[J]. Bioresource Technology.2010,101(14):5063-5069.
    [55]Huang,X., Li,L., Liao,X., Shi, B. Preparation of platinum nanoparticles supported on bayberry tannin grafted silica bead and its catalytic properties in hydrogenation[J]. Journal of Molecular Catalysis A:Chemical.2010,320(1-2):40-46.
    [56]Pan, B., Qiu, H., Pan, B., Nie, G., Xiao, L., Lv, L., Zhang, W., Zhang, Q., Zheng, S. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(Ⅲ) oxides: behavior and XPS study[J]. Water Research.2010,44(3):815-824.
    [57]Deng,S., Bai,R., Chen, J.P. Aminated polyacrylonitrile fibers for lead and copper removal[J]. Langmuir.2003,19(12):5058-5064.
    [58]Malkoc,E., Nuhoglu, Y. Fixed bed studies for the sorption of chromium(VI) onto tea fctory waste[J]. Chemical Engineering Science.2006,61(13):4363-4372.
    [59]Mukhopadhyay,M., Noronha,S.B., Suraishkumar, G.K. Copper biosorption in a column of pretreated Aspergillus niger biomass[J]. Chemical Engineering Journal.2008,144(3): 386-390.
    [1]De Lima,L.S., Araujo,M.D.M., Quinaia,S.P., Migliorine,D.W., Garcia, J.R. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design[J]. Chemical Engineering Journal.2011,166(3):881-889.
    [2]Zhu, J., Yang, J., Deng, B. Enhanced mercury ion adsorption by amine-modified activated carbon[J]. Journal of Hazardous Materials.2009,166(2-3):866-872.
    [3]Ghayaza,M., Le Forestier,L., Muller, F., Tournassat,C., Beny.J.M. Pb(Ⅱ) and Zn(Ⅱ) adsorption onto Na-and Ca-montmorillonites in acetic acid/acetate medium:Experimental approach and geochemical modeling[J]. Journal of Colloid and Interface Science.2011,361(1):238-246.
    [4]Zhao,D., Chen,S., Yang,S., Yang,X., Yang, S. Investigation of the sorption behavior of Cd(Ⅱ) on GMZ bentonite as affected by solution chemistry[J]. Chemical Engineering Journal. 2011,166(3):1010-1016.
    [5]Chen,Q., Yin,D., Zhu,S., Hu,X. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide[J]. Journal of Colloid and Interface Science.2012,367:241-248.
    [6]Hao, Y.M., Chen, M., Hu, Z.B. Effective removal of Cu (Ⅱ) ions from aqueous solution by amino-functionalized magnetic nanoparticles[J]. Journal of Hazardous Materials. 2010,184(1-3):392-399.
    [7]Zheng,Y.M., Lim,S.F., Paul Chen, J. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. Journal of Colloid and Interface Science.2009, 338(1):22-29.
    [8]Lin,Y.F., Chen,H.W., Chien,P.S., Chiou,C.S., Liu,C.C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution[J]. Journal of Hazardous Materials.2011,185(2-3):1124-1130.
    [9]Li,Z.C., Fan,H.T., Zhang,Y, Chen,M.X., Yu,Z.Y, Cao,X.Q., Sun,T. Cd(Ⅱ)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(Ⅱ) from aqueous solution[J]. Chemical Engineering Journal.2011,171 (2):703-710.
    [10]Shahbazi,A., Younesi,H., Badiei, A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal.2011, 168(2):505-518.
    [11]Liu,F., Li,L., Ling,P., Jing,X., Li,C., Li,A., You,X. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin:Isotherms, thermodynamics and kinetics[J]. Chemical Engineering Journal.2011,173(1):106-114.
    [12]Liang,X., Su,Y., Yang,Y., Qin,W. Separation and recovery of lead from a low concentration solution of lead(Ⅱ) and zinc(Ⅱ) using the hydrolysis production of poly styrene-co-maleic anhydride[J]. Journal of Hazardous Materials.2012,203:183-187.
    [13]Xiong,C., Yao,C., Wang,L., Ke,J. Adsorption behavior of Cd(Ⅱ) from aqueous solutions onto gel-type weak acid resin[J]. Hydrometallurgy.2009,98(3-4):318-324.
    [14]Yin,P., Xu,M., Qu, R., Chen, H., Liu,X., Zhang,J., Xu,Q. Uptake of gold (Ⅲ) from waste gold solution onto biomass-based adsorbents organophosphonic acid functionalized spent buckwheat hulls[J]. Bioresource Technology.2013.128:36-43.
    [15]Das,D., Basak,G., Lakshmi, V., Das,N. Kinetics and equilibrium studies on removal of zinc(Ⅱ) by untreated and anionic surfactant treated dead biomass of yeast:Batch and column mode[J]. Biochemical Engineering Journal.2012,64:30-47.
    [16]Tang,H., Chang,C., Zhang,L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway[J]. Chemical Engineering Journal. 2011,173(3):689-697.
    [17]Song,J., Kong,H., Jang,J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles [J]. Journal of Colloid and Interface Science.2011,359(2):505-511.
    [18]Ma,X., Li,L., Yang,L., Su,C., Wang,K., Yuan,S., Zhou,J. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials:Adsorption isotherms and kinetic studies[J]. Journal of Hazardous Materials.2012,209:467-477.
    [19]Iqbal,N., Mobin,M., Rafiquee, M.Z.A. Synthesis and characterization of sodium bis(2-ethylhexyl) sulfosuccinate based tin(Ⅳ) phosphate cation exchanger:Selective for Cd2+, Zn2+ and Hg2+ ions[J]. Chemical Engineering Journal.2011,169(1-3):43-49.
    [20]Gok,C., Aytas, S. Biosorption of uranium(Ⅵ) from aqueous solution using calcium alginate beads[J]. Journal of Hazardous Materials.2009,168(1):369-375.
    [21]Niu,H., Zhang,D., Meng,Z., Cai, Y. Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles[J]. Journal of Hazardous Materials. 2012,227:195-203.
    [22]Rosales, E., Iglesias, O., Pazos, M., Sanroman, M.A. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads[J]. Journal of Hazardous Materials.2012, 213:369-377.
    [23]Idris,A., Hassan,N., Rashid,R., Ngomsik, A.F. Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (Ⅵ) reduction under sunlight[J]. Journal of Hazardous Materials.2011,186(1):629-635.
    [24]Lim,S.F., Zheng,Y.M., Zou,S.W., Paul Chen, J. Removal of copper by calcium alginate encapsulated magnetic sorbent[J]. Chemical Engineering Journal.2009,152(2-3):509-513.
    [25]Lim,S.F., Paul Chen, J. Synthesis of an innovative calcium-alginate magnetic sorbent for removal of multiple contaminants[J]. Applied Surface Science.2007,253(13):5772-5775.
    [26]Rangsayatorn,N., Pokethitiyook,P. E., Upatham,S., Lanza, G.R. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel[J]. Environment International,2004,30(1):57-63.
    [27]Balaji,T., Yokoyama,T., Matsunaga, H. Adsorption and removal of As(V) and As(Ⅲ) using Zr-loaded lysine diacetic acid chelating resin[J]. Chemosphere.2005,59(8):1169-1174.
    [28]Biswas,B.K., Inoue,J., Inoue,K., Ghimire,K.N., Harada,H., Ohto, K., Kawakita, H. Adsorptive removal of As(V) and As(Ⅲ) from water by a Zr(IV)-loaded orange waste gel[J]. Journal of Hazardous Materials.2008,154(1-3):1066-1074.
    [29]Peraniemi, S., Hannonen, S., Mustalahti, H., Ahlgren, M. Zirconium-loaded activated charcoal as an adsorbent for arsenic, selenium and mercury[J]. Fresenius' Journal of Analytical Chemistry.1994,349(7):510-515.
    [30]Biswas,B.K., Inoue,K., Ghimire,K.N., Harada,H., Ohto,K., Kawakita, H. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium[J]. Bioresource Technology.2008,99(18):8685-8690.
    [31]Shi,X.W., Du,Y.M., Sun,L.P., Yang,J.H., Wang,X.H., Su, X.L. Ionically Crosslinked Alginate/Carboxymethyl Chitin Beads for Oral Delivery of Protein Drugs[J]. Macromolecular Bioscience.2005,5(9):881-889.
    [32]Min,J.H., Hering, J.G. Arsenate sorption by Fe(Ⅲ)-doped alginate gels[J]. Water Research. 1998,32(5):1544-1552.
    [33]Li,X., Yang,L., Li,Y., Ye,Z., He, A. Efficient removal of Cd2+ from aqueous solutions by adsorption on PS-EDTA resins:Equilibrium,isotherms and kinetics studies [J]. Journal of Environmental Engineering.2012.138(9):940-948.
    [34]Unuabonah, E.I., Olu-Owolabi, B.I., Adebowale, K.O., Ofomaja, A.E. Adsorption of lead and cadmium ions from aqueous solutions by tripolyphosphate-impregnated Kaolinite caly[J]. Colloiss and Surfaces A:Physicochem. Eng Aspects.2007,292(2-3):202-211.
    [35]Han, R., Li,H., Li,Y., Zhang, J., Xiao,H., Shi, J. Biosorption of copper and lead ions by waste beer yeast[J]. Journal of Hazardous Materials.2006,137(3):1569-1576.
    [36]Wang, J.H., Zheng, S.R., Shao, Y, Liu, J.L., Xu, Z.Y., Zhu, D.Q. Amino-functionalized core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal[J]. Journal of Colloid and Interface Science.2010,349(1):293-299.
    [37]Zheng,Y.M., Yu, L., Paul Chen, J.Removal of methylated arsenic using a nanostructured zirconia-based sorbent:Process performance and adsorption chemistry[J]. Journal of Colloid and Interface Science.2012,367:362-369.
    [38]Jiang,N., Xu,Y., Dai,Y., Luo,W., Dai,L. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake[J]. Journal of Hazardous Materials.2012,215:17-24.
    [39]Lai,Y.L., Annadurai,G., Huang,F.C., Lee, J.F. Biosorption of heavy metals from aqueous solution using modified activated carbon:comparison of linear and nonlinear methods[J]. Journal of Chemical Technology and Biotechnology.2008,83(6):788-798.
    [40]Bee, A., Talbot, D., Abramson, S., Dupuis, V. Magnetic alginate beads for Pb(Ⅱ) ions removal from wastewater[J]. Journal of Colloid and Interface Science.2011,362(2):486-492.
    [41]Pan, X., Wang, J., Zhang, D. Biosorption of Pb(Ⅱ) by Pleurotus ostreatus immobilized in calcium alginate gel[J]. Process Biochemistry.2005,40(8):2799-2803.
    [42]Shawky, H.A. Improvement of water quality using alginate/montmorillonite composite beads[J]. Journal of Applied Polymer Science.2011,119(4):2371-2378.
    [43]Googerdchian, F., Moheb, A., Emadi, R. Lead sorption properties of nanohydroxyapatite-alginate composite adsorbents[J]. Chemical Engineering Journal.2012, 200:471-479.
    [44]Wan Ngah, W. S., Fatinathan, S. Pb(Ⅱ) biosorption using chitosan and chitosan derivatives beads:Equilibrium, ion exchange and mechanism studies[J]. Journal of Environmental Sciences.2010,22(3):338-346.
    [45]Bayramoglu,G, Tuzun,I., Celik,G, Yilmaz,M., Arica, M. Y. Biosorption of mercury(Ⅱ), cadmium(Ⅱ) and lead(Ⅱ) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads [J]. International Jouranl of Mineral Processing. 2006,81(1):35-43.
    [46]Liang,S., Guo.X., Tian, Q. Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel[J]. Desalination.2011,275(1-3):212-216
    [47]Okieimen,F.E., Okundia,E.U., Ogbeifun,D.E. Sorption of cadmium and lead ions on modified groundnut (Arachis hypogea) husks[J]. Journal of Chemical Technology Biotechnology.1991, 51(1):97-103.
    [48]Iqbal,M., Saeed,A., Zafar,S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste[J]. Journal of Hazardous Materials.2009,164(1): 161-171.
    [49]Pehlivan,E., Altun,T., Cetin,S., Bhanger, M.I. Lead sorption by waste biomass of hazelnut and almond shell[J]. Journal of Hazardous Materials.2009,167(1-3):1203-2128.
    [50]Wong,K.K., Lee,C.K., Low,K.S., Haron, M.J. Removal of Cu and Pb by tartaric acid modified rise husk from aqueous solutions[J]. Chemosphere.2003,50(1):23-28.
    [51]Wu, Y., Zhang, S., Guo, X., Huang, H. Adsorption of chromium(Ⅲ) on lignin. Bioresource Technology.2008,99(16):7709-7715.
    [52]Wan Ngah,W.S., Fatinathan, S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions onto chitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies[J]. Journal of Environmental Management.2010,91(4):958-969.
    [53]Ayhan Sengil,I., Ozacar, M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin[J]. Journal of Hazardous Materials.2009, 166(2-3):1488-1494.
    [54]Vijayaraghavan,K., Teo, T.T., Balasubramanian, R., Joshi, U.M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff[J]. Journal of Hazardous Materials.2009,164(2-3):1019-1023.
    [55]Ma,X., Li,L., Yang,L., Su,C., Wang,K., Yuan,S., Zhou, J. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials:Adsorption isotherms and kinetic studies[J]. Journal of Hazardous Materials.2012,209:467-477.
    [56]Ren,X., Shao,D., Yang,S., Hu,J., Sheng,G, Tan,X., Wang, X.Comparative study of Pb(Ⅱ) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions [J]. Chemical Engineering Journal.2011,170(1):170-177.
    [57]Shawabkeh,R., Al-Harahsheh,A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel.2004,83(7-8):981-985.
    [58]Kragovic, M., Dakovic,A., Sekulic,Z., Trgo, M., Ugrina, M., Peric,J., Gatta, G. D. Removal of lead from aqueous solutions by using the natural and Fe(Ⅲ)-modified zeolite[J]. Applied Surface Science.2012,258(8):3667-3673.
    [59]Ren,Y., Li,N., Feng, J., Luan,T., Wen,Q., Li,Z., Zhang, M. Adsorption of Pb(Ⅱ) and Cu(Ⅱ) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science.2012,367:415-421.
    [60]Wu,Z., Gu,Z., Wang,X., Evans,L., Guo, H. Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid [J]. Environmental Pollution.2003,121(3): 469-475.
    [61]Al-Zboon,K., Al-Harahsheh, M.S., Hani, F.B. Fly ash-based geopolymer for Pb removal from aqueous solution[J]. Journal of Hazardous Materials.2011,188(1-3):414-421.
    [62]Chang,Y, Liu,H., Zha,F., Chen,H., Ren,X., Lei, Z. Adsorption of Pb(Ⅱ) by N-methylimidazole modified palygorskite[J]. Chemical Engineering Journal.2011,167(1): 183-189.
    [63]Bhattacharyya,K.G, Gupta, S.S. Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(II) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science.2007,310(2):411-424.
    [64]Zhu, H.Y., Jiang,R., Xiao, L., Zeng, GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized y-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange[J]. Bioresource Technology.2010,101(14):5063-5069.
    [65]Pan,B., Qiu,H., Pan,B., Nie,G, Xiao.L., Lv,L., Zhang,W., Zhang,Q., Zheng, S. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(Ⅲ) oxides: behavior and XPS study[J]. Water research.2010,44(3):815-824.
    [66]Malkoc, E., Nuhoglu, Y. Fixed bed studies for the sorption of chromium() onto tea factory waste[J]. Chemical engineering Science.2006.61(13):4363-4372.
    [67]Akhtar, K., Khalid, A.M., Akhtar, M.W., Ghauri, M.A. Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum[J]. Bioresource Technology.2009,100(20):4551-4558.
    [68]Vijayaraghavan, K., Yun, Y.S. Polysulfone-immobilized Corynebacterium glutamicum:A biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column [J]. Chemical Engineering Journal.2008,145(1):44-49.
    [1]Kapoor, A., Viraraghavan, T., Cullimore, D. R. Removal of heavy metals using the fungus Aspergillus niger [J]. Bioresource Technology.1999,70(1):95-104.
    [2]Mata,Y.N., Blazquez,M.L., Ballester,A., Gonzalez,F., Munoz J.A. Biosorption of cadmium, lead and copper with calcium alginate xerogels andimmobilized Fucus vesiculosus [J]. Journal of Hazardous Materials.2009,163(2-3):555-562.
    [3]Ozdemir,S., Kilinc,E., Poli,A., Nicolausc,B., Guven,K. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:Equilibrium, kinetic and thermodynamic studies [J].Chemical Engineering Journal.2009,152(1):195-206.
    [4]Ozcmen, D., Ersoy-Mericboyu, A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons [J]. Journal of Hazardous Materials.2009, 168(2-3):1118-1125.
    [5]De Lima, L.S., Araujo, M.D.M., Quinaia, S.P., Migliorine,D.W., Garcia, J.R. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design [J]. Chemical Engineering Journal.2011,166(3):881-889.
    [6]Olu-Owolabi, B.I., Unuabonah, E.I. Kinetic and thermodynamics of the removal of Zn2+and Cu2+from aqueous solution by sulphate and phosphate-modified Bentonite clay [J]. Journal of Hazardous Materials.2010,184(1-3):731-738.
    [7]Wu,X.L., Zhao,D., Yang, S.T. Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin'an montmorillonite [J]. Desalination.2011,269(1-3):84-91.
    [8]Apiratikul, R., Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash [J]. Chemical Engineering Journal.2008,144(2):245-258.
    [9]Jin,Y., Liu,F., Tong,M., Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles [J]. Journal of Hazardous Materials.2012,227:461-468.
    [10]Sabermahani,F., Taher,M.A., Bahrami,H., Fozooni, S. Alumina coated with oxazolone derivative for extraction of trace amounts of cadmium and copper from water and plant samples [J]. Journal of Hazardous Materials.2011,185(2-3):945-950.
    [11]Wu,Y.W., Zhang,J., Liu,J.F,, Chen,L., Deng,Z.L., Han,M.X., Wei,X.S., Yu,A.M., Zhang, H.L. Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(Ⅲ) speciation in environmental and biological samples [J]. Applied Surface Science.2012,258(18):6772-6776.
    [12]Naeem,A., Saddique,M.T., Mustafa,S., Tasleem,S., Shah,K.H., Waseem, M. Removal of Co2+ ions from aqueous solution by cation exchange sorption onto NiO [J]. Journal of Hazardous Materials.2009,172(1):124-128.
    [13]Ferreira, L. S., Rodrigues.S.M., de Carvalho, J.C.M., Lodi,A., Finocchio,E., Perego,R, Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems [J]. Chemical Engineering Journal. 2011,173(2):326-333.
    [14]Liu,Y., Zhao,Q., Cheng,G, Xu, H. Exploring the mechanism of lead(Ⅱ) adsorption from aqueous solution on ammonium citrate modified spent Lentinus edodes [J]. Chemical Engineering Journal.2011,173(3):792-800.
    [15]Montazer-Rahmati,M.M., Rabbani,P., Abdolali,A., Keshtkar, A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae [J]. Journal of Hazardous Materials. 2011,185(1):401-407.
    [16]Xiong,C., Yao,C., Wang,L., Ke, J. Adsorption behavior of Cd(Ⅱ) from aqueous solutions onto gel-type weak acid resin [J]. Hydrometallurgy.2009,98(3-4):318-324.
    [17]Dong,L., Zhu,Z., Ma,H., Qiu,Y., Zhao, J. Simultaneous adsorption of lead and cadmium on MnO2-loaded resin [J]. Journal of Environmental Sciences.2010,22(2):225-229.
    [18]Feng,N., Guo,X., Liang,S., Zhu,Y, Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel [J]. Journal of Hazardous Materials. 2011,185(1):49-54.
    [19]Wong,K.K., Lee,C.K., Low,K.S., Haron, M.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions [J]. Chemosphere.2003,50(1):23-28.
    [20]Mondal, M.K. Removal of Pb(Ⅱ) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column [J]. Journal of Environmental Management.2009,90(11): 3266-3271.
    [21]Naiya,T.K., Chowdhury,P., Bhattacharya,A.K., Das, S.K. Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(Ⅱ) and Cd(Ⅱ) ions from aqueous solutions [J]. Chemical Engineering Journal.2009,148(1):68-79.
    [22]Visa,M., Isac,L., Duta, A. Fly ash adsorbents for multi-cation wastewater treatment [J]. Applied Surface Science.2012,258(17):6345-6352.
    [23]Li,X., Ye,Z., Zhang,Y., Ma,X., Yang,L., Li,Y. Efficient Removal of Hg(Ⅱ) by Polymer-Supported Hydrated Metal Oxides from Aqueous Solution [J]. Separation Science and Technology.2012,47(5):729-741.
    [24]Awual,M.R., El-Safty,S.A., Jyo,A. Removal of trace arsenic(Ⅴ) and phosphate from water by a highly selective ligand exchange adsorbent [J]. Journal of Environmental Sciences.2011, 23(12):1947-1954.
    [25]Balaji,T., Yokoyama,T., Matsunaga, H. Adsorption and removal of As(V) and As(Ⅲ) using Zr-loaded lysine diacetic acid chelating resin [J]. Chemosphere.2005,59(8):1169-1174.
    [26]lnan,S., Altas, Y. Preparation of zirconium-manganese oxide/polyacrylonitrile (Zr-Mn oxide/PAN) composite spheres and the investigation of Sr(Ⅱ) sorption by experimental design [J]. Chemical Engineering Journal.2011,168(3):1263-1271.
    [27]Biswas,B.K., Inoue,J., Inoue,K., Ghimire,K.N., Harada,H., Ohto,K., Kawakita, H. Adsorptive removal of As(Ⅴ) and As(Ⅲ) from water by a Zr(Ⅳ)-loaded orange waste gel [J]. Journal of Hazardous Materials.2008,154(1-3):1066-1074.
    [28]Sirpa Peraniemi, Sari Hannonen, Heikki Mustalahti, Markku Ahlgren. Zirconium-loaded activated charcoal as an adsorbent for arsenic, selenium and mercury [J]. Fresenius' Journal of Analytical Chemistry.1994,349(7):510-515.
    [29]Biswas,B. K., Inoue,K., Ghimire,K.N., Harada,H., Ohto,K., Kawakita, H. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium [J]. Bioresource Technology.2008,99(18):8685-8690.
    [30]Mandal,S., Padhi,T., Patel, R.K. Studies on the removal of arsenic (Ⅲ) from water by a novel hybrid material [J]. Journal of Hazardous Materials.2011,192(2):899-908.
    [31]Swain,S.K., Mishra,S., Patnaik,T., Patel,R.K., Jha,U., Dey, R.K. Fluoride removal performance of a new hybrid sorbent of Zr(Ⅳ)-ethylenediamine [J]. Chemical Engineering Journal.2012,184:72-81.
    [32]Sengil,I. A., Ozacar, M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin[J], Journal of Hazardous Materials.2009,166: 1488-1494.
    [33]Yurtsever,M.,Sengil,I. A. Biosorption of Pb(Ⅱ) ions by modified quebracho tannin resin [J]. Journal of Hazardous Materials.2009,163(2-3):58-64.
    [34]Anirudhan,T.S., Suchithra, P.S. Synthesis and characterization of tannin-immobilized hydrotalcite as a potential adsorbent of heavy metal ions in effluent treatments [J]. Applied Clay Science.2008,42(1-2):214-223.
    [35]Tong,S., Zhao,S., Zhou,W., Li,R., Jia, Q. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions [J]. Microchim Acta.2011, 174(3-4):257-264.
    [36]Li, W., Gong, X., Li, X., Zhang, D., Gong, H. Removal of Cr(Ⅵ) from low-temperature micro-polluted surface water by tannic acid immobilized powdered activated carbon [J]. Bioresource Technology.2012,113:106-113.
    [37]Li, W.,Tang, Y.,Zeng, Y.,Tong, Z., Liang, D., Cui, W. Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay [J]. Chemical Engineering Journal.2012,193:88-95.
    [38]Xu, R.K., Wang,Y., Tiwari.D., Wang,H.Y. Effect of ionic strength on adsorption of As(Ⅲ) and As(V) on variable charge soils [J]. Journal of Environmental Science.2009,21(7):927-932.
    [39]Pan, X.L., Wang, J.L.,Zhang, D.Y. Biosorption of Pb(Ⅱ) by Pleurotus ostreatus immobilized in calcium alginate gel [J]. Process Biochemistry.2005,40(8):2799-2803.
    [40]Selatnia,A., Madani,A., Bakhti,M.Z., Kertous,L., Mansouri,Y, Yous, R. Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass [J]. Mineral Engineering.2004,17(7-8):903-911.
    [41]Aksu, Z. Equilibrium and kinetic modelling of cadmium(Ⅱ) biosorption by C. vulgaris in a batch system:effect of temperature [J]. Separation and Purification Technology.2001,21(3): 285-294.
    [42]Tan, I.A.W., Ahmad, A.L., Hameed, B.H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. Journal of Hazardous Materials.2009,164(2-3):473-482.
    [43]Sari, A., Tuzen, M. Kinetic and equilibrium studies of biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Amanita rubescens) biomass [J]. Journal of Hazardous Materials.2009,164(2-3):1004-1011.
    [44]Altun Anayurt, R., Sari,A., Tuzen,M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass [J]. Chemical Engineering Journal.2009,151(1-5):255-261.
    [45]Srividya, K., Mohanty, K. Biosorption of hexavalent chromium from aqueous solutions by Catla catla scales Equilibrium and kinetics studies [J]. Chemical Engineering Journal.2009, 155(3):666-673.
    [46]Yakup Arica,M., Bayramoglu,G, Yilmaz,M., Bekta,,S., Genc, O. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii [J]. Journal of Hazardous Materials.2004,109(1-3):191-199.
    [47]Hu,X., Wang,J., Liu,Y., Li, X., Zeng,G, Bao,Z., Zeng,X., Chen,A., Long, F. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials.2011,185(1):306-314.
    [48]Monier.M., Abdel-Latif, D.A. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) ions from aqueous solutions [J]. Journal of Hazardous Materials.2012,209:240-249.
    [49]Tang,H., Chang,C., Zhang, L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway [J]. Chemical Engineering Journal.2011,173(3):689-697.
    [50]Ma,X., Li,L., Yang,L., Su,C., Wang,K., Yuan, S., Zhou,J. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials:Adsorption isotherms and kinetic studies [J]. Journal of Hazardous Materials.2012,209:467-477.
    [51]Wu,Y., Zhang,S., Guo,X., Huang, H. Adsorption of chromium(Ⅲ) on lignin [J]. Bioresource Technology.2008,99(16):7709-7715.
    [52]Ozacar, M., ngil,I. A., Tiiurkmenler, H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin [J]. Chemical Engineering Journal.2008,143(1-3):32-42.
    [53]Oo,C.W., Kassim,M.J., Pizzi, A.Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (Ⅱ) and lead (Ⅱ) [J]. Industrial Crops and Products.2009,30(1):152-161.
    [54]Tokalioglu,S., Yilmaz,V., Kartal,S., Delibas,A., Soykan, C. Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples [J]. Journal of Hazardous Materials.2009,169(1-3):593-598.
    [55]Zabihi, M., Ahmadpour, A., Haghighi Asl, A. Removal of mercury from water by carbonaceous sorbents derived from walnut shell [J]. Journal of Hazardous Materials.2009, 167(1-3):230-236.
    [56]Oliveira,F.D., Paula,J.H., Freitas,O.M., Figueiredo, S.A. Copper and lead removal by peanut hulls:equilibrium and kinetic studies [J]. Desalination.2009,248(1-3):931-940.
    [57]Wartelle, L.H., Marshall, W.E. Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxyethylene urea and choline chloride [J]. Water Research.2005, 39(13):2869-2871.
    [58]Oliveira, W.E., Franca, A.S., Oliveira, L.S., Rocha, S.D. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions [J]. Journal of Hazardous Materials.2008,152(3):1073-1081.
    [59]Kragovic, M., Dakovic,A., Sekulic,Z., Trgo,M., Ugrina,M., Peric,J., Gatta. G. D. Removal of lead from aqueous solutions by using the natural and Fe(Ⅲ)-modified zeolite [J]. Applied Surface Science.2012,258(8):3667-3673.
    [60]Chang,Y., Liu,H., Zha, F., Chen,H., Ren,X., Lei, Z. Adsorption of Pb(Ⅱ) by N-methylimidazole modified palygorskite [J]. Chemical Engineering Journal.2011,167(1): 183-189.
    [61]Zhou,J.B., Wu,P.X., Dang,Z. Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(Ⅵ) from aqueous solutions [J]. Chemical Engineering Journal.2010,162(3):1035-1044.
    [62]Luo,P., Zhang,J., Zhang,B., Wang,J., Zhao,Y., Liu, J. Preparation and Characterization of Silane Coupling Agent Modified Halloysite for Cr(Ⅵ) Removal [J]. Industrial and Engineering Chemistry Research.2011,50(17):10246-10252.
    [63]Srivastava,S.K., Gupta,V.K., Mohan, D. Removal of lead and chromium by activated slag-a blast-furnace waste [J]. Journal of Environmental Engineering, ACSE.1997,123(5): 461-468.
    [64]Gupta,V.K., Gupta,M., Sharma, S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research.2001,35(5):1125-1134.
    [65]Shukla,S.R., Pai, R.S. Removal of Pb(Ⅱ) from solution using cellulose containing materials [J]. Journal of Chemical Technology and Biotechnology.2005,80(2):176-183.
    [66]Feng, Q., Lin, Q., Gong, F., Sugita, S., Shoya, M. Adsorption of Lead and Mercury by Rice Husk Ash [J]. Journal of Colloid and Interface Science.2004,278(1):1-8.
    [67]Banerjee, S.S., Joshi, M.V., Jayaram, R.V. Removal of Cr(VI) and Hg(Ⅱ) from aqueous solutions using fly ash and impregnated fly ash [J]. Separation Science and Technology.2004, 39(9):1611-1629.
    [68]Zabihia,M., Haghighi Asla,A., Ahmadpour, A. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell [J]. Journal of Hazardous Materials.2010,174(1-3):251-256.
    [69]Mor,S., Ravindra,K., Bishnoi, N.R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal [J]. Bioresource Technology.2007,98(4):954-957.
    [70]Vukovic,G.D., Marinkovic,A.D., Skapin,S.D., Ristic,M.D. Aleksic,R., Peric-Grujic,A.A., Uskokovic, P.S. Removal of lead from water by amino modified multi-walled carbon nanotubes [J]. Chemical Engineering Journal.2011,173(3):855-865.
    [71]Nabid,M.R., Sedghi,R., Bagheri,A., Behbahani,M., Taghizadeh,M., Oskooie, H.A., Heravi, M.M. Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction [J]. Journal of Hazardous Materials.2012,203:93-100.
    [72]Wang, T., Liu,W., Xiong,L., Xu,N., Ni, J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) onto titanate nanotubes [J]. Chemical Engineering Journal.2013,215:366-374.
    [73]Pan, S., Shen,H., Xu,Q., Luo,J., Hu, M. Surface mercapto engineered magnetic Fe3O4 nanoadsorbent for the removal of mercury from aqueous solutions [J]. Journal of Colloid and Interface Science.2012,365(1):204-212.
    [74]Dou,B., Dupont,V., Pan,W., Chen, B. Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite [J]. Chemical Engineering Journal.2011, 166(2):631-638.
    [75]Mor,S., Ravindra,K., Bishnoi, N.R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal [J]. Bioresource Technology.2007,98(4):954-957.
    [76]Tsekova,K., Todorova,D., Dencheva,V., Ganeva, S. Biosorption of copper(Ⅱ) and cadmium(Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger [J]. Bioresource Technology.2010,101(6):1727-1731.
    [77]Donia, A.M., Atia, A.A., Heniesh, A.M. Efficient removal of Hg(Ⅱ) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde [J]. Separation and Purification Technology.2008,60(1):46-53.
    [78]Abou Taleb,M.F., Abd El-Mohdy,H.L., Abd El-Rehim,H.A. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes [J]. Journal of Hazardous Materials.2009,168(1):68-75.
    [79]Nakajima, A., Baba Y. Mechanism of hexavalent chromium adsorption by persimmon tannin gel [J]. Water Research.2004,38(12):2859-2864.
    [80]Malkoc,E., Nuhoglu,Y. Fixed bed studies for the sorption of chromium(VI) onto tea factory waste [J]. Chemical Engineering Science.2006,61(13):4363-4372.
    [81]Mukhopadhyay,M., Noronha,S.B., Suraishkumar, G.K. Copper biosorption in a column of pretreated Aspergillus niger biomass [J]. Chemical Engineering Journal.2008,144(3): 386-390.
    [82]Gupta,V. K, Gupta,M., Sharma, S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research.2001,35(5):1125-1134.
    [83]Amarasinghe,B.M.W.P.K., Williams, R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater [J]. Chemical Engineering Journal.2007,132(1-3):299-309.
    [84]Biswas,B.K., Inoue.J., Inoue,K., Ghimire, K.N., Harada,H., Ohto,K., Kawakita, H. Adsorptive removal of As(V) and As(Ⅲ) from water by a Zr(IV)-loaded orange waste gel [J]. Journal of Hazardous Materials.2008,154(1-3):1066-1074.