黄麻属(corchorus)起源与演化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄麻(jute)为椴树科(Tiliaceae)黄麻属(Corchorus)一年生草本植物,是重要的天然纤维作物,也是中国、印度、孟加拉等国家的特色经济作物。关于黄麻属的起源与演化,各国学者历来持不同观点,对其起源地和演化途径有不同看法。为明确黄麻属的起源与演化,本研究以来自13个国家的黄麻属6个种,包括9个近缘野生种、9个野生长果类型、13个野生圆果类型、21个栽培长果品种和44个栽培圆果品种等共96份种质资源为供试材料,分别采用SRAP分子标记结合形态学方法、SRAP分子标记结合ISSR标记、SRAP分子标记方法等不同的试验方法,用MEGA软件结合DPS软件绘制了黄麻属的进化树,计算了不同来源地黄麻属各种类型的进化时间,基于各类型黄麻在进化树的位置及进化时间,对黄麻属的起源与演化进行了探讨。本研究还对黄麻近缘野生种、栽培长果品种和栽培圆果品种的染色体特征进行了研究,以期揭示黄麻属在细胞学方面的演化趋势。主要研究结果如下:
     1、在供试黄麻种质资源中,近缘野生种处于进化树的最基础位置,且平均进化时间最长,说明近缘野生种是黄麻两个栽培种起源演化的最原始的祖先类型。本研究中,近缘野生种中进化时间最长的3个种是三齿种、三室种(19C)和假长果,均广泛分布于非洲。结合非洲为黄麻属种的现代分布中心,分布的频数和密度均较高的事实,综合前人的研究结果,本研究认为,非洲为黄麻属野生种的起源与演化中心。而近缘野生种中进化时间最短的3个种分别是三室种(21C)、漳浦假黄麻和南阳假黄麻,它们是起源较晚、相对较新的种,由其它近缘野生种演化而来。这3个种中的漳浦假黄麻和南阳假黄麻均是中国的野生黄麻类型,三室种(21C)除分布于非洲和印度尼西亚等地外,在我国亦有分布。据此推断中国是世界黄麻属的次生起源中心。
     2、将长果黄麻的平均进化时间结合来源地分析,来自非洲的野生长果黄麻平均进化时间最长,来自其它地区的进化时间较短;非洲长果栽培黄麻品种的平均进化时间亦最长,来自印度、孟加拉和中国南部地区的次之,而来自亚洲其它国家的进化时间则较短。从长果黄麻的分布地来看,非洲是野生长果黄麻与栽培长果黄麻广泛分布的地区。此外,我国的云贵高原和四川等地的栽培种野生亲缘类型分布广泛,广东、广西、福建等地均发现有野生长果黄麻的自然分布小群落,且我国南方的长果黄麻栽培类型较丰富。据此推断非洲的野生长果黄麻与栽培长果黄麻起源均最早,为世界野生长果黄麻与栽培长果黄麻的初级起源中心;印度——缅甸——中国毗邻地区为世界长果栽培黄麻的次生起源中心;栽培长果黄麻从初级起源中心和次级起源中心起源后,在漫长的演化过程中,通过各种途径传播至其它国家和地区,如亚洲的越南、日本,美洲的古巴等,并被广泛种植。
     3、供试材料中的野生圆果黄麻分别来自中国南部地区、泰国和尼泊尔,从地理位置上看属于中国南部及与中国相邻的南亚、东南亚国家。这些品种的平均进化时间较长,说明它们是起源较早的圆果黄麻类型,应为其它圆果黄麻栽培种的祖先。在供试的野生圆果黄麻类型中,来自中国的“海南野生圆果”在进化树上的位置与圆果栽培黄麻相邻,推测该类型为圆果栽培黄麻直接的野生祖先,即圆果栽培黄麻品种最早是由中国的“海南野生圆果”演化而来。从整体来看,栽培圆果黄麻的平均进化时间较短,说明圆果栽培黄麻这一类型在进化上较长果黄麻稍迟。44个栽培圆果黄麻品种中,来自中国南部各省的平均进化时间稍长于来自泰国、印度、日本等与中国邻近的国家的,说明中国圆果栽培黄麻是较原始的,其起源早于其它国家和地区。中国不仅有丰富的野生圆果黄麻资源,在福建、广东、海南等省均有野生圆果黄麻的自然分布小群落,而且还是圆果栽培黄麻类型的最多样性区域,并且栽培历史悠久。综合分子生物学、历史学和现代黄麻属圆果野生种及圆果栽培种类型的分布情况,本研究认为,中国南部以及与之相邻的南亚、东南亚地区为世界野生圆果黄麻的起源中心,中国南部地区同时为世界栽培圆果黄麻的起源中心。
     4、本研究所采用的几种方法均可以用于黄麻属起源与演化的研究,并能得到基本一致的结论,但之间存在差别。从引物扩增的条带总数、多态性条带数及所绘制的进化树综合来看,SRAP方法优于ISSR方法。而从供试材料在进化树上的位置、平均进化时间等综合分析,SRAP分子标记结合ISSR方法及SRAP分子标记结合形态学方法,是几种方法中较理想的方法,基于此两种方法绘制的进化树状图比单独使用SRAP方法或ISSR方法的效果更好。
     5、对黄麻属几个种的染色体特征的研究表明,各个种间在染色体组型大小上有所不同,并且表现出一定的变化规律:近缘野生种的染色体总长度与绝对长度最小,长果黄麻的染色体长度居中,圆果黄麻的染色体总长度与绝对长度值最大。将黄麻属各种间染色体大小的变化结合其进化时间分析,可以看出,在黄麻属进化过程中,其染色体大小的演化呈现由小到大的趋势,起源越早的种染色体长度越小,而进化程度越高的种染色体长度越大。这与形态学上植株高度、叶片大小、种子大小等的进化趋势是一致的。黄麻属两个栽培种的核型为1A型,属最对称的核型;供试近缘野生种的核型大部分属较不对称的2A型核型,只有假长果(pseudo-olitorius)的核型为1A型。因此,初步推断黄麻属的核型是由不对称向对称方向演化的。从染色体的臂比看,起源越早的黄麻类型其染色体长臂与短臂的比值越大,起源越晚、越进化的类型其染色体臂比值越小,即在黄麻属的演化过程中,染色体有由近中部着丝粒向中部着丝粒形态发展的趋势。
Jute(Corchorus) is an annual herb plant of Tiliaceae, and it's the important fiber crop, as well as the important economic crop of China, India and Bangladesh. The researchers from different countries have different views about the origin and evolution of Corchorus. In order to make clear the origin and evolution of Corchorus,96 jute germplasm were studied used Sequence Related Amplified Polymorphism (SRAP), Inter-simple Sequence Related (ISSR), SRAP combined with ISSR and SRAP combined with morphology. The 96 jute germplasm included 9 relative wild species,9 wild olitorius species,13 wild capsularis species, 21 cultivated olitorius species and 44 cultivated capsularis species. The phylogenetic trees of Corchorus were constructed by MEGA and DPS software, and the divergence time of jute germplasm from different area was calculated. In order to reveal the evolution trend on cytology of Corchorus, the characters of chromosomes were also studied. The main results were as follow:
     1、The relative wild species located at the basic position of the dendrogram, and the divergence time of which was the longest, which indicated the relative wild species originated earliest and was the ancestors of cultivated jute. Among all the relative wild species in this study, the divergence time of C.tridens, C. trilacularis(19C) and C.pseudo-olitorius were longer than others, which widely distributed in Africa and Southeast Asia. Africa was the modern distribution center of Corchorus, which density and frequency of distribution were high. So a conclusion was drawn:Africa was the center of origin for Corchorus. The divergence time of C. trilacularis(21C), Zhangpu C.acutangularis and Nanyang C.acutangularis was the shortest among all relative wild species. These three species originated lately, were the newer biotypes originated from other relative wild species. Zhangpu C.acutangularis and Nanyang C.acutangularis were from China. Besides Africa and Indonesia, C. trilacularis(21C) also distributed in China. The above revealed China was the second original center of.Corchorus.
     2、Among all the olitorius species, the divergence time of wild and cultivated species from Africa was the longest, and cultivated species from India, Bangladish and China was longer. The average divergence time of species from other Asia Countries was the shortest. The above data indicated the olitorius species of Africa originated earliest, at the same time the wild and cultivated olitorius species were distributed widely in Africa. Some wild olitorius species were also distributed naturally in Yunnan-Guizhou Plateau, as well as in Guangxi,Guangdong and Fujian province of China, and there were abundant biotypes of cultivated olitorius species in South China. From above we can see, Africa was the center of origin for wild and cultivated olitorius species, while the areas which border on India, Burma and China was the second center of origin for cultivated olitorius species. After originated from its first and second center of origin, the cultivated olitorius species was spread to other countries and areas and cultivated widely, such as Viet Nam, Japan in Asia and Cuber in Aemrica.
     3、The wild capsularis species used in this study were from South China, Thialand and Nepal. Geographically, the region includes South China and Countries of South Asia and Southeast Asia which border on China. The divergence time of these wild capsularis species were longer, which indicated they originated earlier, were the ancestors of other capsularis species. The species "Hainan wild capsularis" from China was located nearest the cultivated capsularis at the evolutionary trees, which indicated it was the ancestor of cultivated capsularis, and cultivated capsularis was originated from it. Taken together, the divergence time of the cultivated capsularis species was shorter than other species, indicating this biotype originated later than olitorius species.Among 44 cultivated capsularis species, the divergence time of species from South China was longer than those from Countries border on China, such as Thailand, India and Japan. So the cultivated capsularis species of China were older biotypes, which originated earlier than other countries. Wild capsularis were distributed widely in South China, and cultivated capsularis were abundant in China, which also had a long cultivated history. Based on molecular biology, history of cultivating and distribution community, the conclusion was drawn that South China, South Asia and Southeast Asia which border on China were the centers of origin for wild capsularis. China was the center of origin for cultivated capsularis.
     4、Though all the ways used in this study could analized origins and evolution of Corchorus, and the conclusions were accordant, there were some differents each other. Judging from the total bands, polymorphic bands amplified by each primer and the evolutionary trees, SRAP molecular markers were better than ISSR molecular markers. Based on a comprehensive analysis of the position of Corchorus located on the evolutionary trees and average divergence time of Corchorus, SRAP molecular markers combined with morphology and SRAP molecular markers combined with ISSR markers were better ways to study the origin and evolution ofCorchorus, and they were better than other ways such as using SRAP and ISSR alone.
     5、The chromosomal characters of some species of Corchorus were studied. The results were as follow: the size of the chromosomes was different among jute species, and it varied regularly. The total and absolute chromosome longtitude of relative wild species was minimum, which of the cultivated olitorius species was midrange, and cultivated capsularis species had the maximum value. The variety of chromosome size was analyzed with the average divergence time to reveal the evolutionary trend of chromosome. It illustrated that the size of chromosomes of Corchorus became larger and larger through evolution. The size of chromosomes of species originated earliest had a minmum value, while which of the species originated lately was larger, and the species originated latest had a maxmum value. The evolutionary trend of chromosome was same as morphology, including the height of plant, the size of leaves and seeds. The karyotype of two cultivated species was 1A, which was symmetrical. Except C. pseudo-olitorius, the karyotype of most of the relative wild species was 2A, which was asymmetrical. The conclusion that the karyotype of Corchorus was from asymmetry to symmetry through evolution was deduced from above fact. The ratio of long and short chromosomal arm of Corchorus was different, which of species originated earlier was higher, while species originated lately was lower. It was concluded that the centromere position of Corchorus was from submedian centromere to median centromere.
引文
[1]胡立勇,丁艳锋.作物栽培学.高等教育出版社,2008,15.
    [2]方嘉禾,常汝镇.中国作物及其野生近缘植物,经济作物卷.中国农业出版社,2007,4—7.
    [3]方嘉禾,常汝镇.中国作物及其野生近缘植物,经济作物卷.中国农业出版社,2007,8.
    [4]熊和平.麻类作物育种学.中国农业科学技术出版社,2008,2,156.
    [5]祁建民,刘国忠.黄麻红麻品种与高效配套技术.台海出版社,2007,3.
    [6]中国农业科学院麻类研究所主编.中国麻类作物栽培学.农业出版社,1982:123.
    [7]Jennifer M Edmonds.Herbarium survey of Cofchorus L. species. Department of Plant Sciences, University of Oxford, 1-2.
    [8]李宗道.麻作的理论与技术,上海科技出版社,1980:388—390.
    [9]卢浩然.中国农百科全书,农作物卷,麻类分支,北京农业出版社,1991:256.
    [10]祁建民,李维明,吴为人.黄麻的起源与进化研究.作物学报,1997,23(6):677—682.
    [11]唐守伟.黄麻长果种和圆果种的起源与分布,中国麻作,1993(3):13—15.
    [12]李爱青.肯尼亚黄麻红麻种质资源的考察报告.中国麻作,1990,1:16—20.
    [13]黎宇,程新奇,郭安平.我国黄麻种质资源的研究进展概述.中国麻作,1998,20(3):38—41.
    [14]张泉.关于植物形态学的思考.自然杂志,22(3):180—183.
    [15]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2000:2.
    [16]Sattler R. Acta Biocheimetica.1978,27:5-20.
    [17]徐克学.生物演化的数学模型[J].生物数学学报,1989,7(3):92—97.
    [18]肖瑞芝.我国黄麻品种资源主要类型与经济性状研究.中国麻作,1982(1):30—33.
    [19]程新奇,郭安平,肖瑞芝,孙家曾.黄麻种质资源的鉴定与利用分析.中国麻作,1993(4)1—8.
    [20]Krapovickas A, Gregory W C. Taxonomia del genero Arachis(Leguminosae)[J]. Bonplandia,1994, 8:1-186.
    [21]吴国盛,陈发棣,陈素梅,赵宏波,房伟民.部分菊属与亚菊属植物的形态学聚类及亲缘关系分析[J].南京农业大学学报,2009,32(1):155—159.
    [22]张瑞,王丽,唐铭霞,翁周.峨眉山2种重楼属植物同域分化的分子遗传学及其形态学证据初探.植物研究,2008,1:59—63.
    [23]郭先锋,臧德奎,袁涛,刘宪科,王莲英.我国栽培芍药溯源——基于地理分布及形态特征的比较分析.山东农业大学学报(自然科学版),2008,39(3):388—392.
    [24]任毅,李智军,胡正海.基于形态学资料星叶草属系统位置的探讨.西北植物学报2003,23(7):1091—1097.
    [25]孙稚颖,张宪春,崔绍梅,周凤琴.中国29种和泰国1种卷柏科植物的叶形态学研究及其分类学意义.植物分类学报,2006,44(2):148—160.
    [26]张福顺,王红旗,江绍明,刘作鹏,王玉婷.叶用甜菜(B cicla L.)形态学特性研究.中国糖料,2000,1:9—13.
    [27]季祥彪,王国鼎,康继川,乔光,文晓鹏.贵州12种兰属植物资源形态学和RAPD标记的比较分析.种子,2008,27(2):56—60.
    [28]ZHOU Z Q, LIYN. Evidence for the origin of Chinese soft apple[J]. Asian Agri History,1999,3: 35-37.
    [29]钟珍萍.植物起源、进化及其分类的研究方法概述.福建农业科技,1991,27—29.
    [30]洪德元.植物细胞分类学[M].北京科学出版社,1990:198—199.
    [31]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea.1. Cytogenetic studies of putative genome donors[J]. Euphytica,1978,27:665-675.
    [32]Banerjee, I. Chromosome mumber of Indian Crop Plants. A. Chromosome numbers in jute. J. Indian Bot. Soc.11:82-85.1932a; Annual Reports of the Jute Agriculture Research Institute.1948-1949.
    [33]Banerjee, I. The development of flower and pollen in jute. Indian J. Agric. Sci.1933,3:116-121.
    [34]Datta, Meiosis in Corchorus spp. Sci.&Cult.18:385-386.1953.; Rao, N. S. and Datta, R. M. Chromosomes of the genus Corchorus. Nature.1953,131:754.
    [35]朱秀英,陈祖耕,林学建,欧静.黄麻染色体显带的初步研究.中国麻作,1986,1:3—4,51.
    [36]朱凤绥,何广文,肖瑞芝,李树川,田自强,程尧楚.麻类作物的染色体组型分析及Giemsa带型初步观察.中国麻作,1981,3:1—9.
    [37]肖瑞芝.圆果种黄麻(Corchorus capsularis)品种不同形态特征的细胞学研究.中国麻作,1986,3:1—5.
    [38]冯婷婷,周志钦.栽培苹果起源研究进展.果树学报,2007,24(2):199—203.
    [39]马德伟,高锁柱,孙岚,刘金乙,刘志福.甜瓜花粉形态研究及起源、分类的探讨.中国西瓜甜瓜,1989,1:16—18.
    [40]徐鲜钧.黄麻属野生种与栽培种遗传资源多样性研究.福建农林大学硕士学位论文.2009
    [41]李捷,李锡文.世界樟科植物系统学研究进展.云南植物研究,2004,26(1):1—11.
    [42]杨晓红,李育农,林培均,许正.孢粉学在苹果属起源与演化上的研究.西南农业大学学报,1992,14(1):45—50.
    [43]郭素枝编著.扫描电镜技术及其应用.厦门大学出版社,2006,15—17.
    [44]李秀根,杨健.花粉形态数量化分析在中国梨属植物起源、演化和分类中的应用.果树学报2002.19(3):145—148.
    [45]刘三军,孔庆山,顾红.我国葡萄属植物孢粉学分类研究.果树科学,1997,14(2):100—105.
    [46]邓小燕,周颂东,何兴金.中国黄精属13种植物花粉形态及系统学研究.武汉植物学研究,2007,25(1):11—18.
    [47]曹红星,孙程旭,吴翼,陈良秋,范海阔,覃伟权,王文泉.分子标记在棕榈科植物遗传育种中的应用.中国农学通报,2009,25(03):279—282.
    [48]殷继艳,张建国.应用于杨树遗传进化研究中常见的几种遗传标记方法.安徽农业科学,2007,35(34): 65—68.
    [49]李桂兰,闫高.分子标记技术的发展及应用[J].生物学通报,2006,41(2):17—19.
    [50]贺学勤,刘庆昌,翟红.用RAPD、ISSR和AFLP标记分析系谱关系明确的甘薯品种的亲缘关系[J].作物学报,20,31(10):1300—1304.
    [51]Russell J R, Fuller J D, Macaulay M, et al. Direct Comparison of levels of genetic variation among barley aCcessions detected by RFLPs, AFLPs, SSRs and RAPDs[J]. Theoretical and Applied Genetics, 1997,95:714-722.
    [52]Pejic I, Ajmone Marsan P, Morgante M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs,[J]. Theoretical and Applied Genetics, 1998,97:1248-1255.
    [53]GLi. C.F.Quiros. Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet(2001)103:455-461.
    [54]王晓飞.红麻核心种质资源遗传多样性及其亲缘关系SRAP标记分析.福建农林大学硕士学位论文.2006
    [55]陈丽静,潘刚刚,何晶,刘君,张立军,张丽.用SRAP分子标记鉴定玉米自交系的遗传多样性.四川农业大学学报,2009,27(2):148—152.
    [56]易杨杰,张新全,黄琳凯,凌瑶,马啸,刘伟.野生狗牙根种质遗传多样性的SRAP研究.遗传,2008,30(1):94—100.
    [57]王日新,任民,贾兴华,冯全福,杨爱国,付宪奎,王绍美,罗成刚.烟草主要栽培类型的SRAP标记研究.生物技术通报,2009,6:100—104.
    [58]Budak H, Shearman RC, Parmaksiz I, Gaussoin RE,Riordan TP, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet,2004,108:328-334.
    [59]Li G, Gao M, Yang B, Quiros CF. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet,2003,107:168-180.
    [60]Ferriol M, PiCo B, Nuez F. Genetic diversity of a germplasm Collection of Cucuibita pepo using SRAP and AFLP markers. Theor Appl Genet,2003,107:271-282.
    [61]Fang D Q, Krueger R R, Roose M L. Phylogenetic relationships among selected Citrus germplasm aCcessions revealed by inter-simple sequence repeat(ISSR) markers[J].J Amer soc Horticul Sci,1998,123:612-617.
    [62]祁建民,周东新,吴为人,林荔辉,方平平.用ISSR标记检测黄麻野生种与栽培种遗传多样性,应用生态学报,2003,(9):1473—1477.
    [63]M. Pradeep Reddy, N. S. E. A. S., Inter simp le sequence repeat (ISSR) polymorphism and its application in plant breeding. [J]. Euphytica,2002128:9-17.
    [64]Gilbert J E, Levis R V, Wilkinson M J, et al. Developing an appropriate strategy to assess genetic variability in plant germplasm Collections. Theor Appl Genel,1999,98:1125-1131.
    [65]祁建民,周东新,吴为人,林荔辉,方平平.RAPD和ISSR标记检测黄麻属遗传方多样性的比较研究,中国农业科学,2004,37(12):2006—2011.
    [66]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741—750.
    [67]Jonsson B O, Jonsdiottir I S, Gronberg N. Clonal diversity and allozyme variation in population of the arctic. Carex Bigelowej(Cyperaceae) J ECol,1996,84:449-459.
    [68]桂富荣,郭建英,万方浩.用ISSR标记分析不同地区紫茎泽兰种群的遗传变异.分子细胞生物学报,2007,40(1):41—48.
    [69]贾少锋,段霞瑜,周益林,鲁国东,王宗华.小麦白粉菌ISSR分子标记体系构建及其分离菌株的多样性分析.植物保护学报,2007,34(5):493—499.
    [70]何予卿,张宇,孙梅.利用ISSR分子标记研究栽培稻和野生稻亲缘关系.农业生物技术学报,2001,9(2):123—127.
    [71]李海连.茄子黄萎病病原菌鉴定及其ISSR分子指纹分析.南京:南京农业大学博士论文,2005.
    [72]张涛,陈兆贵,何秀云,曾秀文.茄子ISSR分子标记技术初步研究.广东农业科学,2009,1:42—44.
    [73]Williams J G, Kubelik A R, Livak K J. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Ncleic Acids Res,1990,18:6531-6535.
    [74]Welsh J M A. Fingerprinting genomes using PCR with arbitrary prim primers[J]. Nucl Acids Res, 1990,18:7213-7218.
    [75]Smith T B, Wayne R K. Molecular Genetic Approaches in Conservation. London:Oxford University Press.1996:54-73.
    [76]李翠翠,郭立忠,卢伟东,董伟.RAPD和SRAP分子标记在真姬菇菌种鉴定中的应用.食用菌学报,2009,16(1):21—25.
    [77]李南珠,李玥莹.RAPD分子标记技术在甜高梁基因组研究中的应用.安徽农业科学,2009,37(15):6881—6883,6886.
    [78]黄先群,马荣才,李丽,陈静,董颖苹.贵州白菜型油菜地方品种遗传多样性分析.西南农业学报,2009,22(2):271—276.
    [79]祁建民,周东新,吴为人,方平平,林荔辉.应用RAPD指纹探讨黄麻属种间遗传多样性及其亲缘关系,遗传学报,2003(10):926—932.
    [80]Mohammad Belayat Hossain, Samiul Haque and Haseena Khan. DNA Fingerprinting of Jute Germplasm by RAPD. Journal of Biochemistry and Molecular Biology,2002,35 (4):414-419.
    [81]G S, Oliveira G C, Shall B A, Gao L Z, Hong D Y. RAPD variation within and between natural population of the wild rice Oryza rafipogon from China and Brazil. Heredity,1999,82:638-644.
    [82]董云,庞进平,王毅,方彦.分子标记技术在我国甘蓝型油菜资源遗传多样性研究中的应用进展.安徽农业科学,2009,37(18):8373—8374.
    [83]吕瑞玲,吴小凤,刘敏超.分子标记技术及在水稻遗传研究中的应用.中国农学通报,2009,25(04):65—73.
    [84]林文芳,陈林姣,朱学艺.用分子标记技术分析不同生态型芦苇的遗传多样性.植物生理与分子生物学学报,2007,33(1):77—84.
    [85]周东新,祁建民,吴为人,李维明.黄麻DNA提取与RAPD反应体系的建立.福建农业大学学报,2001,334—339.
    [86]杨金华,邓传良,张准超,高武军,卢龙斗.菠菜性别相关RAPD分子标记体系的建立与优化.江 苏农业科学,2009,2:40—42.
    [87]汪小全,邹喻苹,张大明,张志宪,洪德元.RAPD标记在研究作物遗传多样性及系统学中的问题.植物学报,1996,38:954—962.
    [88]Bostein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in human using restriction fragment polymorphism. Am J Hum Genet,1980,32:314-331.
    [89]戴灼华,王亚馥,粟冀玟.遗传学(第二版),高等教育出版社,2008:427.
    [90]Flavell A J, Bolshakov V N, Booth A, et al. A microarray-based high throughput molecular marker genotyping methodahe tagged micro array marker(TAM)approach. Nucleic Acids Res,2003,31(19):115.
    [91]Vos P, Hogers Bieeker M, et al. A new technique for DNA fingerprinting. Acids Res,1995,21: 4407-4414.
    [92]HillM, Witsenboer H, ZabeauM, et al. PCR based fingerprinting using AFLPs as a tool for studying genetic relationship s in Lactuca spp. Theoretical and App lied Genetics,1996,93 (8):1202-1210.
    [93]Paul S, Wachira F N, PowellW, et al. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Cam elliasinebsis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and App lied Genetics,1997,94 (2):255-263.
    [94]Tautz D. Hyper variability of simple sequences as a general polymorphic DNA markers. Nucl Acids Res,1989,17:6463-6471.
    [95]Young N D. A cautiously optimistic vision or marker-assisted breeding. Molecular Breeding,1999, 5:505-510.
    [96]Ayala L, Henry M, Gonzalez-de D, et al. A diagnostic molecular marker allowing the study of Th. Iuterruediuru-derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet,2001,102:942-949.
    [97]Zhu ZhenDong, Jia JiZeng. Microsatellite Marker Development and Applications in Wheat Genetics and Breading [J]. HEREDITAS,2003,25(3):355-360.
    [98]Prasad M, Roy J' Roy J K The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat[J]. Theor Appl Genet 2000,100:584-592.
    [99]吴晓雷,贺超英,陈受宜.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报,2001,28(4):359—366.
    [100]Rongwei J. The use of microsatellite DNA markers for soybean genotype identification[J]. Theor Appl Genet,1995,90:43-48.
    [101]李小军,徐鑫,刘伟华,李秀全,杨欣明,李立会.应用SSR分子标记分析国外种质对我国小麦品种的遗传贡献.作物学报,2009,35(5):778—785.
    [102]左丽玲,冯晶,蔺瑞明,章振羽,曹远银,徐世昌.SSR标记分析小麦品种Flinor与铭贤169的遗传差异.中国农学通报,2009,25(10):59—62.
    [103]毛艇,徐海,郭艳华,朱春杰,陈凯,王嘉宇,徐正进.利用SSR分子标记进行水稻籼粳分类体系的初步构建.华北农学报,2009,24(1):119—124.
    [104]叶凯欣,罗森材,梁雪莲,梁红.猕猴桃SSR分析.生物技术,2009,19(3):40—42.
    [105]Brookes A. J.1999. The essence of SNPs. Ge ne.234:177-186.
    [106]Rafalski J. A.2002a. Application of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology,5:94-100.
    [107]邹喻苹,葛颂.新一代分子标记SNPs及其应用.生物多样性2003,11(5):370—382.
    [108]Mohammad Belayat Hossain, Aleya Awal, Mohammad Aminur Rahman, Samiul Haque and Haseena Khan. Distinction between Cold-sensitive and -tolerant Jute by DNA Polymorphisms. Journal of Biochemistry and Molecular Biology,2003,36 (5):427-432.
    [109]A. Basu, M.Ghosh, R.Meyer, W.Powell, S. L. Basak, S. K.Sen. Analysis of Genetic Diversity in Cultivated Jute Determined by Means of SSR Markers and AFLP Profiling. Crop Science.2004,44.
    [110]Reyazul R. Mir, Sachin Rustgi, Shailendra Sharma. A preliminary genetic analysis of fibre traits and the useof new genomic SSRs for genetic diversity in jute. Gupta Euphytica.2008,161:413-427.
    [111]A Roy, A Bandyopadhyay, AK Mahapatra, SK Ghosh, NK. Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant breeding,2006.
    [112]潘玲华,蒋菁,钟瑞春,李忠,冯斗,唐荣华.花生属植物起源、分类及花生栽培种祖先研究进展.广西农业科学,2009,40(4):344—347.
    [113]Lark, K.G., J.Evans,F.Basha,etal. Molecular phylogeny as a tool for soybean breeding, [J]Soybean Genet. News 1.,1992,19:174-181.
    [114]郭安平.RAPD分子标记重建我国苎麻属植物亲缘关系的研究.湖南农业大学博士学位论文,1999
    [115]2001,2002b,2006 Yong- Bi Fu, A. Diederichsen, K.W. Richards, Gregory Peterson, Genetic diversity of flax (linum usitatissimum L.) cultivars and landraces as revealed by RAPD[J]. Crop Evol. 2001,47(5):569-574.
    [116]A. Diederichsen, Fu yong- bi, Phenotypic and molecular(RAPD) differentiation of four infraspecific groups of cultivated flax[J]. Genetic resources and crop evolution,2006,53(1):77-90.
    [117]Yong- Bi Fu, Gregory Peterson, A. Diederichsen, K.W. Richards, RAPD analysis of genetic relationships of seven flax species in the genus LinumL[J].Genetic resources and crop evolution,2002, 49:253-259.
    [118]何余堂,陈宝元,傅廷栋,李殿荣,涂金星.白菜型油菜在中国的起源与进化. 遗传学报,Acta Genetica Sinica, November 2003,30 (11):1003-1012.
    [119]朱美霞,刘海清,张月永.应用RAPD-PCR分析棉花A基因组的起源与进化.安徽农业科学,2004,32(6):1109—1111,1115.
    [120]Hilu K W, Stalker H T. Ge netic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae):Evidence from RAPDs[J]. Plant Systematics and Evolution,1995,198:167-178.
    [121]孙传清,等.普通野生稻和亚洲栽培稻核基因组的遗传分化[J].中国农业大学学报,1997,2(5):65—71.
    [122]盖钧镒,许东河,高忠,岛本义也,阿步纯,福士泰史,北岛俊二.中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究.作物学报,2000,26(5):513—520.
    [123]Song K M. Theor Appl Genet.1988,75:784-794.
    [124]Warwick SL et al. Molecular systematics of Brassica and allied genera. Theor Appl Genet, 1991,82:81-92.
    [125]Ch yi Y S, et al. Genome,1992,35:746-757.
    [126]Kochert G, Stalker H M, Gimenes M, Galgaro L, Lo pes C R, Moore K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachishypogaea (Leguminosae)[J]. American Journal of botany,1996,83:1282-1291.
    [127]BAO Ying, GE Song. Identification of Oryza Species with the CD Genome Based on RFLP Analysis of Nuclear Ribosomal ITS Sequences. Acta Botanica Sinica,2003,45(7):762-765.
    [128]Zhou Cheng, Bao-Rong Lu, Kazuhiko Sameshima, Da-Xu Fu and Jia-Kuan Chen. Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis Genetic Resources and Crop Evolution 51:393-401,2004.
    [129]闫龙,关建平,宗绪晓.木豆种质资源AFLP标记遗传多样性分析.作物学报,2007,33(5):790—798.
    [130]石胜友,梁国鲁,成明昊,郭启高,李晓林,周志钦.变叶海棠起源的AFLP分析.园艺学报, 2005,32(5):802—806.
    [131]宗绪晓,Duancan Vaughan. Norihiko Tomooka, Akito Kaga,王新望,关建平,王述民.AFLP初析小豆栽培和野生变种(Vigna angularis var. angularis and var. nipponensis)间演化与地理分布关系.中国农业科学,2003,36(4):367—374.
    [132]鲍露.基于SSR, AFLP及ITS标记在梨和胡柚系统演化上的研究.浙江大学博士论文,2006
    [133]Paul Keim, Abdulahi Kalif, James Schupp, Karen Hill, Steven E. Travis,Kararichmond, Debra M. Molecular Evolution and Diversity in Bacillus anthracis as Detected by Amplified Fragment Length Polymorphism Markers. Journal of bacteriology,1997,179(3):818-824.
    [134]周建林,揭雨成,蒋彦波,等.用微卫星DNA标记分析苎麻品种的亲缘关系.作物学报,2004,30(3):289—292.
    [135]李萍,石金磊,胡永红,陈醇,蒋昌华,王佳,明凤.凤梨亚科光萼荷属与其近源属亲缘关系的ISSR分子鉴定.种子,2007,26(11):35—40.
    [136]韩晓颖,梁英海,王亚军,李峰.基于ISSR标记的伏山楂起源及分类地位研究.吉林农业大学学报.2009,31(2):164—167.
    [137]徐宁,程须珍,王丽侠,王素华,刘长友, 孙蕾,梅丽.用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用.作物学报,2009,35(2):219—227.
    [138]Sang T, Crawford D J, Sruessy T F.1995. Documentation of reticulate evolution in Peonies using internal transcribed spacer sequences of nuclear ribosomal DNA, implications for biogeography and Concerted evolution. Proceedings of the National Academy of Science, USA,92:6813-6817.
    [139]ROBINSON J P, HARRIS S A, JUNIPER B E. Taxonomy of the genus Malus Mill. (Rosaceae)with emphasis on the cultivated apple, Malus domestica Borkh [J]. Plant Systematics and Evolution,2001, 226:35-58.
    [140]潘锦.芍药属芍药组的变异与进化:形态、染色体和分子证据.中国科学院研究生院博士论文,2006
    [141]Sang T.2002. Utility of low-Copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology.37:121-147.
    [142]Sang T, Donoghue M J, Zhang D M.1997b. Evolution of alCohol dehydrogenase genes in peonies: phylogenetic relationships of putative nonhybrid species. Molecular biology and Evolution,14:994-1007
    [143]包颖,葛颂.利用多基因序列探讨稻属药稻复合体二倍体物种的系统发育关系.植物分类学报,2003,41(6):497—508.
    [144]郭亚龙,葛颂.线粒体nadl基因内含子在稻族系统学研究中的价值——兼论Porteresia的系统位置.植物分类学报,2004,42(4):333—344.
    [145]周颂东,何兴金,葛颂.基于trnK基因的葱属植物分子系统研究.西北植物学报,2006,26(5):906—914.
    [146]Wang R. L., Syeea A., Hey J., Lukens L. and Doebley J.1999. The limits of selection during maize domestication. Nature,398:236-239.
    [147]ROBINSON J P, HARRIS S A, JUNIPER B E. Taxonomy of the genus Malus Mill. (Rosaceae)with emphasis on the cultivated apple, Malus domestica Borkh [J]. Plant Systematics and Evolution,2001, 226:35-58.
    [148]Jung S, Tate P L, Horn R, Kochert G, Moore K。Abbott A G. The phylogenetic relationship of possible progenitors of the cultivated peanut[J]. Journal of Heredity,2003,94(4):334-340.
    [149]李明.亚麻进化与近缘种研究回顾与展望.中国麻业科学.2007,29(3):113—117.
    [150]粟建光,龚友才.黄麻种质资源描述规范和数据标准.中国农业出版社,2000,7—27.
    [151]李亚玲,韩国民,何沙娥,张智俊.基于DNA分子标记数据构建系统进化树的新策略.生物信息学,2007,4:168—170.
    [152]张金泉编著.植物地理学.重庆出版社出版,1989:213
    [153]熊和平.坦桑尼亚黄红麻种质资源考察.中国麻作,1989(4):5—9.
    [154]李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究,1985,3(4):297—302.
    [155]Stebbins G L. Chromosomal evolution in higher plants. London:Edward Arnold Ltd.1971,87-89.
    [156]梁国鲁.柑桔类的细胞分类学研究——Ⅰ.柑桔属30个分类群的核型及进化.武汉植物学研究,1990,8(1):1—9.
    [157]钟珍萍,刘德金,陈启锋.大豆种间的核型分析.福建农学院学报(自然科学版),1993,22(2):155—158.