松辽盆地上白垩统事件沉积与高分辨率层序地层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松科1井是松辽盆地第一口全取心科学探井,对白垩系泉三段顶部至泰康组底部地层进行了完整揭示,取心率高达96.46%。其为松辽盆地上白垩统事件沉积和高分辨率层序地层的研究提供了前所未有的、详实的地质、地球物理和地球化学资料。本文以松科1井2485.89 m岩心和嫩江组、泉头组、四方台组露头剖面为研究对象,通过对岩心和剖面的厘米级观察和描述,建立了完整的松辽盆地上白垩统厘米级精度岩石地层序列。根据岩性、沉积构造、含有物和沉积序列特征系统识别出地层中发育的各类沉积微相,并对事件沉积层和特殊岩性层进行总结,讨论他们在高分辨率层序地层划分中的作用。在此基础上对松科1井及露头剖面高分辨率层序界面类型、识别标志和各级层序结构及叠加样式进行了系统研究。最后,依据松辽盆地最新年代地层划分结果计算各级基准面旋回层序的发育时限,探讨松辽盆地各级层序形成的控制因素。
After 50 years of exploration and the extensive research in the paleo-environment and paleoclimate, paleomagnetism, sequence stratigraphy and petroleum geology and other fields, we achieved fruitful results in the Songliao Basin. But with the deepening of the exploration degree, the detailed study of basin formation is a more urgent needs, the lack of continuous, systematic study sample is the main constraint to the study of the high resolution sequence stratigraphy of the Songliao Basin. The continuous core information of CCSD-SK-I, which from the top of member K1q3 to the bottom of Taikang formation, with 96.46% of core recovery provides unprecedented information for the study of the upper cretaceous event stratigraphy and high resolution sequence stratigraphy of the Songliao Basin.
     In this thesis, we take the 2485.89 m core information of CCSD-SK-I and outcrop profile as the research object, through the centimeter-level observation and description to the cores and profile, and established the complete centimeter level lithostratigraphic sequence of the Upper Cretaceous in Songlian Basin. Based on lithology, sedimentary structures, containing material and sedimentary sequences characteristics, we systematically identify the development of various types of microfacies, based on which, we systematically study the sequence interface types and identification character. Through high resolution sequence stratigraphy dividing to the CCSD-SK-I and based on the latest chronostratigraphic analyze result of the Songliao Basin, we calculated the time span of base level cycle at all levels and discuss the controlling factors of the formation of the sequence at all levels. The specific research process and understanding, including the following six areas:
     1、The identification of lithology character and microfacise of CCSD-SK-I
     The identification and classification of the whole core section rock types is the base of the whole research, we mainly completed it by the combination of microscopic identification and specimen identification. Through the 2485.89 m core information of CCSD-SK-I, we identified 7 types of rocks after the grain size, including mudstone, siltystone, fine sandstone, medium sandstone, coarse sandstone, fine and medium conglomerate and there are 37 specific lithologies. Then, we identified 8 special lithology, including dolomite, volcanic ash, oil shale, lime mudstone, marlite, recrystalline limestone, ostracode clastic limestone and ostracode limestone.
     Lithology, structure, content, rock color and the sequence characteristics are considered in identifying sedimentary microfacies. There are five types of sedimentary environments, including meandering river, delta, lakeshore, shallow lake and semi-deep to deep lake in which 29 kinds of microfacies deveoped. The meandering river develops channel lag, point bar, natural levee, crevasse splay, crevasse channel, flooded plain and flooding lake. The delta develops subaqueous distributary channel, mouth bar, interdistributary bay, distal bar and slump sediment. The lakeshore develops sand beach and mud beach. The shallow lake develops mudstone of still water, turbdite, nearshore bar and tempestite. The semi-deep to deep lake develops mudstone of still water, mud limestone, dolostone, oil shale, volcanic ash, turbidite, slump sediment, temperitite, seismite, ostracoda limestone and sparite carbonate.
     2、Detailed study of outcrops
     In this thesis,we selected relatively good outcrop to study the lithostratigraphy, sedimentary facies, sequence stratigraphy and other aspects of research of the southeastern uplift of the Songliao Basin,and through the contrast between drilling the outcrop support the establishment of the Songliao basin stratigraphic framework. The studyed profiles including the Quantou formation profile of Jiejianlin in Changtu County, the Quantou formation profile of Baishanchun of Shanmen in Shiping city, The Qingshankou formation profile along the Songhua River of Qingshankou township in Nong’an County, Yaojia-Nengjiang formation on the south bank of the Songhua river near the Yaojia military station fo Caiyuanzhi Township in Dehuicity and Shifangtai formation in the west of Shifangtai in the shifangtai township of Shuihua city.
     3、The study of event stratigraphy types and character of CCSD-SK-I
     During the detailed description of CCSD-SK-I, we identified event etratigraphy layers and studyed them, including crevasse fan, crevasse channel, slumping gravity flowing, turbidity current, seismite, volcanic-ash sediment and tempestite-gravity flow sediment. We analyzed the development of various types of event stratigraphy and sedimentary features of the environment and discussed the role of the event stratigraphy and special lithology layers in the high resolution sequence stratigraphy dividing. We believe that crevasse fan and crevasse channel deposits reflect the beginning of the cycle upward deepen of the base level, which generally at the bottom of the cycle; turbidite, submarine slump deposits and seismites are located on top of up lighter base level cycle; the deep lake marl layer of Qingshankou formation and Nenjiang formation at the bottom of the high accommodation space of the upward shallow base-level cycles;dolomite deposits represent a kind of high accommodation space under a high-up shallowing of the base level cycle sequences.
     4、The research of high resolution sequence stratigraphy of CCSD-SK-I
     We used high-resolution sequence stratigraphy theory to study the high-resolution sequence stratigraphy of CCSD-SK-I. We refined the type of sequence boundary, and found the identification of each type, on the basis this and the sequence-level classification and nomenclature, sequence structure and stacking pattern, Sedimentary facies in each group research results. We use five-level classification scheme of sequence stratigraphy including ultra long, long, medium, short and ultra short-term to dividing the high-resolution sequence stratigraphy of CCSD-SK-I.
     5、The time span of the high-resolution sequence development of CCSD-SK-I
     We use the latest multi-stratigraphic division and correlation theme to calculate the time span of base level cycle at all levels, and find that the the average time span of ultra-short cycle sequences has two intervals, one is mainly delta and lakes and have a time span of 10.3 ~ 13.8ka, another is mainly rivers and lakes and have a time span of 24.7 ~ 36.4ka;The average time span of short-term cyclic sequence has different periods based on the different sedimentary facies, Rivers and lakes is 66.7 ~ 88.6ka, lakes and delta is 36.1 ~ 43.2ka, the calculated result of medium-term base level cycle sequence time span is 342.9 ~ 443.8ka.
     6、The control factors of high-resolution sequence of CCSD-SK-I
     The Cretaceous terrestrial strata of Songliao Basin has a complex development, and has various types of base-level cycles sequence, the formation of the sequence at all levels controlled by many factors. Through the discussion of control sequence elements within various types of ultra-short-term base level cycle combined with the calculation of time span of sequence at all levels,we determine controlling factors of cycle at each levels . The results show that ultra-short-term cyclic sequence is subject to lift and drop of the base level, which is also called auto-cycle sequence controlled by A / S value. The short-term cyclic sequence in the river environment, record the cycle of the Earth's orbit inclination rate, the short-term cyclic sequence in the lakes and delta record the Earth's orbit semiprecession. The short-term base level cycle sequences in the river environment controlled by the change between dry and wet climate, which caused by the eccentricity of the short period. The short-term sequence base-level cycles under the lake and delta environment are related with the climate change, which is caused by the earth orbit inclination rate. The formation of medium-term cyclic sequence controlled by the earth's long orbital eccentricity cycles. Long and ultra long-term base level cycle sequences controlling factor is the tectonic activity, followed by an external source input and climate change. At the same time, we can not rule out the input and the source control action of the earth's orbit period on climate change.
引文
[1] Berger A, Loutre MF and Laskar J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies [J]. Science New Series, 1992, 255: 560-566.
    [2] Cheng RH, Wang GD, Wang PJ. Sedimentary cycles of Quantou– Nenjiang, Cretaceous and Milankovitch cycles from the south hole of CCSD-SK in Songliao basin[J]. Acta Geologica Sinica, 2008,82(1):55-64.
    [3] Clifton HE. Sedimentologic consequences of convulsive geological events (Geological Society of America), Spec. Pap., 1988, 229: 157.
    [4] Cross TA and Lessenger MA. Sediment volume partitioning: rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation, in Gradstein F.M., Sandvik K.O., and Milton N.J.(eds.), Sequence Stratigraphy Concepts and Applications. NPF Special Publication 8, 1998, 171-195
    [5] Cross TA. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western interior, USA, in CK wilgus, et al., eds., Sea-level changes: An integrated approach: Society of Economic Palcontologists and Mineralogists Sepcial Publication. 1988, 42, 371-380.
    [6] Cross TA. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation.西北欧层序地层会议材料,1994.
    [7] Cross TA.Stratigraphic controls on reservoir attributes in continental strata [J].Earth Science Frontiers,2000,7(3):119-132
    [8] Deckker PD, Last WM. Modern Dolomite Deposition in Continental, Saline Lakes, Western Victoria, Australia. Geology , 1988, 16:29-33.
    [9] Deelman JC. Low-temperature Formation of Dolomite and Magnesite ( revised edition in a digital form) .Netherlands: compact Disc Publications Geology Series, 2003
    [10] Deelman JC. Low-temperature Nucleation of Magnesite and Dolomite.Neues Jahrb. Mineral., Mh., Jg., 1999, 289-302.
    [11] Dott RH. Episodic sedimentation-how normal is average? How rare is rare? Does it matter. J. Sediment. Petrol., 1983, 53: 5-23.
    [12] Einsele G and Seilacher A. Distinction of temestites and turbidites. In: Einsele G, Ricken W and Seilacher A (Editors), Cycles and Events in Stratigraphy. Springer, Berlin, 1991, 377-382
    [13] Einsele G, Chough SK, Shiki T. Depositional events and their records-an introduction. Sedimentary Geology, 1996, 104: 1-9.
    [14] Einsele G. Limestone-marl-cycles(periodites): Diagenesis, Significance,Causes-a review(C) // Einsele G, Seilacher A(Eds). Cyclic and event stratification, Springe(rBerlin),1982: 8-35.
    [15] Feng ZQ, Jia CZ, Xie XN, et al. Tectonostratigraphic units and stratigraphic sequences of thenonmarine Songliao basin, northeast China[J]. Basin Research, 2010, 22, 79-95
    [16] Fischer AG. The Lofter Cyclothems of the alpine Triassic[J]. Kansas Geological Survey Bulletin, 1964, 169(1): 107-149.
    [17] Galloway WE. Genetic stratigraphic sequence in basin analysis. I. Architecture and genesis of flooding-surface bounded depositional units [J]. AAPG Bulletin, 1989, 73: 125-142.
    [18] Gradstein FM, Ogg JG, Smith AG, Agterberg FP, et al. A Geologic Time Scale 2004[M]. Cambridge University Press, 2004, 500
    [19] Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG and Smith DG. A Geologic Time Scale 1989. Cambridge: Cambridge University Press, 1990, 1-263
    [20] Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG and Walters R. A Geologic Time Scale 1982. Cambridge: Cambridge University Press, 1982, 1-131
    [21] Harms JC. Stratification and sequence in prograding shoreline deposits. Soc. Econ. Paleontologists Mineralogists Short Course. 1975, 2: 81-102
    [22] Kauffman EG, Elder WP and Sageman BB. High-resolution correlation: a new tool in chronostratigraphy. In: Einsele et al. (Editor), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin, Heidelberg, 1991, 798-819
    [23] Leach DL, Plumlee GS, Hofstra AH , et al. Origin of Late Dolomite Cement by CO2–Saturated Deep Basin Brines: Evidence from the Ozark Region, Central United States.Geology, 1991, 19: 348-351.
    [24] Li G, Batten DJ. Revision of the conchostracan genera Cratostracus and Porostracus from Cretaceous deposits in north-east China[J]. Cretaceous Research, 2004, 25: 919-926
    [25] Li G, Wan XQ, David JB, Batten DJ, Bengtson P, Xi DP and Wang PJ. Spinicaudatans from the upper Cretaceous Nenjiang Formation of the Songliao Basin, Northeast China: taxonomy and biostratigraphy. Cretaceous Research, 2009, 30: 687-698
    [26] Maruyama S and Seno T. Orogeny and relative plate motions: example of the Japanese islands, Tectonophysics, 1986, 127: 305-39
    [27] Middleburg JJ, de Lange GJ, Kreulen R. Dolomite Formation in Anoxic Sediments of Kau Bay.Indonesia Gology , 1990, 18:399-402.
    [28] Oertal G, Curtis CD. Clay-ironstone concretion preserving fabrics due to progressive compaction.Bull. Geol. Soc. Amer., 1972, 83:2597-2606.
    [29] Raiswell R. The growth of Cambrian and Liassic concretions.Sedimentology, 1971, 17: 147-171.
    [30] Sarg JF and Vail PR. Carbonate sequence stratigraphy. In: Wilgus C K, et al. (eds), Sea-level changes: an integrated approach. SEPM Special Publication, 1988, 42: 155-181.
    [31] Sha JG. Cretaceous stratigraphy of mortheast China: non-marine and marine correlation[J]. Cretaceous Research, 2007, 28: 146-170
    [32] Sun SQ. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. Am. Assoc. Petrol. Geol. Bull., 1995, 79 (2): 186-204.
    [33] Swennen R, Vandeginste V, Ellam R. Genesis of Zebra Dolomites (Cathedral Formation: Canadian Cordillera Fold and Thrust Belt, British Columbia ). Journal of Geochemical Exploration, 2003, 78-79, 571-577.
    [34] Vail PR, Audemard F, Bowman S A, et al. The stratigraphic signature of tectonics, eustasy and dedimentology-an overview. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and events in stratigraphy. Berlin Heidelberg New York Springer-Verlag, 1991, 617-659.
    [35] Vail PR, Mitchum RM, Thompson S. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap [C]//Payton C W, Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 1977, 26: 83-97.
    [36] Vail PR. Seismic stratigraphy interpretation using sequence stratigraphy, part 1: seismic stratigraphy interpretation procedure. In A. W. Bally, ed., Atlas of Seismic Stratigraphy, AAPG Studies in Geology 27, 1987, 1: 1-10.
    [37] Van wagoner JC and Posamentier HW. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus C K, et al(.eds),Sea-level changes:an integrated approach. SEPM Special Publication,1988,42:39-45.
    [38] Van Wagoner JC et al. Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrops: Concepts for High-Resolution correlation of Time and Facies (AAPG Methods in Exploration Series) [M]. American Association of Petroleum Geologists, 1990
    [39] Vasconcelos C , Mackenzie JA , Bernasconi S , et al.. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 1995, 377: 220-222.
    [40] Wang PJ, Chen FK, Chen SM, Siebel W and Muharrem S. Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China. Geochem[J], 2006, 40: 149-159.
    [41] Wang PJ, Liu WZ and Wang SX. 40Ar/ 39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91: 331-340
    [42] Wheeler HE. Baselevel, lithosphere surface and time-stratigraphy. Bull. Geol. Soc. America, 1964, 75: 599-610.
    [43] Zorin YA. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia, Tectonophysics, 1999, 306: 33-56
    [44]毕义泉,田海芹,赵勇生,等.论泥晶套与次生白云岩原岩结构特征的恢复及意义[J].沉积学报,2001,17(3):491-500.
    [45]蔡希源,李思田.陆相盆地高精度层序地层学-隐蔽油气藏勘探基础、方法与实践[M].北京:地质出版社,2004
    [46]陈建华,田景春.层序地层学的产生、现状与展望[J].复式油气田,2000,(2):9-12.
    [47]陈丕基,施泽龙,叶宁,等.松花江生物群与东北白垩系地层序列[J].古生物学报,1998,37(3):380-385
    [48]程日辉,王国栋,王璞珺,等.松科1井南孔白垩系姚家组沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,2009,16(2):272-287
    [49]程日辉,王国栋,王璞珺.松辽盆地白垩系泉三段-嫩江组沉积旋回与米兰科维奇周期[J].地质学报,2008,82(1):55-64.
    [50]池秋鄂.层序地层学成就与面临的挑战[J].世界石油工业,1996,3(4):5-6.
    [51]迟元林,王璞珺,单玄龙,等.中国陆相含油气盆地深层地层研究-以松辽盆地为例[M].长春:吉林科学技术出版社,2000
    [52]邓宏文,王红亮,祝永军,等.高分辨率层序地层学-原理及应用[M].北京:地质出版社,2002
    [53]邓宏文,王洪亮,李熙喆.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-183
    [54]邓宏文,王洪亮,宁宁.沉积物体积分配原理——高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305-313
    [55]邓宏文.美国层序地层研究中得新学派-高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [56]丁日新,舒萍,纪学雁,等.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版),2007,37(3):525-530
    [57]樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例[J].石油学报,1999,20(2):12~17
    [58]范铭涛,杨麟科,方国玉,等.青西凹陷下白垩统湖相喷流岩成因探讨及其意义[J].沉积学报,2003,21(4):560~564.
    [59]方大钧,王兆樑,金国??中国松辽盆地白垩系磁性地层[J].中国科学(B辑),1989,10:1084-1091
    [60]冯志强,张顺,解习农,等.松辽盆地嫩江组大型陆相坳陷湖盆湖底水道的发现及其石油地质意义[J].地质学报,2006,80(8):1226-1232
    [61]高瑞祺,何承金,乔秀云.松辽盆地白垩纪两次海侵的沟鞭藻类新属种[J].古生物学报,1992,31(1):17-29
    [62]高瑞祺,赵传本,乔秀云,等.松辽盆地白垩纪石油地层孢粉学[M].北京:地质出版社,1999
    [63]高有峰,王璞珺,程日辉,等.松科1井白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,2009,16(2):314-323
    [64]高有峰,王璞珺,王成善,等.松科1井南孔选址、岩心剖面特征与特殊岩性层的分布[J].地质学报,2008,82(5):669-676
    [65]郭建华,宫少波,吴东胜.陆相断陷湖盆T-R旋回沉积层序与研究实例[J].沉积学报,1999,16(1):8-14
    [66]韩广玲,赵洪涛,边吉.松辽盆地中央坳陷带青山口组玄武岩与油气分布的关系[J].石油实验地质,1988,10(3):248-255.
    [67]郝诒纯,苏德英,余静贤,等.中国的白垩系[M].北京:地质出版社,1986,1-301
    [68]黑龙江省区域地层表编写组.东北地区区域地层表黑龙江省分册[M].北京:地质出版社,1979:103-148.
    [69]侯读杰,冯子辉,黄清华.松辽盆地白垩纪缺氧地质事件的地质地球化学特征[J].现代地质,2003,17(3):311-317
    [70]侯明才,陈洪德,田景春.层序地层学的研究进展[J].矿物岩石,2001,21(3):128-134
    [71]侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:11-20,73-74,77.
    [72]黄福堂,黄清华等.松辽盆地中生代地质事件节律及圈层耦合[J].石油勘探与开发,1998, 25(5):86-89
    [73]黄清华,陈春瑞,王平在,等.松辽盆地晚白垩世生物演化与古湖泊缺氧事件[J].微体古生物学报,1998,15(4):417-425
    [74]黄清华,张文婧,贾琼,等.松辽盆地上、下白垩统界线划分[J].地学前缘,2009,16(6):77-84.
    [75]贾军涛,王璞珺,万晓樵.松辽盆地断陷期白垩纪营城组的时代归属[J].地质论评,2008,54(4):439-448
    [76]黎文本,李建国.吉林榆树榆-302孔阿尔布期孢粉组合-兼论松辽盆地登娄库组的地质时代[J].古生物学报,2005,44(2):209-228
    [77]黎文本.从孢粉组合论证松辽盆地泉头组的地质时代及上、下白垩统界线[J].古生物学报,2001,40(2):153-176
    [78]李罡,陈丕基,万晓樵,等.嫩江阶底界层型剖面研究.地层学杂志,2004,28(4): 297-299
    [79]李国玉,吕鸣岗,等.中国含油气盆地图集[M].北京:石油工业出版社,2002,6
    [80]李红,柳益群,朱玉双.新疆三塘湖盆地二叠系湖相白云岩形成机理初探.沉积学报,2007,25(1):75-81.
    [81]刘宝珺,曾允孚.岩相古地理基础和工作方法.北京:地质出版社,1985,85-96
    [82]刘平略,周厚清,康桂云.松辽盆地元素分布及其与沉积环境的关系[J].大庆石油地质与开发,1986,5(2):11-18
    [83]刘平略,周厚清.松辽盆地白垩系元素分布特征与古环境古盐度的关系[G]//杨万里主编,松辽陆相盆地石油地质.北京:石油工业出版社,1985:168-177
    [84]刘万洙,王璞珺,高有峰,等.松辽盆地白垩系青山口组核形石的发现及其环境意义[J].地质学报,2008,82(5):594-600
    [85]刘万洙,王璞珺.松辽盆地嫩江组白云岩结核的成因及其环境意义[J].岩相古地理,1997,17(1):22-26
    [86]刘招君,王东坡,刘立,等.松辽盆地白垩纪沉积特征.地质学报,1992,66(4):327-338
    [87]孟祥化.沉积节律性及其动力学研究[J].地学前缘,1997,4(3-4):147-154
    [88]全国地层委员会.全国地层会议学术报告汇编[M].北京:科学出版社,1962a:52-59
    [89]全国地层委员会.全国地层会议学术报告汇编-松辽平原油田地层现场会议[M].北京:科学出版社,1962:2-9
    [90]邵龙义,何宏,彭苏萍,等.塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理.古地理学报,2002,4(2):19-30
    [91]舒萍,丁日新,纪学雁,等.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志,2007,26(3):239-245
    [92]孙健,董兆雄,郑琴.白云岩成因的研究现状及相关发展趋势.海相油气地质,2005,10(1):25-30.
    [93]孙珏,钟建华,姜在兴,等.松辽盆地南部青山口组湖相风暴沉积[J].煤田地质与勘探,2006,34(1):13-15
    [94]谭锡畴,王恒升.黑龙江省嫩江两岸之地质.前中央地质调查所地质汇报,1929,13:63-81
    [95]万晓樵,李罡,陈丕基,等.松辽盆地白垩纪青山口阶的同位素地层标志及其与海相Cenomanian阶的对比[J].地质学报,2005,79(2):150-156
    [96]汪品先,翦知湣,赵泉鸿,等.南海演变与季风历史的深海证据[J].科学通报,2003,48(21):2228-2239.
    [97]王成善,冯志强,吴河勇等.中国白垩纪大陆科学钻探工程:松科一井科学钻探工程的实施与初步进展[J].地质学报,2008,82(1):9-20.
    [98]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究—从重大地质事件探寻地球表层系统耦合[J].地球科学进展,2006,21(7):838-842
    [99]王东坡,刘招君,刘立,等.松辽盆地演化与海平面升降[M].北京:地质出版社,1994,1-60.
    [100]王国栋,程日辉,王璞珺,等.松辽盆地青山口组震积岩的特征、成因及其构造-火山事件[J].岩石学报,2010,26(1):121-129
    [101]王国栋,程日辉,王璞珺,等.松科1井白垩系泉头组沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,2009,16(2):324-338
    [102]王国栋,程日辉,王璞珺,等.松辽盆地嫩江组白云岩形成机制-以松科1井南孔为例[J].地质学报, 2008,82(1):48-54
    [103]王国栋,程日辉,于民凤,姜雪等.沉积物的矿物和地球化学特征与盆地构造、古气候背景[J].吉林大学学报(地球科学版),2006,36(2):202-206
    [104]王红亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997,18(2):96-102
    [105]王鸿祯,史晓颖.沉积层序及海平面旋回的分类级别-旋回周期的成因讨论[J].现代地质,1998,12(1):1-16
    [106]王建功,王天琦,梁苏娟,等.松辽盆地北部葡萄花油层事件沉积[J].石油学报,2005,26(6):20-24
    [107]王璞珺,杜小弟,王俊,等.松辽盆地白垩纪年代地层研究及地层时代划分[J].地质学报,1995,69(4):372-381
    [108]王璞珺,高有峰,程日辉,等.松科1井白垩系青山口组二、三段沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,2009,16(2):288-313
    [109]王璞珺,高有峰,任延广,等.松辽盆地青山口组橄榄粗安岩:40Ar/39Ar年龄、地球化学及其成盆、成烃和成藏意义[J].岩石学报,2009,25(5):1178-1190
    [110]王璞珺,刘万洙,单玄龙,等.事件沉积:导论·实例·应用[M].长春:吉林科技出版社,2001,182
    [111]王振,卢辉楠,赵传本.松辽盆地及其邻区白垩纪轮藻类[M].哈尔滨:黑龙江科学技术出版社,1985:9-10.
    [112]席党鹏,李罡,万晓樵,等.2009.松辽盆地东南区姚家组-嫩江组一段地层特征与湖泊演变.古生物学报, 48(3):259-271
    [113]辛仁臣,蔡希源.松辽盆地北部埋藏历史对大庆长垣油藏成藏的控制.地球科学,2004,29(4):457-460
    [114]辛仁臣,柳成志,雷顺.粗粒曲流河体系河道沉积的沉积构形分析-以籍家岭泉头组露头为例[J].大庆石油学院学报,1997,21(3):16-19
    [115]邢顺全,肖祝胜,张书贵.泰康湖湾海绿石矿物学特征及其形成条件的探讨[G]//杨万里主编,松辽陆相盆地石油地质.北京:石油工业出版社,1985:161-167
    [116]杨万里.松辽盆地油气分布基本规律及勘探远景预测[G]//杨万里主编,松辽陆相盆地石油地质.北京:石油工业出版社,1985:1-14
    [117]叶得泉,黄清华,张莹,等.松辽盆地白垩纪介形类生物地层学[M].北京:石油工业出版社,2002,97-102
    [118]叶得泉,钟筱春,唐文松,等.稳定同位素地层学和事件地层学在白垩系-第三系界线划分中的应用[J].微体古生物学报,1994,11(2):141-152
    [119]张弥曼,周家健,刘智成.东北白垩纪含鱼化石地层的时代和沉积环境[J].古脊椎动物与古人类,1977,3:194-197
    [120]张世奇,任延广.松辽盆地中生代沉积基准面变化研究.长安大学学报(地球科学版),2003,25(2):1-5
    [121]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面[M].北京:地震出版社,1998,1-20
    [122]章凤奇,陈汉林,董传万,等.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨[J].地层学杂志,2008,32(1):16-20
    [123]章凤奇,庞彦明,杨树锋,等.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义[J].地质学报,2007,81(9):1248-1258
    [124]郑荣才,彭军,彭光明,等.高分辨率层序分析在油藏开发工程中的应用[J].沉积学报,2003,21(4):654-662
    [125]郑荣才,彭军,吴朝容.陆相盆地基准面旋回级次划分和研究意义[J].沉积学报,2001,19(2):249-375
    [126]郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249-255
    [127]郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000,27(3):241-24
    [128]周振南.松辽盆地白垩系青山口组与泉头组不整合接触关系及其石油地质意义[J].石油实验地质, 1986,8(4):344-350
    [129]朱筱敏.21世纪层序地层学展望[J].世界石油工业,1999,9(l):16-19
    [130]王嗣敏,刘招君,董清水,等.陆相盆地层序地层形成机制-以松辽盆地为例[J].长春科技大学学报,2000,30(2):139-144
    [131]胡光明,纪友亮,陈世悦.滨北地区层序地层学研究及岩性圈闭预测[J].统计大学学报(自然科学版),2005,33(9):1224-1228
    [132]朱建伟,刘招君,董清水,等.松辽盆地层序地层格架及油气聚集规律[J].石油地球物理勘探,2001,36(3):339-344
    [133]郭少斌,孙少波.松辽盆地层序地层学研究新认识[J].岩相古地理,1998,18(1):54-60.
    [134]邹才能,薛叔浩,赵文智,等..松辽盆地南部白垩系泉头组-嫩江组沉积层序特征与地层-岩性油气藏形成条件[J].石油勘探与开发,2004,31(2):14-17
    [135]孙珏,钟建华,姜在兴,等.2006.松辽盆地南部坳陷层序地层研究[J].中国石油大学学报(自然科学版),2006,30(5):1-7
    [136]沈安江,王艳清,陆俊明,等.松辽盆地南部岩性油气藏勘探理论与实践[J].沉积储层,2004,5:40-44
    [137]王书宝,孙钰,钟建华,等.松辽盆地晚白垩世古气候变化对层序发育的影响[J].石油地质与工程,2008,22(4):29-32
    [138]关德师.松辽盆地下白垩统层序地层及沉积体系研究.博士论文,2005,15-48
    [139]辛仁臣,张雪辉,张翼,郭涛,张春卉.湖盆无暴露缓坡带层序界面特征及成因-以松辽盆地他拉哈地区上白垩统为例[J].沉积学报,2008,26(1):77-85
    [140]王树恒.松辽盆地北部西斜坡中部含油组合层序地层及沉积体系研究.博士论文:2006,5-19.
    [141]梁江平,辛仁臣,王树恒,等.松辽盆地中部含油组层序地层格架及介形类特征的响应[J].地层学杂志,2005,29(4):405-409
    [142]魏志平,唐振兴,江涛,等.长岭凹陷青山口组层序地层分析[J].石油与天然气地质,2002, 23(2):170-173
    [143]胡玉双,蒋波,年喜.松辽盆地北部泰康地区姚家组层序分析与沉积相特征[J].大庆石油学院学报. 2006,30(5):111-113.
    [144]祝彦贺,王英民,吕延防,等.松辽盆地北部西斜坡青山口组四级层序划分及变化特征分析[J].中国海上油气,2006,18(6):376-381
    [145]李树青,王英民,王岩,等.构造反转期层序划分和可容纳空间的变化机制-以松辽盆地北部晚白垩世构造反转期为例[J].地质科技情报,2007,26(3):1-6
    [146]叶德燎.松辽盆地东南隆起区下白垩统层序地层格架及油气成藏规律[J].地质科学,2005,40(2):227-236
    [147]蒙启安,王璞珺,杨宝俊,等.松辽盆地断陷期超层序界面的地质属性刻画及其油气地质意义[J],地质论评,2005,51(1):46-54
    [148]魏魁生,徐怀大,叶淑芬.松辽盆地白垩系高分辨率层序地层格架[J],石油与天然气地质,1997,18(1):7-14
    [149]林春明,冯志强,张顺,等.松辽盆地北部白垩纪超层序特征[J].古地理学报,2007,9(6):619-634
    [150]任延广,朱德丰,万传彪,等.松辽盆地北部深层地质特征与天然气勘探方向[J].石油地质,2004,4:12-22
    [151]刘鸿友,沈安江,王艳清,等.松辽盆地南部泉头组-嫩江组层序与油气藏成因成藏组合[J].吉林大学学报(地球科学版),2003,33(4):469-473
    [152]王始波,任延广,林铁锋,等.松辽盆地泉三、四段高分辨率层序地层格架[J].大庆石油地质与开发,2008,27(5):1-5