钛酸盐纳米管电化学发光传感器的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学发光(electrochemiluminescence, ECL),又称为电致化学发光,是指通过施加一定的电压进行电化学反应,在电极表面产生一些电生的物质,然后这些物质之间或电生物质与体系中的某些组分之间通过电子传递形成激发态,由激发态返回到基态而产生的一种发光现象。电化学发光物质三吡啶钌(Ru(bpy)32+)由于性能优越,如何将其有效的固定在电极表面是研究的一个热点。目前,基于Ru(bpy)32+的各种电化学发光传感器,主要集中在免疫分析、PCR分析、DNA单分子检测、药物分析等领域。钛酸盐纳米管作为载体的电化学传感器的研制还比较少,电化学发光传感器用于环境方面的应用研究还比较缺乏,因此加强这方面的工作十分必要。本论文结合近年来关于钛酸盐的研究成果,开展了钛酸盐纳米管及其Ru(bpy)32+复合材料的合成,利用合成的功能材料制备了电化学传感器,获得了一些创新性研究成果。
     本文采用水热法制备了二氧化钛纳米管(TNTs),其管径小、管壁薄、比表面积大、因此拥有很多优良的性能。在此基础上,我们进一步合成了Ru(bpy)32+-TNTs的纳米复合材料,并用透射电镜(TEM)、紫外可见光谱(UV-vis)、XPS等进行了表征。将合成的复合材料分散到Nafion溶液中,采用滴涂法修饰到电极上制备成电化学传感器,并对传感器的电化学性能运用循环伏安法进行了研究,同时利用电化学发光检测装置记录了光电信号。并与传统的层层自组装法制备的传感器进行了比较。结果表明分散在Nafion中的纳米复合体的滴涂法能更为有效的固定电化学发光物质Ru(bpy)32+,传感器对三丙胺(TPA)的检测结果也证明了该传感器的稳定性。最后,我们将该传感器用于环境分析领域,探讨了利用电化学发光法测定铅离子的原理与方法,为今后更为广泛的应用研究打下了基础。
Electrogenerated Chemiluminescence, is also called Electrochemiluminescence. It is a sort of electrochemical reactions which will product some electric materials on the surface of the electrode by supplying certain voltages. The generated electric materials turn to the state of excitation through the electron-transfer when it has reaction with the components of system. There will be a chemiluminescence phenomenon when the material returns to be the ground state from the excited state. In recent years, the immobilization of Ru(bpy)32+ has to be a hot research area due to its excellent performance in the electrochemiluminescence (ECL). At present, most of the ECL sensors mainly focus on the areas of the immunoassay, PCR analysis, single molecules detection of DNA, pharmaceutical analysis and so on. The studies of ECL sensor based on titanate nanotubes (TNTs) have rarely been reported especially in the application research of environmental field. In view of this situation, it is very necessary for us to work hard in this area. In this paper, We synthesized the nano composites of Ru(bpy)32+ based on TNTs combined with the method of high speed centrifugation. Based on the synthesized nano composites of Ru(bpy)32+/TNTs, a novel ECL sensor has been constructed through modification of nano composites on a GCE. In the following experiments, we have obtained some useful results by means of the new ECL sensor.
     In this paper, TNTs produced by alkali hydrothermal treatment, are one of the most promising materials in various fields for the unique combination of physico-chemical properties, such as large surface area, particular ion exchange, high sedimentation rate and tubular structure. We synthesized the Ru(bpy)32+/TNTs nanocomposites and got its characterizations by transmission electron microscopy (TEM), UV-vis absorbance spectra and XPS analysis. The Ru(bpy)32+/TNTs nanocomposites were sonicated in the solution of Nafion. Subsequently, the dispersion was dipped on the surface of the GCE to fabricate the ECL sensor. The performance of the ECL sensor was detected by tripropylamine (TPA) through the CV scan and ECL detection. The results show that the fabricated ECL sensor is very stable in this method. At last, we take this ECL sensor into the application of the area of environmental analysis. The ECL mechanism of Ru(bpy)32+ and EDTA was discussed and inhibiting effect of Pb(II) to this ECL system was investigated. Meanwhile the analytical method of Pb(II) by ECL was proposed and it laid a solid foundation for its further application.
引文
[1] Dufford R T, Nightingale D, Gaddum L W. Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena [J]. J.Am.Chem.Soc., 1927, 49(8):1858-1864.
    [2] Newton Harvey. Luminescence during electrolysis [J]. J.Phys.Chem., 1929, 33(10):1456-1459.
    [3] Kuwana T, Epstein B, Seo E T. Electrochemical generation of solution luminescence [J]. J.Phys.Chem., 1963, 67(10): 2243-2244.
    [4] Prevot A B, Bianco C, Brussino M C, etal. Photocatalytic degradation of acid blue 80 in aqueous solutions contaning TiO2 suspensions [J]. Environ. Sci. Technol. 2001, 35: 971-976.
    [5] Nagaveni K, Sivalingam G., Hegde M S, etal. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2 [J]. Environ. Sci. Technol. 2004, 38: 1600-1604.
    [6] Li X Z, Liu H, Cheng L F, etal. Photocatalytic oxidation using a new catalysts-TiO2 microspheres for water and wastewater treatment [J]. Environ. Sci. Technol. 2003, 37: 3989-3994.
    [7] Tsai C C, Teng H S. Structural Features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments [J]. Chem. Mater. 2006, 18: 367-373.
    [8] Yu J G., Yu H G., Cheng B. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method [J]. J. Photochem. Photobiol. A, 2006, 182: 121-127.
    [9] Song W, Wang Y X, Zhao B. Surface-enhanced Raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with Ag nanoparticles [J]. J. Phys. Chem. C, 2007, 111(34): 12786-12791.
    [10] Armstrong A R, Armstrong G., Canales J, etal. TiO2-B nanowires [J]. Angew. Chem. Int. Ed. 2004, 43: 2286-2288.
    [11] Lin Y. Photocatalytic activity of TiO2 nanowire arrays [J]. Mater. Lett. 2008, 62: 1246-1248.
    [12] Nian J N, Teng H S. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorodswith nanotubes as the precursor [J]. J. Phys. Chem. B. 2006, 110: 4193-4198
    [13] Ulman. Formation and Structure of Self-Assembled Monolayers [J].Chem.Rev., 1996, 96(4):1533-1554.
    [14] Chen Z F, Zu Y B. Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly Enhanced Activity [J]. Langmuir, 2007, 23:11387-11390.
    [15] Downey T M, Nieman T A. Chemiluminescence detection using regenerable tris(2,2’-bipyridyl)ruthenium(II) immobilized in Nafion [J]. Anal Chem.1992, 64(3):261-268.
    [16] Khramov A N, Collinson M M. Electrogenerated Chemiluminescence of tris(2,2’-bipyridyl)ruthenium(II) Ion-Exchanged in Nafion?Silica Composite Films [J]. Anal.Chem., 2000,72(13):2943-2948.
    [17] Choi H N, Cho S H, Lee W Y. Electrogenerated Chemiluminescence from Tris(2,2’-bipyridyl)ruthenium(II) immobilized in Titania-Perfluorosulfonated Ionomer Composite Films [J]. Anal.Chem., 2003, 75: 4250-4256.
    [18] Rubinstein I and Bard A J. Ploymer films on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached tris(2,2’-bipyridine)ruthenium(2+) [J]. J. Am. Chem. Soc., 1980,102: 6641-6642.
    [19] Wohlstadter J N, Wilbur J L, Sigal G B, etal. Carbon nanotube-based biosensor [J]. Adv. Mater., 2003, 15(14):1184-1187.
    [20] Guo Z H, Dong S J. Electrogenerated chemiluminescence from Ru(bpy) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films2+3[J]. Anal.Chem., 2004, 76(10):2683-2688.
    [21] Guo Z H, Dong S J. Electrogenerated chemiluminescence determination of dopamine and epinephrine in the presence of ascorbic acid at carbon nanotube/nafion-Ru(bpy)composite film modified glassy carbon electrode32+ [J]. Electroanalysis.2005, 17(7):607-612.
    [22] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence sensor using tris(2,2′-bipyri- dyl)ruthenium(II) immobilized in Eastman-AQ55D–silica composite thin-films [J]. Anal.Chim.Acta. 2003, 480(2):285-290.
    [23] Wang B Q, Li B, Wang Z X, etal. Sol?Gel Thin-Film Immobilized Soybean Peroxidase Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acid Medium[J].Anal.Chem., 1999, 71(10):1935-1939.
    [24] Goldring I P, Landau J V. Sol-gel transformations in chick spinal ganglia explanted in vitro [J]. Experimental Cell Research.1961, 23(2):410-411.
    [25] Dvorak O, Armond M K. Electrode modification by the sol-gel method [J]. J. Phys. Chem. 1993, 97 (11): 2646–2648.
    [26] Sun X P, Du Y, Dong S J, etal. Method for Effective Immobilization of Ru(bpy)32+ on an Electrode Surface for Solid-State Electrochemiluminescene Detection [J]. Anal.Chem., 2005, 77(24): 8166-8169.
    [27] Sun X P, Du Y, Zhang L, etal. Pt nanoparticles: Heat treatment-based preparation and Ru(bpy)32+-mediated formation of aggregates that can form stable films on bare solid electrode surfaces for solid-state electrochemiluminescence detection [J]. Anal Chem. 2006, 78(18): 6674-6677.
    [28] Hogan, C F, Forster R J. Mediated electron transfer for electroanalysis: transport and kinetics in tin films of [Ru(bpy) 2P VP1 0 ] (ClO4 )2 [J]. Anal. Chim. Acta., 1999, 396: 13-21.
    [29] Forster R J, Hogan C F. Electrochemiluminescent Metallopolymer Coatings: Combined Light and Current Detection in Flow Injection Analysis [J]. Anal.Chem., 2000, 72: 5576-5582.
    [30]孙波,漆红兰,凌晨等.联吡啶钌电化学发光传感器测定海洛因[J].分析化学,2009,11: 1601-1605.
    [31] Choi E J, Kang C H, Choi H N, etal. Electrogenerated Chemiluminescence Sensor Based on Tris(2,2'-bipyridyl) ruthenium(II) Immobilized in the Composite Film of Multi-walled Carbon Nanotube/Sol-gel Zinc oxide/Nafion [J]. B. Kor. Chem Soc, 2009, 30(10): 2387-2392.
    [32] Burstall F H. Optical activity dependent on co-ordinated bivalent ruthenium [J]. J. Chem. Soc., 1936, 173-175.
    [33] Hercules D M, Lytle F E. Chemiluminescence from Reduction Reactions [J]. J.Am.Chem.Soc., 1966, 88(20): 4745-4746.
    [34] Nonidez W K, Leyden D E. Effect of reducing agents of pharmacological importance on the chemiluminescence of tris-(2,2'-bipyridine)ruthenium(II) [J].Anal.Chim.Acta., 1978, 96(2):401-404.
    [35]徐松云.氨基酸异构体的电化学发光识别[D].大连:大连理工大学,2002.
    [36]黄琛,汤汉红,王敏民.蛋白质芯片技术与电化学发光技术检测多肿瘤标志物结果的评价[J].2008, 36(12) :942-943.
    [37]李利军,蓝苏梅,程昊等.多壁纳米管/二氧化硅复合膜中的联吡啶钌电化学发光法测定氧氟沙星的研究与应用[J].2009, 28(11): 1308-1313.
    [38]谭贵良,李向丽,江迎鸿等.毛细管电泳-电化学发光联用测定琥乙红霉素[J].中山大学学报,2009,48(5): 83-85.
    [39] Brune S N,Bobbitt D R. Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridyl)Ruthenium-(III) with amino acids [J]. Anal.Chem., 1992, 64(2):166-170.
    [40] Zhou L, Yang J, Estavillo C, etal. Toxicity Screening by Electrochemical Detection of DNA Damage by Metabolites Generated In Situ in UltrathinDNA-Enzyme Films [J]. J.Am.Chem.Soc., 2003, 125, 1431-1436.
    [41] Chen J H, Zhang J, Wang Kun, etal. Electrochemical biosensor based on hairpin DNA probe using 2-nitroacridone as electrochemical indicator for detection of DNA species related to Chronic Myelogenous Leukemia [J]. Electrochem.Commun., 2008, 10, 1448-1451.
    [42] Hejiza M S, Raoof J B, Ojani R, etal. Brilliant cresyl blue as electroactive indicator in electrochemical DNA oligonucleotide sensors [J]. Bioelectrochemistry, 2010, 78(2):141-146.
    [43] Li F, Feng Y, Dong P J, etal. Biosens. Bioelectron., 2010, 25(9): 2084-2088. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor [J].
    [44] Wang S J, Milam J, Ohlin A C, etal. [J]. Anal.Chem., 2009,81(10): 4068-4075. Electrochemical and Electrogenerated Chemiluminescent Studies of a Trinuclear Complex, [((phen)(2)Ru(dpp))(2)RhCl2](5+) and Its Interactions with Calf Thymus DNA
    [45] Du M, Yang T, Jiao K. [J]Rapid DNA electrochemical biosensing platform for label-free potentiometric detection of DNA hybridization .Talanta, 2010, 81(3):1022-1027.
    [46] Wang H Y, Xu G B, Dong S J, Electrochemiluminescence of tris(2,2’-bipyridine)-ruth- enium(II) immobilized in poly(p-styrenesulfonate)–silica–Triton X-100 composite thin-films [J]. Analyst, 2001, 126: 1095-1099.
    [47] Zhuang Y F, Zhang D M, Ju H X, Sensitive determination of heroin based on electrogenerated chemiluminescence of tris(2,2’-bipyridyl)ruthenium(II) immobilized inzeolite Y modified carbon paste electrode [J].Analyst, 2005, 130, 534-540.
    [48] Li J, Huang M H, Liu X Q, etal. Enhanced electrochemiluminescence sensor from tris(2,2’-bipyridyl)ruthenium(II) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode [J].Analyst, 2007, 132: 687-691.
    [49] Sun Y H, Zhang Z J, Xi Z J, etal. Determination of folic acid by high-performance liquid chromatography with direct electrogenerated chemiluminescence reaction [J]. Luminescence. 2010, 25(1): 61-65.
    [50] Choi H N, Cho S H, Park Y J, etal. Sol–gel-immobilized Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography [J].Anal. Chim. Acta., 2005, 541: 47-54.
    [51] Ding S N, Xu J J, Zhang W J, etal. Tris(2,2-bipyridyl)ruthenium(II)–Zirconia–Nafion composite modified electrode applied as solid-state electrochemiluminescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin [J].Talanta, 2006, 70: 572-577.
    [52] Ding S N, Xu J J, Chen H Y. Tris(2,2'-bipyridyl)ruthenium(II)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis [J].Electrophoresis, 2005, 26: 1737.
    [53] Du Y, Wei H, Kang J Z, etal. Microchip Capillary Electrophoresis with Solid-State Electrochemiluminescence Detector [J]. Anal. Chem. 2005, 77(24): 7993-7997.
    [54] Cao W D, Jia J B, Yang X R, etal. Capillary electrophoresis with solid-state electrochemiluminescence detector [J]. Electrophoresis, 2002, 23: 3692.
    [55] Wang Y, Herron N. Nanomet-sized semlconductor cluster: materials synthesis, quantum size effects and photophysical photophysical properties [J]. J. Phvs. Chem., 1991, 95: 525
    [56] Stewart D R, Sprinzak D, Marcus C M, Correlations between ground and excited state spectra of a quantum dot [J], Science, 1997, 278: 1784
    [57] Kouwenhoven L P, Osterkamp T H, Danoesastro M. W. S., et al, Excitation spectra of circular, few-electron quantum dots [J]. Science, 1997, 278: 1788
    [58] Schedelbeck G., Wegscheider W, Chler M, et al, Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules [J]. Science, 1997, 278: 1792.
    [59] Nidhi N, Ashutosh C. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface [J]. Anal. Chem., 2002, 74: 504-509.
    [60] Elghanian R, Storhoff J J, Mucic R C, etal. Selective colorimetric detection of polynu- cleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 227(22):1078-1081.
    [61] Sheng O, Chih M, Wang C. Electrochemical characterization of the clay-enhanced luminolecl reaction [J]. J.Electroanal.Chem., 1999,474: 82-88.
    [62] Cheng S F, Lai K C. Colloidal gold-modified optical fiber for chemical and biochemical sensing [J]. Anal.Chem., 2003,75:16-21.
    [63] Grabar K C, Freeman R G, Hommer B, etal. Preparation and characterization of Au colloid monolayers [J]. Anal.Chem., 1995,67: 735-739.
    [64] Zhu T, Zhang X, Wang J, etal.Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers Thin [J]. Solid Film, 1998, 595: 327-329.
    [65]李云辉,王春燕等.电化学发光[M].北京:化学工业出版社,2008.
    [66]杨夕强,赵文辉,夏万东.一种新型高效电化学发光免疫检测标记物三联吡啶钌衍生物的合成[J].化学试剂, 2009, 31 (8): 603-604.
    [67]Yang X Q, Guo L H. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tinoxide nanoparticle-based electrode [J]. Anal. Chim. Acta ,2009 ,632(1) :15-20.
    [68] Guo L H, Yang X Q. A new chemically amplified electrochemical system for the detection of biological affinity reactions :direct and competitive biotin assay[J] . Analyst, 2005 ,130 (7) :1027-1031.
    [69] Dong D ,Zheng D,Wang F Q ,etal.Quantitative photoelectrochemical detection of biological affinity reaction: biotin-AavidinInteraction [J] . Anal.Chem., 2004 , 76 (2):499-501.
    [70] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 534 (6348): 56-58.
    [71] Iijima S. Growth of carbon nanotubes [J]. Mater. Sci. Eng. B, 1993, 19: 172-180.
    [72] Tsang S C, Harris P J, Green M L. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide [J].Nature, 1993, 362: 520-522.
    [73] Hoyer P. Formation of a titanium dioxide nanotubes array [J]. Langmuir, 1996, 12: 1411-1413.
    [74] Kasuga T, Hiramatsu M, Hoson A, etal. Formation of titanium oxide nanotubes [J].Lngmuir, 998, 14: 3160-3163.
    [75]李云飞,韦志仁,罗小平等.钛酸盐纳米管的研究及应用进展[J].材料导报,2008, 22(4): 50-52.
    [76] Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nano-structured materials: synthesis, properties, and applications [J]. Adv. Mater., 2006, 18: 2807-2824.
    [77] Lin Z Y, Liu Y, Chen G N. TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen [J]. Electrochem. Commun., 2008, 10:1629-1632.
    [78] Sun Y P, Du Y, Dong S J, etal. Method for Effective Immobilization of Ru(bpy)3 2+ on an Electrode Surface for Solid-State Electrochemiluminescene Detection [J]. Anal. Chem., 2005, 77(24): 8166-8169.
    [79] Sun X P, Du Y, Zhang L X, etal. Luminescent Supramolecular Microstructures Containing Ru(bpy)32+: Solution-Based Self-Assembly Preparation and Solid-State Electrochemiluminescence Detection Application [J]. Anal. Chem., 2007, 79(6): 2588–2592.
    [80] Yu J B, Zhou M H. Effects of calcination temperature on microstructures and photocatalytic activity of titanate nanotube films prepared by an EPD method [J]. Nanotechnology, 2008, 19: 045606.
    [81] Miao W J, Bard A J. Electrogenerated Chemiluminescence.72. Determination of Immobilized DNA and C-Reactive Protein on Au(111) Electrodes Using Tris(2,2’-bipyridyl)ruthenium(II) Labels [J]. Anal Chem, 2003, 75(21): 5825–5834.
    [82] Xiao M W, Wang L S, Wu Y D, etal. Preparation and characterization of CdS nanoparticles decorated into titanatenanotubes and their photocatalytic properties [J].Nanotechnology, 2008, 19:015706
    [83] Catterall R W. Chemical sensors [N]. Oxford UniversityPress, Oxford, UK, 1997: 4-30.
    [84]王兢,李盛彪,苏津津等.化学传感器的研究进展[J].华中师范大学研究生学报,2008,15(4): 109-112.
    [85]江月松,阎平,刘振玉.光电技术与实验[M].北京:北京理工大学出版社, 2000,70-88.
    [86]唐耀华,刘玉林,崔光照.光电倍增管在生物荧光检测中的应用[J].郑州轻工业学院学报(自然科学版),2002(17): 4
    [87]武兴建,吴金宏.光电倍增管原理、特性与应用[J].国外电子元器件,2001(8): 14.
    [88]王海科,吕云鹏.光电倍增管特性及应用[J].仪器仪表与分析监测,2005(1): 3
    [89]瞿万云,张升辉,杨春海.多壁碳纳米管修饰玻碳电极测定多巴酚丁胺的研究[J].分析科学学报, 2003, 19 (4): 343
    [90]闫兴凤,李高平,王建党等.土壤重金属污染及其治理技术[J].微量元素与健康研究, 2007, 24(1): 52-54.
    [91]周以力,吴建一等.壳聚糖对铅离子的吸附研究[J].嘉兴学院学报,2003,15(6): 20-21.
    [92]戢太云,徐鲁荣,周培.核酸荧光探针检测铅离子的研究[J].分析测试学报,2010,29(1):51-54.
    [93] Richter M M. Electrochemiluminescence (ECL) [J]. Chem.Rev., 2004, 104(6): 3003–3036.
    [94]漆红兰,张成孝.电化学发光法测定盐酸普鲁卡因[J].分析实验室, 2004, 23(1): 20–22.
    [95] Bard A J. Electrogenerated Chemiluminescence[M]. New York: Marcel Dekker, Inc, 2004.3–10
    [96] Fujishima A, Honda K. Electrochemical photolusis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37–39.
    [97] Prevot A B, Bianco, Brussiono M C, etal. Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions [J]. Environ Sci Technol, 2001, 35(5): 971–976.
    [98] Nagaveni K, Sivalingam G, Hegde M S, etal. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2 [J]. Environ Sci Technol, 2004, 38(5): 1600–1604.
    [99] Kasuga T, Hitamatsu M, Hoson A, etal. Formation of titanium oxide nanotubes [J]. Langmuir, 1998, 14(12): 3160–3163.
    [100]李立军,蓝苏梅,程昊,等. L-半胱氨酸修饰金电极电化学发光法测定罗红霉素[J].分析化学, 2009, 37(9): 1367–1370.
    [101] Song H J, Zhang Z J, Wang F. Electrochemiluminescent Determination of Chlorphenamine Maleate Based on Immobilized in a Nano-Titania/Nafion Membrane[J]. Electroanalysis, 2006, 18(18): 1838–1841.
    [102] Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of 70electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams [J]. Anal Chem., 1996, 68(2): 349–354.
    [103] Xu G B, Dong S J. Effect of metal ions on Ru(bpy)3 2+ electrochemiluminescence [J]. Analyst, 1999, 124(7): 1085–1087.