甲烷氧化混合菌群的富集培养及其治理瓦斯工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷氧化菌能在温和条件下特异的利用甲烷,具有应用于甲烷减排和煤矿瓦斯治理的潜力。本论文在对我国典型煤矿土壤的甲烷氧化菌进行分子生态学分析的基础上,确定甲烷氧化混合菌的富集培养策略,获得高效利用甲烷的稳定混合菌群,对其特性和功能进行研究,实现大规模发酵培养,并在实验室和煤矿现场进行了瓦斯治理实验。
     用多种分子生态学方法解析了瓦斯煤矿土壤中的甲烷氧化菌及相关微生物的组成信息。该样品含有大量的甲烷氧化菌及甲基氧化菌,其中甲烷氧化菌以Ⅰ型为主,Ⅰ型、Ⅱ型和Ⅹ型甲烷氧化菌的含量分别为78.6%、7.1%和14.3%。
     分别以甲烷气和人工瓦斯气作为唯一碳源对土壤样品进行好氧选择性传代培养。富集过程中甲烷和乙烷的消耗能力得到显著强化,总细菌的多样性逐渐减少,Ⅰ型甲烷氧化菌则得到富集,20代以后菌群结构和甲烷去除能力趋于稳定。
     研究了两种气体条件富集的混合菌群的特性,包括菌体形态、生长特性、代谢特性和微生物群落结构。驯化后Ⅱ型甲烷氧化菌数量增加,人工瓦斯气富集的混合菌菌群更丰富。混合菌比纯菌的甲烷消耗能力更强,且无代谢产物积累。菌群间的协同作用能有效避免产物抑制,有利于菌群结构和功能的稳定。
     对两种条件得到的混合菌的功能进行了系统分析。其在甲烷浓度为3~50%时都有较好的去除效果,最高可达241 ml CH4 h~(-1) OD660~(-1) (L culture)~(-1)。在20~42oC都能有效的去除甲烷。对H_2S、CO和SO_2等毒性气体有很强的耐受性。混合菌保藏可用4oC充甲烷密封保存法、-80oC冻存菌体法和-80oC添加石蜡油冻存法。
     以甲烷气富集的混合菌为对象,研究了甲烷氧化混合菌的大规模发酵培养。成功开展了5L-300L和5L-600L的放大发酵实验。混合菌在放大培养时,生长速度稳定,且随着发酵逐级放大,消耗甲烷能力以及菌群结构都能够保持稳定。
     在实验室模拟煤层、生物过滤实验中研究混合菌去除甲烷的能力,并在河南三个矿井进行现场中试,将制备的菌液注入煤层并达饱和,甲烷去除效果显著,说明富集的甲烷氧化混合菌有在煤矿中治理瓦斯的应用潜力。
Methanotrophs have great potential for applications in CH_4 removal and gas control of coal mines. But the methanotrophs that can be used in complex environment are limited due to low growth rate and unstable MMO activity. Also, there is no substantial applied research on gas control by methantophs.
     In this study, the methanotroph community of the soil from a typical coal mine in China was analyzed by multiple molecular ecology techniques to estabilish the strategies of methanotrophic enrichment cultures. Two mixed methanotrophic communities were enriched by different domesticating conditions. The characteristics and capabilities of the two methanotrophic communities were evaluated, and large-scale fementation was studied. Lab and field pilot experiments were designed to explore the feasibility of using the mixed methanotrophic community for CH_4 removal and gas control.
     Several complementary molecular ecology techniques were used to elucidate the methanotrophic community from a coal mine. There were lots of methanotrophs and methylotrophs found in the coal mine soils, in which typeⅠwas the main part. The ratios of the typeⅠ, typeⅡand typeⅩmethanotrophs were 78.6%, 7.1% and 14.3%.
     CH_4 and artificial mash gas were used to domesticate mixed methanotrophic cultures capable of stably and effectively abating CH_4, respectively. The capability of CH_4 and C_2H_6 removal was enhanced apparently during the enrichment. The diversity of the total bacteria community decreased, and the amount of the typeⅠmethanotrophs increased obviously. After 20 generations, the microbial community and CH_4 removal ability became stable.
     The characteristics of the two mixed methanotrophic communities enriched above, including morphology, growth, metabolism and microbial community structure, were then studied. The amount of the typeⅡmethanotrophs increased in both cultures, and there were more kinds of bacteria in the community enriched with the artificial mash gas. The CH_4 removal abilities of the two mixed methanotrophic communities were stronger than the pure methanotroph. There were no metabolites accumulated during the cultivation. The synergistic effects of the different microorganisms were beneficial for maintaining the stability of the microbial community and the capability of avoiding product inhibition.
     The mixed methanotrophic communities showed good CH_4 removal performance under different CH_4 concentrations (3~50%) and different temperatures (20~42oC). And they were tolerant to the toxic gases consisting of H_2S, CO and SO_2 which always exist in the coal mine gas. The mixed methanotrophic communities were well preserved by three methods: 4oC sealing with CH_4, -80oC freezing collected cells, and -80oC freezing with paraffin.
     The scale-up fermentation for a mixed methanotrophic community was realized from 5L to 300L and from 5L to 600L systems, respectively. The mixed methanotrophic culture grew quickly in large-scale fermentation. The CH_4 removal ability and microbial community were kept stable during the different scale fermentation.
     In the lab-scale experiments of simulate coal bed and biofitration, the performance of CH_4 removal by the mixed methnaotrophic community was investigated. And then, pilot-scale study for gas control in coal beds was carried out in three coal mines in Henan. The prepared culture of the mixed methanotrophic community was injected into the coal bed, and the CH_4 was removed effectively.
引文
[1] IPCC. Fourth assessment report: climate change 2007. http://www.ipcc.ch.
    [2] J Lelieveld, PJ Crutzen, FJ Dentener. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 1998, 50B: 128-150.
    [3] M Rigby, RG Prinn, PJ Fraser, et al. Renewed growth of atmospheric methane. Geophys. Res. Lett., 2008, 35: L22805.
    [4] IPCC. Emissions Scenarios, Cambridge UK: Cambridge University Press, 2000.
    [5] BP. Statistical review of world energy. www.bp.com, 2009.
    [6] O Breas, C Guillou, F Reniero, et al. The global methane cycle: isotopes and mixing ratios, sources and sinks. Isotopes Environ. Health Stud., 2001, 37 (4): 257-379.
    [7] http://www.chinasafety.gov.cn.
    [8]宋元明,王涛.中国煤矿瓦斯治理现状与对策.中国煤层气, 2005, 2 (4): 3-6.
    [9] RS Hanson, TE Hanson. Methanotrophic bacteria. Microbiol. Rev., 1996, 60 (2): 439-471.
    [10] JP Bowman, SA McCammon, JH Skerratt. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology, 1997, 143: 1451-1459.
    [11] L Bodrossy, KL Kovacs, IR McDonald, et al. A novel thermophilic methane-oxidizingγ-Proteobacterium. FEMS Microbiol. Ecol., 1999, 170: 335-341.
    [12] NL Sohngen. Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gerbrauchen (On bacteria which use methane as a carbon and energy source). Z. Bakteriol. Parazitenk. (Infektionster) 1906, 15: 513-517.
    [13] R Whittenbury, KC Phillips, JF Wilkinson. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol., 1970, 61 (2): 205-218.
    [14] YA Trotsenko, JC Murrell. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol., 2008, 63: 183-229.
    [15] H Kaserer. Uber die oxidation des wasserstoffes und des methan durch mikroorganismen. (The oxidation of hydrogen and methane by microorganisms). Z. landw. Versuchsw. in Osterreich, 1905, 8: 789-792.
    [16] H Kaserer. Uber die oxidation des wasserstoffes und des methane durch mikroorganismes. (The oxidation of hydrogen and methane by microorganisms). Zbl. Bakt. Parasitenk., 1906, 15: 573-576.
    [17] NL Sohngen. Sur de role du methane dans la vie organique (The role of methane in organic life). Rec. trav. Chim., 1910, 29: 238-374.
    [18] M Dworkin, JW Foster. Studies on Pseudomonas methanica (Sohngen) nov. comb. J. Bacteriol., 1956, 72: 646-659.
    [19] JW Foster, RH Davis. A methane-dependent coccus, with notes on classification and nomenclature of obligate methane-utilizing bacteria. J. Bacteriol., 1966, 91: 1924-1931.
    [20] LR Brown, RJ Strawinski, CS McCleskey. The isolation and characterization of Methanomonas methanooxidans Brown and Strawinski. Can. J. Microbiol., 1964, 10: 791-799.
    [21] JP Bowman, LI Sly, PD Nichols, et al. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Evol. Microbiol., 1993, 43 (4): 735-753.
    [22] JP Bowman, LI Sly, E Stackebrandt. The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol., 1995, 45 (1): 182-185.
    [23] YR Malashenko, Isolation and characterization of new species (thermophilic and thermotolerant ones) of methane-utilizers, in: H. G. Schlegel, G. Gottschalk, N. Pfenning (Eds.), Microbial Production and Utilisation of Gases, Gottingen, 1976, pp. 293-300.
    [24] YA Trotsenko, Isolation and characterization of obligate methanotrophic bacteria, in: H. G. Schlegel, G. Gottschalk, N. Pfenning (Eds.), Microbial Production and Utilisation of Gases, Gottingen, 1976, pp. 329-336.
    [25] R Whittenbury. Microbial utilization of methane. Proc. Biochem, 1969, 1: 51-56.
    [26] L Bodrossy, JC Murrell, H Dalton, et al. Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl. Environ. Microbiol., 1995, 61 (10): 3549-3555.
    [27] L Bodrossy, EM Holmes, AJ Holmes, et al. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol., 1997, 168 (6): 493-503.
    [28] J Tsubota, B Eshinimaev, VN Khmelenina, et al. Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int. J. Syst. Evol. Microbiol., 2005, 55 (Pt 5): 1877-1884.
    [29] MV Omelchenko, LV Vasilieva, GA Zavarzin. Psychrophilic methanotroph from tundra soil. Curr. Microbiol., 1993, 27: 255-259.
    [30] MB Omelchenko, LV Vasilieva, GA Zavarzin, et al. A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya, 1996, 65: 339-343.
    [31] J Heyer, U Berger, M Hardt, et al. Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int. J. Syst. Evol. Microbiol., 2005, 55 (Pt 5): 1817-1826.
    [32] VN Khmelenina, MG Kalyuzhnaya, NG Starostina, et al. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr. Microbiol., 1997, 35: 257-261.
    [33] ME Lidstrom. Isolation and characterization of marine methanotrophs. Antonie Leeuwenhoek, 1988, 54 (3): 189-199.
    [34] DY Sorokin, BE Jones, JG Kuenen. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles, 2000, 4 (3): 145-155.
    [35] SN Dedysh, W Liesack, VN Khmelenina, et al. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. Microbiol., 2000, 50: 955-969.
    [36] SN Dedysh, VN Khmelenina, NE Suzina, et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J. Syst. Evol. Microbiol., 2002, 52 (Pt 1): 251-261.
    [37] SN Dedysh, C Knief, PF Dunfield. Methylocella species are facultatively methanotrophic. J. Bacteriol., 2005, 187 (13): 4665-4670.
    [38] PF Dunfield, A Yuryev, P Senin, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 2007, 450 (7171): 879-882.
    [39] T Islam, S Jensen, LJ Reigstad, et al. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. U. S. A., 2008, 105 (1): 300-304.
    [40] A Pol, K Heijmans, HR Harhangi, et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 2007, 450 (7171): 874-878.
    [41] IJ Higgins, JR Quayle. Oxygenation of methane by methane-grown Pseudomonas methanica and Methanomonas methanooxidans. Biochem. J., 1970, 118 (2): 201-208.
    [42] J Colby, D Stirling, H Dalton. The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers, and acyclic, aromatic and heterocyclic compounds. Biochem. J., 1977, 165: 395-402.
    [43] GM Tonge, DE Harrison, IJ Higgins. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem. J., 1977, 161 (2): 333-344.
    [44] P Basu, B Katterle, KK Andersson, et al. The membrane-associated form of methane monooxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem. J., 2003, 369 (Pt 2): 417-427.
    [45] RL Lieberman, DB Shrestha, PE Doan, et al. Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc. Natl. Acad. Sci. U. S. A., 2003, 100 (7): 3820-3825.
    [46] HHT Nguyen, SJ Elliott, JHK Yip, et al. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J. Biol. Chem., 1998, 273 (14): 7957-7966.
    [47] H Dalton. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2005, 360 (1458): 1207-1222.
    [48] JC Murrell, IR McDonald, B Gilbert. Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol., 2000, 8 (5): 221-225.
    [49] JC Murrell, B Gilbert, IR McDonald. Molecular biology and regulation of methane monooxygenase. Arch. Microbiol., 2000, 173 (5-6): 325-332.
    [50] AK Nielsen, K Gerdes, H Degn, et al. Regulation of bacterial methane oxidation: transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology, 1996, 142 (5): 1289-1296.
    [51] AC Stainthorpe, JC Murrell, GP Salmond, et al. Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch. Microbiol., 1989, 152 (2): 154-159.
    [52] AC Stainthorpe, V Lees, GP Salmond, et al. The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene, 1990, 91 (1): 27-34.
    [53] IR McDonald, EM Kenna, JC Murrell. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol., 1995, 61 (1): 116-121.
    [54] JA Vorholt, L Chistoserdova, SM Stolyar, et al. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol., 1999, 181 (18): 5750-5755.
    [55] JR Quayle. Microbial growth on C1 compounds. Proc. Biochem., 1969, 2: 25-29.
    [56] JR Quayle. The metabolism of the one-carbon compounds by microorganisms. Adv. Microb. Physiol., 1972, 7: 119-203.
    [57] JR Quayle. Microbial assimilation of C1 compounds. Biochem. Soc. Trans., 1980, 8 (1): 1-10.
    [58] SH Stanley, H Dalton. Role of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Methylococcus capsulatus (Bath). Microbiology, 1982, 128 (12): 2927-2935.
    [59] SC Taylor. Evidence for the presence of ribulose-1,5-bisphosphate carboxylase and phosphoribulokinase in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett., 1977, 2: 305-307.
    [60] SC Taylor, H Dalton, CS Dow. Ribulose-1, 5-bisphosphate carboxylase/oxygenase and carbon assimilation in Methylococcus capsulatus (Bath). Microbiology, 1981, 122 (1): 89-94.
    [61] NJ Baxter, RP Hirt, L Bodrossy, et al. The ribulose-1, 5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch. Microbiol., 2002, 177 (4): 279-289.
    [62] YA Trotsenko, VN Shishkina. Studies on phosphate metabolism in obligate methanotrophs. FEMS Microbiol. Lett, 1990, 87: 267-272.
    [63] YA Trotsenko, VN Khmelenina, AP Beschastny, The ribulose monophosphate (Quayle) cycle: News and views, in: M. E. Lidstrom, R. Tabita (Eds.), Microbial Growth on C1 Compounds, Kluwer Academic Publishers, Dordrecht, 1996.
    [64] JF Davey, R Whittenbury, JF Wilkinson. The distribution in the methylobacteria of some key enzymes concerned with intermediary metabolism. Arch. Microbiol., 1972, 87 (4): 359-366.
    [65] VN Shishkina, YA Trotsenko. Pathways of ammonia assimilation in obligate methane utilizers. FEMS Microbiol. Lett, 1979, 5: 187–191.
    [66] VN Shishkina, VV Iurchenko, VA Romanovskaia, et al. Alternativity of methane assimilation pathways in obligate methylotrophs. Mikrobiologiia, 1976, 45: 417-419.
    [67] JC Murrell, H Dalton. Nitrogen fixation in obligate methanotrophs. Microbiology, 1983, 129 (11): 3481-3486.
    [68] JC Murrell, H Dalton. Ammonia assimilation in Methylococcus capsulatus (Bath) and other obligate methanotrophs. Microbiology, 1983, 129 (4): 1197-1206.
    [69] JC Murrell, H Dalton. Purification and properties of glutamine synthetase from Methylococcus capsulatus (Bath). Microbiology, 1983, 129 (4): 1187-1196.
    [70] VN Shishkina, YA Trotsenko. Multiple enzymic lesions in obligate methanotrophic bacteria. FEMS Microbiol. Lett, 1982, 13 (2): 237–242.
    [71] YA Trotsenko. Metabolic features of methane-and methanol-utilizing bacteria. Acta Biotechnol., 1983, 3: 269-277.
    [72] PL Sharpe, M Koffas, J Wilczek, et al., Genomic and genetic analysis of central carbon metabolism in the obligate methanotroph Methylomonas sp. 16A, Molecular Genetics of Bacteria and Phages, Washington, DC, 2002, p. 116.
    [73] DP Kelly, C Anthony, JC Murrell. Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol., 2005, 13 (5): 195-198.
    [74] N Ward, O Larsen, J Sakwa, et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol., 2004, 2 (10): 1616-1628.
    [75] FS Berven, OA Karlsen, AH Straume, et al. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch. Microbiol., 2006, 184 (6): 362-377.
    [76] WC Kao, YR Chen, EC Yi, et al. Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J. Biol. Chem., 2004, 279 (49): 51554-51560.
    [77] CM Cavanaugh, PR Levering, JS Maki, et al. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, 1987, 325: 346-348.
    [78] JJ Childress, CR Fisher, JM Brooks, et al. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, 1986, 233 (4770): 1306-1308.
    [79] AA Raghoebarsing, AJP Smolders, MC Schmid, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 2005, 436 (7054): 1153-1156.
    [80] YA Trotsenko, EG Ivanova, NV Doronina. Aerobic methylotrophic bacteria as phytosymbionts. Microbiology, 2001, 70 (6): 623-632.
    [81] PJ Large, CW Bamforth. Methylotrophy and biotechnology: Halsted Press, 1988.
    [82] TJ Smith, H Dalton. Biocatalysis by methane monooxygenase and its implications for the petroleum industry. in: R. Vazquez-Duhalt, R Quintero-Ramirez (Eds.), Petroleum Biotechnology - Developments and Perspectives, vol. 151: Elsevier Science, 2004: pp. 177-192.
    [83] SS Yu, KH Chen, MY Tseng, et al. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol., 2003, 185 (20): 5915-5924.
    [84] YA Trotsenko, NV Doronina, VN Khmelenina. Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Appl. Biochem. Microbiol., 2005, 41: 433-441.
    [85] AR Theisen, MH Ali, S Radajewski, et al. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol. Microbiol., 2005, 58 (3): 682-692.
    [86] AR Theisen, JC Murrell. Facultative methanotrophs revisited. J. Bacteriol., 2005, 187 (13): 4303-4305.
    [87] K Stoecker, B Bendinger, B Schoning, et al. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. U. S. A., 2006, 103 (7): 2363-2367.
    [88] G Vigliotta, E Nutricati, E Carata, et al. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl. Environ. Microbiol., 2007, 73 (11): 3556-3565.
    [89] H Jiang, Y Chen, P Jiang, et al. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J., 2010, 49 (3): 277-288.
    [90] BT Eshinimaev, KA Medvedkova, VN Khmelenina, et al. New thermophilic methanotrophs of the genus. Methylocaldum, Mikrobiologiya, 2004, 73 (4): 530–539.
    [91] A Rosenzweig, C Frederick, S Lippard. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. 1993.
    [92] AC Rosenzweig, CA Frederick, SJ Lippard. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature, 1993, 366: 537-543.
    [93] DA Whittington, MH Sazinsky, SJ Lippard. X-ray crystal structure of alcohol products bound at the active site of soluble methane monooxygenase hydroxylase. J. Am. Chem. Soc., 2001, 123 (8): 1794-1795.
    [94] JC Murrell, B Gilbert, IR McDonald. Molecular biology and regulation of methane monooxygenase. Archives of Microbiology, 2000, 173 (5-6): 325-332.
    [95] AC Rosenzweig, CA Frederick, SJ Lippard, et al. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature, 1993, 366: 537-543.
    [96] RL Lieberman, AC Rosenzweig. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature, 2005, 434 (7030): 177-182.
    [97] A Kitmitto, N Myronova, P Basu, et al. Characterization and Structural Analysis of an Active Particulate Methane Monooxygenase Trimer from Methylococcus capsulatus (Bath). Biochemistry, 2005, 44 (33): 10954-10965.
    [98]韩冰,苏涛,李信, et al.甲烷氧化菌及甲烷单加氧酶的研究进展.生物工程学报, 2008, 24 (009): 1511-1519.
    [99] B Gilbert, IR McDonald, R Finch, et al. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol., 2000, 66 (3): 966-975.
    [100] GP Stafford, J Scanlan, IR McDonald, et al. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology, 2003, 149 (7): 1771-1784.
    [101] CW Knapp, DA Fowle, E Kulczycki, et al. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proceedings of the National Academy of Sciences, 2007, 104 (29): 12040-12045.
    [102] S Park, L Hanna, RT Taylor, et al. Batch cultivation of Methylosinus trichosporium OB3b. I: Production of soluble methane monooxygenase. Biotechnol. Bioeng., 1991, 38 (4): 423-433.
    [103] S Park, NN Shah, RT Taylor, et al. Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol. Bioeng., 1992, 40 (1): 151-157.
    [104] NN Shah, S Park, RT Taylor, et al. Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng., 1992, 40 (6): 705-712.
    [105] NN Shah, ML Hanna, KJ Jackson, et al. Batch cultivation of Methylosinus trichosporium OB3b: IV. Production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng., 1995, 45 (3): 229-238.
    [106] NN Shah, ML Hanna, RT Taylor. Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol. Bioeng., 1996, 49 (2): 161-171.
    [107] J Lee, BK Soni, RL Kelley. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures. Biotechnol. Lett., 1996, 18: 903-908.
    [108] M Takeguchi, I Okura. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jpn., 2000, 4: 51-63.
    [109] B Han, T Su, H Wu, et al. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol., 2009, 83 (4): 669-677.
    [110] A Cornish, KM Nicholls, D Scott, et al. In vivo 13C NMR investigations of methanol oxidation by the obligate methanotroph Methylosinus trichosporium OB3b. Microbiology, 1984, 130 (10): 2565-2575.
    [111] XH Xing, H Wu, MF Luo, et al. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem. Eng. J., 2006, 31: 113-117.
    [112] O Adegbola, High cell density methanol cultivation of Methylosinus trichosporium OB3b, Department of Chemical Engineering, vol. Master of Science, Queen’s University, Kingston, 2008.
    [113] MA Carver, KM Humphrey, RA Patchett, et al. The effect of EDTA and related chelating agents on the oxidation of methanol by the methylotrophic bacterium, Methylophilus methylotrophus. Eur. J. Biochem., 1984, 138 (3): 611-615.
    [114] SG Lee, JH Goo, HG Kim, et al. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett., 2004, 26 (11): 947-950.
    [115]尉迟力,缪德埙,李树本, et al.甲烷氧化菌Methylosinus trichosporium 3011甲醇累积条件的研究.工业微生物, 1995, 25 (2): 10-13.
    [116] M Takeguchi, T Furuto, D Sugimori, et al. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Appl. Biochem. Biotechnol., 1997, 68 (3): 143-152.
    [117]韩冰,甲烷氧化菌的微生态解析及其应用基础研究,化学工程系, vol.博士,清华大学,北京, 2008.
    [118]夏仕文,尉迟力,李树本.固定化Methylomonas Z201细胞:甲烷单加氧酶的活性和稳定性.分子催化, 1996, 10 (4): 251-256.
    [119]夏仕文,尉迟力,李树本.水-有机溶剂两相体系中甲基单孢菌Z201细胞催化丙烯环氧化的初步研究.生物工程学报, 1997, 13 (2): 206-209.
    [120]夏仕文,尉迟力,李树本.单相和两相发酵体系中Methylomonas Z201细胞的生长和环氧丙烷的合成.微生物学报, 1998, 38 (5): 371-375.
    [121] JY Xin, JR Cui, LM Zhu, et al. Epoxypropane biosynthesis by Methylomonas sp. GYJ3: batch and continuous studies. World Journal of Microbiology and Biotechnology, 2002, 18 (7): 609-614.
    [122] JY Xin, JR Cui, JB Chen, et al. Continuous biocatalytic synthesis of epoxypropane using a biofilm reactor. Process Biochem., 2003, 38 (12): 1739-1746.
    [123]罗明芳,吴昊,王磊, et al.含有甲烷氧化菌的混合菌群特性研究.微生物学报, 2007, 47 (1): 103-109.
    [124] S Tao, H Bing, Y Cheng, et al. Production of epoxypropane from propene catalyzed by whole cells of Methylosinus trichosporium OB3b. Journal of the Chemical Industry and Engineering Society of China, 2009, 60: 1767-1772.
    [125] M Hesselsoe, S Boysen, N Iversen, et al. Degradation of organic pollutants by methane grown microbial consortia. Biodegradation, 2005, 16 (5): 435-448.
    [126] JE Anderson, PL McCarty. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl. Environ. Microbiol., 1997, 63 (2): 687-693.
    [127] PA Phelps, SK Agarwal, GE Speitel Jr, et al. Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol., 1992, 58 (11): 3701-3708.
    [128] SW Lee, DR Keeney, DH Lim, et al. Mixed Pollutant Degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: Can the tortoise beat the hare? Appl. Environ. Microbiol., 2006, 72 (12): 7503-7509.
    [129] YH Yu, Application of a methanotrophic immobilized soil bioreactor to trichloroethylene degradation, Department of Chemical Engineering, vol. Doctor of Philosophy, Queen’s University, Kingston, 2008.
    [130] GA Walter, SE Strand, RP Herwig, et al. Trichloroethylene and methane feeding strategies to sustain degradation by methanotrophic enrichments. Water Environ. Res., 1997, 69 (6): 1066-1074.
    [131] DE Fennell, YM Nelson, SE Underhill, et al. TCE degradation in a methanotrophic attached-film bioreactor. Biotechnol. Bioeng., 2004, 42 (7): 859-872.
    [132] GW Strandberg, TL Donaldson, LL Farr. Degradation of trichloroethylene and trans-1, 2-dichloroethylene by a methanotrophic consortium in a fixed-film, packed-bed bioreactor. Environ. Sci. Technol., 1989, 23 (11): 1422-1425.
    [133] T Shimomura, F Suda, H Uchiyama, et al. Biodegradation of trichloroethylene by Methylocystis sp. strain M immobilized in gel beads in a fluidized-bed bioreactor. Water Res., 1997, 31 (9): 2383-2386.
    [134] E Arvin. Biodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor. Water Res., 1991, 25 (7): 873-881.
    [135] DG Karamanev, R Samson. High-rate biodegradation of pentachlorophenol by biofilm developed in the immobilized soil bioreactor. Environ. Sci. Technol, 1998, 32 (7): 994-999.
    [136] LW Clapp, JM Regan, F Ali, et al. Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci. Technol., 1999, 39: 153-161.
    [137] LH Smith, PL McCarty. Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol. Bioeng., 2000, 55 (4): 650-659.
    [138] JG Pressman, G Georgiou, GE Speitel Jr. Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor. Biotechnol. Bioeng., 2000, 62 (6): 681-692.
    [139]苏涛,甲烷氧化菌(Methylosinus trichosporium)OB3b异源蛋白表达系统的初步研究,微生物学, vol.硕士,中国农业科学院,北京, 2009.
    [140] H Martin, JC Murrell. Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis. FEMS Microbiol. Lett., 1995, 127 (3): 243-248.
    [141] JS Lloyd, R Finch, H Dalton, et al. Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. Microbiology, 1999, 145 (2): 461-470.
    [142] TJ Smith, SE Slade, NP Burton, et al. Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl. Environ. Microbiol., 2002, 68 (11): 5265-5273.
    [143] E Borodina, T Nichol, MG Dumont, et al. Mutagenesis of the" leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl. Environ. Microbiol., 2007, 73 (20): 6460-6467.
    [144] CA West, GPC Salmond, H Dalton, et al. Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath). Microbiology, 1992, 138 (7): 1301-1307.
    [145] JS Lloyd, P De Marco, H Dalton, et al. Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch. Microbiol., 1999, 171 (6): 364-370.
    [146] ZX Gou, XH Xing, M Luo, et al. Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis. FEMS Microbiol. Lett., 2006, 263 (2): 136-141.
    [147] L Tao, N Sedkova, H Yao, et al. Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl. Microbiol. Biotechnol., 2007, 74 (3): 625-633.
    [148] RW Ye, H Yao, K Stead, et al. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J. Ind. Microbiol. Biotechnol., 2007, 34 (4): 289-299.
    [149] IR McDonald, L Bodrossy, Y Chen, et al. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol., 2008, 74 (5): 1305-1315.
    [150] E Cardenas, JM Tiedje. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol., 2008, 19 (6): 544-549.
    [151] MG Dumont, JC Murrell. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol., 2005, 3 (6): 499-504.
    [152] IR McDonald, S Radajewski, JC Murrell. Stable isotope probing of nucleic acids in methanotrophs and methylotrophs: a review. Org. Geochem., 2005, 36 (5): 779-787.
    [153] Z He, TJ Gentry, CW Schadt, et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal, 2007, 1 (1): 67-77.
    [154] DR Blake, FS Rowland. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 1988, 239 (4844): 1129-1131.
    [155] H Hilgeri, M Humer. Biotic landfill cover treatments for mitigating methane emissions. Environ. Monit. Assess., 2003, 84 (1-2): 71-84.
    [156] J Nikiema, R Brzezinski, M Heitz. Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol, 2007, 6 (4): 261-284.
    [157] M Huber-Humer, J Gebert, H Hilger. Biotic systems to mitigate landfill methane emissions. Waste Manag. Res., 2008, 26 (1): 33-46.
    [158]张丽,周玲玲.瓦斯爆炸机理及预防措施.化学教育, 2006, 1: 2-4.
    [159]王兴宝.煤矿瓦斯爆炸的主要原因初探.消防技术与产品信息, 2003, 9: 36-39.
    [160]卢平.煤矿瓦斯灾害事故频发的原因及其对策分析.安全, 2005, 26 (3): 6-10.
    [161]郭东.低浓度煤层气资源利用现状及效益分析.中国煤层气, 2008, 5 (3): 42-46.
    [162]聂李红,徐绍平,苏艳敏, et al.低浓度煤层气提纯的研究现状.化工进展, 2008, 27 (10): 1505-1511.
    [163]郭西山,王晓刚,李晓池.浓度和流量对瓦斯加热氧化净化率的影响.煤炭学报, 2003, 28 (1): 55-58.
    [164]柯为.治理煤矿瓦斯爆炸的微生物技术.生物工程学报, 2005(03): 460.
    [165]陈东科,王璐,金龙哲, et al.利用微生物技术治理煤矿瓦斯的研究展望.矿业安全与环保, 2005(06): 49-52.
    [166]王璐,金龙哲和陈东科.利用微生物技术治理煤矿瓦斯的研究展望.中国安全科学学报, 2005(10): 97-99.
    [167] http://nyj.ndrc.gov.cn/.
    [168] G Muyzer, T Brinkhoff, U Nübel, et al., Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, Kluwer Academic Publishers, Netherlands, 1998.
    [169] GB Shan, WB Jin, EKH Lam, et al. Purification of total DNA extracted from activated sludge. Journal of Environmental Sciences, 2008, 20 (1): 80-87.
    [170]于安峰,好氧—厌氧耦合体系污泥减量化的机理研究及工程应用,化学工程系, vol.博士,清华大学,北京, 2008.
    [171] DJ Lane. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics. in: E. Stackebrandt, M. Goodfellow (Eds.), New York, USA: John Wiley & Sons, 1991: pp. 115–175.
    [172] Y Chen, MG Dumont, A Cébron, et al. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol., 2007, 9 (11): 2855-2869.
    [173] G Muyzer, EC De Waal, AG Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 1993, 59 (3): 695-700.
    [174] AJ Holmes, A Costello, ME Lidstrom, et al. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett., 2006, 132 (3): 203-208.
    [175] IR McDonald, EM Kenna, JC Murrell. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol., 1995, 61 (1): 116-121.
    [176] JD Neufeld, H Sch fer, MJ Cox, et al. Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. The ISME Journal, 2007, 1 (6): 480-491.
    [177] E Hutchens, S Radajewski, MG Dumont, et al. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ. Microbiol., 2003, 6 (2): 111-120.
    [178] TM LaPara, CH Nakatsu, LM Pantea, et al. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res., 2002, 36 (3): 638-646.
    [179] S Carini, N Bano, G LeCleir, et al. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ. Microbiol., 2005, 7 (8): 1127-1138.
    [180] JL Lin, S Radajewski, BT Eshinimaev, et al. Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ. Microbiol., 2004, 6 (10): 1049-1060.
    [181] SW Lee, J Im, AA DiSpirito, et al. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl. Microbiol. Biotechnol., 2009, 85 (2): 389-403.
    [182] M Rahalkar, I Bussmann, B Schink. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol., 2007, 57 (5): 1073-1080.
    [183] AK Steenbergh, MM Meima, M Kamst, et al. Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol. Ecol., 2009, 71 (1): 12-22.
    [184] B Han, Y Chen, G Abell, et al. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol. Ecol., 2009, 70 (2): 196-207.
    [185] AJ Auman, ME Lidstrom. Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ. Microbiol., 2002, 4 (9): 517-524.
    [186] AJ Auman, S Stolyar, AM Costello, et al. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol., 2000, 66 (12): 5259-5266.
    [187] T Henckel, M Friedrich, R Conrad. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol., 1999, 65 (5): 1980-1990.
    [188] AC Layton, PN Karanth, CA Lajoie, et al. Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl. Environ. Microbiol., 2000, 66 (3): 1167-1174.
    [189] DM Stamper, M Walch, RN Jacobs. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Appl. Environ. Microbiol., 2003, 69 (2): 852-860.
    [190]冯树,张忠泽.混合菌——一类值得重视的微生物资源.世界科技研究与发展, 2000, 22: 44-47.
    [191] H Bothe, K M ller Jensen, A Mergel, et al. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl. Microbiol. Biotechnol., 2002, 59 (1): 33-39.
    [192] DE Harrison. Mixed cultures in industrial fermentation processes. Adv. Appl. Microbiol., 1978, 24: 129-164.
    [193] SC Lamb, JC Garver. Batch-and continuous-culture studies of a methane-utilizing mixed culture. Biotechnol. Bioeng., 2004, 22 (10): 2097-2118.
    [194] D Hr ak, D Grbi -Gali Biodegradation of linear alkylbenzenesulphonates (LAS) by mixed methanotrophic-heterotrophic cultures. J. Appl. Microbiol., 2008, 78 (5): 487-494.
    [195] J Helm, KD Wendlandt, G Rogge, et al. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J. Appl. Microbiol., 2006, 101 (2): 387-395.
    [196] B Van Aken, CM Peres, SL Doty, et al. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoidesxnigra DN34). Int. J. Syst. Evol. Microbiol., 2004, 54 (4): 1191-1196.
    [197] AP Wood, DP Kelly, IR McDonald, et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol., 1998, 169 (2): 148-158.
    [198] M Madhaiyan, BY Kim, S Poonguzhali, et al. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol., 2007, 57 (2): 326-331.
    [199]国家煤矿安全监察局.煤矿安全规程,北京:煤炭工业出版社, 2001.
    [200] WA Apel, PR Dugan, MR Wiebe. Use of methanotrophic bacteria in gas phase bioreactors to abate methane in coal mine atmospheres. Fuel, 1991, 70 (8): 1001-1003.
    [201] LI Sly, LJ Bryant, JM Cox, et al. Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl. Microbiol. Biotechnol., 1993, 39 (3): 400-404.
    [202]李宏军.中国煤矿瓦斯开发利用综合效益评估模型研究.中国煤层气, 2008, 5 (4): 39-42.