固—液界面吸附中的吸附剂浓度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固-液界面的吸附现象是自然界中普遍存在、最为重要的现象之一,也是环境化学领域的重要研究内容之一。因为污染物在固-液界面(如土壤-水界面)的吸附-脱附行为对污染物的形态分布、迁移转化和归宿等均具重要影响;另外,在环境治理工程中,所采用的技术也多与吸附过程有关。因此,科学认识污染物的吸附-脱附行为,是研究环境污染形成机理、探索有效防治途径的重要基础。
     吸附热力学和动力学是固-液界面吸附研究中的基础内容。前期,在吸附-脱附平衡研究中,发现其吸附等温线随吸附剂浓度(Cs)增大而降低,即其平衡常数与Cs有关,这似乎与热力学平衡理论相悖,称为“固体效应”或“吸附剂浓度效应”(Cs-effect)。虽然已提出了多种吸附剂浓度效应模型,如“溶质络合模型”、“粒子间相互作用模型”、“亚稳平衡态吸附理论”、“絮凝模型”、“幂函数(Freundlich型)模型”和“四组分吸附模型”等,或因适用范围有限(只能描述个别实验结果),或因模型参数不能实验测定,目前均未被广泛认可,对Cs-effect产生的本质原因也还缺乏合理或公认的解释。另外,在吸附动力学中也存在Cs-effect,即吸附速率常数与Cs有关,目前还未见相关固体效应模型的研究报道。由于现有的理论模型不能准确地描述或预测Cs-effect,给固-液界面吸附的理论发展和技术应用带来一系列问题。其一,因对吸附现象物理过程的本质缺乏科学认识,将影响模型构建,妨碍理论的发展;其二,因模型参数的不确定性,将给环境治理工程的设计造成困难,甚至使整体方案产生缺陷。鉴于此,本文对固-液界面吸附的Cs-effect现象进行了研究,探讨了相关机理,构建了固体效应模型(包括热力学模型和动力学模型),以期加深对固-液界面吸附现象的科学认识,为环境治理(如废水处理和土壤修复等)工程的设计提供理论依据。
     本论文主要研究内容及结论如下:
     (1)以高岭土、层状双金属氢氧化物(LDHs)和EDTA插层LDH(EDTA-LDH)纳米杂化物等为模型吸附剂,以重金属离子Pb(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)和Hg(Ⅱ)为模型吸附质,实验研究了固-液界面的吸附热力学(等温线)和动力学,结果表明均存在明显的Cs-effect。
     (2)采用传统的吸附等温方程(Langmuir和Freundlich等温式)和动力学方程(准一级和准二级方程)对吸附实验数据进行了模拟,结果表明可准确地描述给定Cs下的吸附行为,但不能描述或预测Cs-effect。或者说,所拟合得到的吸附平衡常数和速率常数皆与Cs有关,这样在给定Cs下得到的常数不能用于预测其它Cs下的吸附行为。
     (3)结合文献报道和本实验结果分析,作者认为Gs-effect是一个客观存在的自然现象,缘于吸附剂颗粒间的相互作用,包括碰撞、粘附、静电力和van de Waals力作用等。为解释和描述Gs-effect,提出了“表面组分活度模型”(Surface Component Activity Model, S CA模型),假设吸附剂表面组分即吸附位和吸附质的活度系数不等于1,而分别为吸附剂浓度(Cs)和吸附量(Г)的函数。这是因为实际吸附体系中,同组分间即吸附剂颗粒之间和吸附质分子(或离子)之间均存在相互作用,使其偏离于理想吸附体系;和溶液体系一样,将热力学平衡定律应用于实际吸附体系时,应用活度代替浓度进行校正。传统吸附模型未考虑同组分间的相互作用,故不能描述或预测实际吸附体系中的Cs-effect.
     (4)基于SCA模型,分别推导出了与吸附剂浓度有关的Langmuir、Freundlich等温式和分配系数方程,简记为Langmuir-SCA、Freundlich-SCA等温式和SCA-分配系数方程,相关的平衡常数皆与Cs无关;因此,在给定Cs下得到的平衡常数,可用于预测其它Cs下的吸附平衡行为。
     (5)基于SCA模型,分别推导出了与吸附剂浓度有关的准一级动力学和准二级动力学方程,简记为SCA-准一级和SCA-准二级动力学方程,相关的速率常数皆与Cs无关;因此,在给定Cs下得到的速率常数,可用于预测其它Cs下的吸附动力学行为。
     (6)假设并优化出表面吸附位活度系数(fH2Os)与Cs的最佳函数关系为指数形式,即fH2Os=exp(-γCsα),其中γ和α为常数;推导出了fH2Os与吸附参数间的理论关系式,即由吸附数据可拟合得到fH2Os值,为SCA模型方程的实际应用奠定了基础。
     (7)利用本文所得和文献报道吸附实验数据,对SCA模型方程进行了验证,并与现有固体效应模型方程进行了对比,结果表明SCA模型方程可更好地描述Cs-effect实验结果。
The adsorption phenomenon at solid-liquid interface is one of the most universal and important behaviors occurring in nature and one of the important research contents in environmental chemistry. It is because the adsorption-desorption behaviors of the pollutants at solid-liquid interface (such as soil-liquid interface) have a major influence on distribution, migration and transformation of the pollutants. In addition, the technology used in the environmental engineering project is mostly related to the adsorption process. Therefore, scientific knowledge of the pollutants adsorption-desorption behaviors is an important foundation for the research of environmental pollution formation mechanism and the exploration of the effective pollution preventive approaches.
     The adsorption thermodynamics and kinetics are the basic contents of solid-liquid interface adsorption studies. Earlier, it has been observed in the adsorption-desorption equilibrium studies that adsorption isotherms decline with the sorbent concentration (Cs) increases, i.e., the adsorption equilibrium constants vary with Cs. It was described as "solids effect" or "sorbent concentration effect"(Cs-effect). This seems to contradict the thermodynamic equilibrium theory. Many solids effect models have been proposed, such as the solute complexation model, the particle interaction model, the metastable-equilibrium adsorption theory, the flocculation model, the power function (Freundlich-like) model, and the four components adsorption model. But these models have not been widely accepted because the application scope is limited or the model parameters cannot be experimentally measured. The essential reason for Cs-effect still lacks reasonable or accepted explanation. The Cs-effect also occurs in adsorption kinetics at solid-liquid interfaces, where adsorption rate constants vary with Cs. The existing theoretical models cannot accurately describe or predict Cs-effect. This brought a series of problems in the development of solid-liquid interface adsorption theory and the technology application. First, the lack of scientific knowledge about the physical process nature of the adsorption phenomena will affect the model construction and hinder the theory development; second, the uncertainty of model parameters creates difficulties in environmental treatment project and the engineering design. In view of this, the Cs-effect phenomenon on the soil-liquid interface adsorption was studied. The related mechanism was discussed. The Cs-effect model (including thermodynamic and kinetic model) was constructed. These would enhance our scientific knowledge of the solid-liquid interface adsorption phenomena and provide the theory basis for the design of environmental treament engineering (such as wastewater treatment and soil remediation).
     The main research contents and conclusions are listed as follows:
     (1) The adsorption thermodynamics (isotherms) and kinetics on solid-liquid interface adsorption were studied. The model sorbents include kaolinite, the layered double hydroxides (LDHs) and EDTA intercalated nanocomposite (EDTA-LDH). The model adsorbates include Pb(II), Cu(II), Zn(II) and Hg(II). The results showed that there were obvious Cs-effect in adsorption thermodynamic and kinetic process.
     (2) The adsorption data were fitted with the classical isotherm equations (Langmuir and Freundlich equation) and the kinetic equations (pseudo-first-order and pseudo-second-order kinetic equation). It was found that the classical equations could adequately describe the adsorption phenomenon for a given Cs value but could not describe or predict Cs-effect. In other words, the adsorption equilibrium constants and the rate constants vary with Cs. The constants obtained at given Cs cannot predict the adsorption behavior at other Cs.
     (3) Combining with the analysis of the literature and the experimental results, the author believed that the Cs-effect was an objective phenomenon due to the sorbent particle-particle interactions (including collision, adhesion, electrostatic force and Van de Waals force etc.). In order to explain and describe the Cs-effect, a surface component activity (SCA) model was proposed. The SCA model suggests that the surface component (adsorption site or adsorbed solute) activity coefficients are not equal to unity but are the functions of Cs and the adsorption amount (Γ) respectively. This is because the interaction existed in the same component (the sorbent particles and the adsorbate molecules) makes a real adsorption system deviating from an ideal one. When the thermodynamic equilibrium law applied to the real adsorption system, it should use activity instead of concentration to correct as same as the solution system. As the classical adsorption models do not consider the same component interaction, they cannot describe or predict the Cs-effect in the real adsorption system.
     (4) Based on the SCA model, the Cs-dependent Langmuir equation, the Cs-dependent Freundlich equation and the Cs-dependent partition coefficient equation, denoted as Langmuir-SCA, Freundlich-SCA and the SCA-partition coefficient equation, were derived. The related equilibrium constants are independent of Cs. Therefore, the equilibrium constants obtained at given Cs can predict the adsorption equilibrium behavior at other Cs.
     (5) Based on the SCA model, the Cs-dependent first-order kinetic equation and the Cs-dependent second-order kinetic equation, denoted as SCA-first-order and SCA-second-order kinetic equation, were derived. The related rate constants are independent of Cs. Therefore, the rate constants obtained at given Cs can predict the adsorption kinetic behavior at other Cs.
     (6) The best supposed and optimized function of the adsorption sites activity coefficient (fH2Os) and Cs is exponential form, i. e., fH2Os=exp(-γCsα). The theoretical relationship between fH2Os o and adsorption parameters was derived. The value of fH2Os can be obtained by adsorption data. This lays the foundation for the practical application of the SCA model equation.
     (7) The SCA model equations were examined using the adsorption experimental data obtained in this paper and literature and compared with the existing Cs-effect model equations. The results showed that the SCA model equations can better describe the experimental results of Cs-effect.
引文
[1]天津大学物理化学教研室.物理化学[M].第四版.北京:高等教育出版社,2001.
    [2]Ho Y. S., McKay G.. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal,1998,70:115-124.
    [3]Brown G. E., Henrich V. E., Casey W. H., Clark D. L., Eggleston C., Felmy A., Goodman D. W., Gratzel M., Maciel G., McCarthy M. I., Nealson K. H., Sverjensky D. A., Toney M. F., Zachara J. M.. Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms[J]. Chemical Reviews,1999,99:77-174.
    [4]Sari A., Tuzen M., Citak D., Soylak M.. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(Ⅱ) from aqueous solution onto Turkish kaolinite clay[J]. Journal of Hazardous Materials,2007,149:283-291.
    [5]Wang Y. Q., Fan Q. H., Li P., Zheng X. B., Xu J. Z., Jin Y. R., Wu W. S.. The sorption of Eu(Ⅲ) on calcareous soil:effects of pH, ionic strength, temperature, foreign ions and humic acid[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,287:231-237.
    [6]Hinz C. Description of sorption data with isotherm equations[J]. Geoderma, 2001,99:225-243.
    [7]Ho Y. S.. Removal of copper ions from aqueous solution by tree fern[J]. Water Research,2003,37:2323-2330.
    [8]Mittal A., Kurup L., Mittal J.. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers[J]. Journal of Hazardous Materials,2007,146:243-248.
    [9]Tsai S. C., Wang T. H., Li M. H., Wei Y. Y., Teng S. P.. Cesium adsorption and distribution onto crushed granite under different physicochemical conditions[J]. Journal of Hazardous Materials,2009,161:854-861.
    [10]Karatas M.. Removal of Pb(Ⅱ) from water by natural zeolitic tuff:Kinetics and thermodynamics [J]. Journal of Hazardous Materials,2012,199-200:383-389.
    [11]O'Connor D. J., Connolly J. P.. The effect of concentration of adsorbing solids on the partition coefficient[J]. Water Research,1980,14:1517-1523.
    [12]Voice T. C., Rice C. P., Weber W. J.. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems[J]. Environmental Science & Technology,1983,17:513-518.
    [13]Gschwend P. M., Wu S. C. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants[J]. Environmental Science & Technology,1985,19:90-96.
    [14]Voice T. C., Weber W. J.. Sorbent concentration effects in liquid/solid partitioning[J]. Environmental Science & Technology,1985,19:789-796.
    [15]DiToro D. M., Mahony J. D., Kirchgraber P. R., O'Byrne A. L., Pasquale L. R., Piccirilll D. C.. Effects of nonreversibility, particle concentration, and ionic strength on heavy metal sorption[J]. Environmental Science & Technology,1986, 20:55-61.
    [16]Puls R. W., Powell R. M., Clark D., Eldred C. J.. Effects of pH, solid/solution ratio, ionic strength, and organic acids on Pb and Cd sorption on kaolinite[J]. Water, Air, and Soil Pollution,1991,57-58:423-430.
    [17]Porro I., Newman M. E., Dunnivant F. M.. Comparison of Batch and Column Methods for Determining Strontium Distribution Coefficients for Unsaturated Transport in Basalt[J]. Environmental Science & Technology,2000,34: 1679-1686.
    [18]Kim J. Y., Shin M. C., Park J. R., Nam K.. Effect of soil solids concentration in batch tests on the partition coefficients of organic pollutants in landfill liner-soil materials[J]. Journal of Material Cycles and Waste Management,2003,5:55-62.
    [19]Pan G., Liss P. S.. Metastable-Equilibrium Adsorption Theory Ⅰ. Theoretical[J]. Journal of Colloid and Interface Science,1998,201:71-76.
    [20]Helmy A. K., Ferreiro E. A., Bussetti S. G.. Effect of particle association on 2,2'-bipyridyl adsorption onto kaolinite[J]. Journal of Colloid and Interface Science,2000,225:398-402.
    [21]Chang T. W., Wang M. K.. Assessment of sorbent/water ratio effect on adsorption using dimensional analysis and batch experiments[J]. Chemosphere, 2002,48:419-426.
    [22]Wu X. F., Hu Y. L., Zhao F., Huang Z. Z., Lei D.. Ion adsorption components in liquid/solid systems[J]. Journal of Environmental Sciences,2006,18: 1167-1175.
    [23]潘纲.亚稳平衡态吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展[J].环境科学学报,2003,23:156-173.
    [24]DiToro D. M.. A particle interaction model of reversible organic chemical sorption[J]. Chemosphere,1985,14:1503-1538.
    [25]赵元慧,郎佩珍.有机污染物在自然沉积物上的吸附行为—固体浓度对吸附分配系数的影响[J].环境科学,1991,12:23-27.
    [26]Barone F. S., Rowe R. K., Quigley R. M.. A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in natural clayey soil[J]. Journal of Contaminant Hydrology,1992,10:225-250.
    [27]Sanudo-Wilhelmy S. A., Rivera-Duarte I., Flegal A. R.. Distribution of colloidal trace metals in the San Francisco Bay estuary[J]. Geochimica et Cosmochimica Acta,1996,60:4933-4944.
    [28]Hatje V., Payne T. E., Hill D. M., McOrist G, Birch G. F., Szymczak R.. Kinetics of trace element uptake and release by particles in estuarine waters:effects of pH, salinity, and particle loading[J]. Environment International,2003,29:619-629.
    [29]唐方华.两种粘土材料对137Cs吸附特性的研究[J].核技术,1997,20:179-183.
    [30]Al-Asheh S., Duvnjak Z.. Sorption of heavy metals by Canola meal[J]. Water, Air,& Soil Pollution,1999,114:251-276.
    [31]Sheindorf C. H., Rebhun M., Sheintuch M.. A Freundlich-Type Multicomponent Isotherm[J]. Journal of Colloid and Interface Science,1981,79:136-142.
    [32]黄岁梁,万兆惠.泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J].环境科学学报,1995,15:66-76.
    [33]Pan G, Liss P. S.. Metastable-Equilibrium Adsorption Theory Ⅱ. Experimental[J]. Journal of Colloid and Interface Science,1998,201:77-85.
    [34]Pan G., Liss P. S., Krom M. D.. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [35]杨军,孙卫玲,倪晋仁.马兰黄土对铜的吸持及其形态变化的影响[J].环境化学,2001,20:220-225.
    [36]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析—以黄土吸持铜离子为例[J].环境化学,2002,21:37-44.
    [37]Qin Y., Pan G., Zhang M.. Adsorption of zinc on manganite (y-MnOOH): Particle concentration effect and adsorption reversibility[J]. Journal of Environmental Sciences,2004,16:627-630.
    [38]詹旭,罗泽娇,马腾.高岭土吸附剂去除含锰废水中锰离子的实验研究[J].地质科技情报,2005,24:95-98.
    [39]谢玲玲,周培疆,刘丽君,李今,贺锋,吴振斌.五氯苯酚在武汉东湖底质颗粒物上的吸附研究[J].武汉大学(理学版),2005,51:448-453.
    [40]Zhou A., Tang H. X., Wang D. S.. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition[J]. Water Research,2005, 39:1245-1254.
    [41]赵芳,吴晓芙,黄中子,雷电,芦鹏,于旭彪,张艳丽,赵崇,周海兰.液/固离子吸附体系中的强度因子[J].中南林业科技大学学报(自然科学版),2007,27:109-117.
    [42]赵芳,吴晓芙,张艳丽,黄中子.固液相离子吸附体系中吸附剂浓度效应与Langmuir方程的适用性[J].环境化学,2007,26:335-338.
    [43]黄岁棵,李海涛.海河沉积物对邻苯二甲酸二甲酯吸附行为研究[J].环境污染与防治,2007,29:321-324.
    [44]Yang Y. H., Chen H., Pan G.. Particle concentration effect in adsorption/desorption of Zn(Ⅱ) on anatase type nano TiO2[J]. Journal of Environmental Sciences,2007',19:1442-1445.
    [45]刘燕.高岭土类粘土矿物材料对模拟核素Sr、Co、Cs(?)的吸附性能研究[J].中国非金属矿工业导刊,2007,63:25-28.
    [46]Lu H. J., Luan M. T., Zhang J. L., Yu Y. X.. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid[J]. Journal of China University of Mining and Technology,2008,18: 125-130.
    [47]戚建华,姚增玉,邓西平,梁宗锁,胡彩燕.板栗壳对水中Cu2+吸附性能的研究[J].西北农林科技大学学报(自然科学版),2009,37:197-202.
    [48]陆海军,栾茂田,张金利,于永鲜.垃圾填埋场衬垫土壤材料对Cr(Ⅵ)的吸附特性研究[J].岩土工程学报,2009,31:1002-1008.
    [49]杨建,陈家军,裴玉梅,郑海亮,卢毅.Triton X-100在土壤颗粒上的吸附特征研究[J].环境工程学报,2009,3:189-192.
    [50]王晓丽,郭博书.黄河沉积物对磷酸盐吸附的固体浓度效应研究[J].内蒙古师范大学学报(自然科学汉文版),2010,39:55-58.
    [51]Utomo H. D., Hunter K. A.. Particle concentration effect:adsorption of metal ions on coffee grounds[J]. Bioresource Technology,2010,101:1482-1486.
    [52]Fehse K. U., Borg H., Sorkau E., Pilchowski K., Luckner L.. Correcting the Effect of the Sorbent to Solution Ratio on Sorption Isotherms from Batch Tests with Soils and Sediments[J]. Water, Air, and Soil Pollution,2010,210:211-220.
    [53]徐丛,李薇,潘纲.Zn(Ⅱ)/α-FeOOH吸附体系的固体浓度效应[J].物理化学学报,2009,25:1737-1742.
    [54]李晋,陈灏,潘纲,高美媛.Zn(Ⅱ)在δ-MnO2和γ-MnOOH两种矿物吸附的固体初始溶质浓度效应[J].环境科学学报,2006,26:1606-1610.
    [55]潘纲,刘媛媛.吸附模式对有机物光催化降解的影响3. MEA-Langmuir-Hinshelwood光催化降解动力学方程[J].环境化学,2006,25:11-15.
    [56]梁慧锋.δ-MnO2的制备及其对水中Cd2+的吸附[J].化工环保,2007,27:222-226.
    [57]林琼,蔡伟民,路佳,徐芳.ZSM-5沸石的制备及其对甲基叔丁基醚的吸附性能研究[J].环境污染与防治,2008,30:66-70.
    [58]吴晓芙,胡曰利,聂发辉,王平,李科林.蛭石的NH4+吸附与Langmuir方程[J].湘潭大学自然科学学报,2004,26:66-71.
    [59]Ho Y. S.. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods[J]. Water Research,2006,40: 119-125.
    [60]Ho Y. S., McKay G.. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research,2000,34:735-742.
    [61]Ho Y. S., Ofomaja A. E.. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber[J]. Journal of Hazardous Materials, 2006, B129:137-142.
    [62]Al-Subu M. M., Salim R., Braik H., Swaileh K. M.. Removal of dissolved copper from polluted water using plant leaves. Ⅱ. Effects of copper concentration, plant leaves, competing ions and other factors[J]. Reviews of International Contamination Ambient,2001,17:123-127.
    [63]Mohan D., Singh K. P.. Single- and multi-component adsorption of cadmium ana zinc using activated carbon derived from bagasse-an agricultural waste[J]. Water Research,2002,36:2304-2318.
    [64]Gonzo E. E., Gonzo L. F.. Kinetics of phenol removal from aqueous solution by adsorption onto peanut shell acid-activated carbon[J]. Adsorption Science & Technology,2005,23:289-301.
    [65]Dali-youcef N., Ouddane B., Derriche Z.. Adsorption of zinc on natural sediment of Tafna River (Algeria)[J]. Journal of Hazardous Materials,2006, A137:1263-1270.
    [66]Basha S., Murthy Z. V. P., Jha B.. Sorption of Hg(Ⅱ) onto Carica papaya: Experimental studies and design of batch sorber[J]. Chemical Engineering Journal,2009,147:226-234.
    [67]Witek-Krowiak A.. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust[J]. Chemical Engineering Journal,2011,171:976-985.
    [68]Zhu H. T., Ni Z. M., Xue J. L.. Adsorption applications of Acid Blue 7 on Mg/Al layered double oxides and mechanism study [J]. Acta Chimica Sinica, 2012,70:1798-1804.
    [69]凤迎春.海泡石对铅和镉的吸附研究[D].湖南:南华大学市政工程,2007.
    [70]芦鹏,吴晓芙,于旭彪,赵芳.固液体系中Cr(Ⅵ)吸附的动态模拟[J].中南林业科技大学学报(自然科学版),2007,27:118-123.
    [71]于旭彪,吴晓芙,芦鹏,赵芳.固液体系中蛭石吸附Cu2+动力学研究[J].湘潭大学自然科学学报,2007,29:85-88.
    [72]Zhao F., Wu X. F., Zhou H. L., Zhao C., Lu P., Yu X. B.. A kinetic model for ion adsorption in liquid/solid single ionic species systems[J]. Environmental Chemistry,2009,28:62-67.
    [73]彭春星.城市土壤重金属污染治理措施及评价方法[J].技术与市场.2013,1:96-97.
    [74]刘亚敏.土壤重金属污染及其综合治理[J].科技信息.2012,35:905-946.
    [75]胡月红.国内外汞污染分布状况研究综述[J].环境保护科学.2008,34:38-41.
    [76]韩玲玲,曹慧昌,代淑娟,高淑玲.重金属污染现状及治理技术研究进展[J].有色冶金,2011,27:94-97.
    [77]张坤,罗书.水体重金属污染治理技术研究进展[J].中国环境管理干部学院学报,2010,20:62-81.
    [78]王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22:72-75.
    [79]Goh K. H., Lim T. T., Dong Z.. Application of layered double hydroxides for removal of oxyanions:A review[J]. Water Research,2008,42:1343-1368.
    [80]Kanezaki E., Fernando W., Kestur G. S.. Preparation of layered double hydroxides [M]. In:Interface Science and Technology. Elsevier,2004.345-73.
    [81]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.
    [82]边令喜.机械力化学法Mg-Al类水滑石的制备[D].辽宁:大连交通大学,2011.
    [83]Feitknecht W.. The formation of double hydroxides between bivalent andtrivalent metals[J]. Helvetica Chimica Acta,1942,25:113-115.
    [84]Feitknecht W.. Doppelhydroxyden zwischen zwei-und dreiwertigen Metallen[J]. Helvetica Chimica Acta,1942,25:555-569.
    [85]Pausch I., Lohse H. H., Schurmann K., Allmann R.. Synthesis of disordered and Al-rich hydrotalcite-like compounds[J]. Clays and Clay Minerals,1986,34: 507-510.
    [86]谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001,18:70-72.
    [87]Ogawa M., Kaiho H.. Homogeneous precipitation of uniform hydrotalcite particles[J]. Langmuir,2002,18:4240-4242.
    [88]王永在.纳米晶Mg-Al水滑石的水热合成及微结构表征[J].无机化学学报,2007,23:1055-1058.
    [89]黄智,廖其龙,王素娟.水热法制备棒状水滑石[J].精细化工,2008,25:1168-1174.
    [90]范讳,李成吾.尿素水热法制备Mg/Al/Fe多元水滑石及其阻燃性能研究[J].有色冶金,2011,27:33-36.
    [91]祝文霞.Mg-Al LDH的水热合成及其分散体系液晶相行为的调控[D].山东:山东大学,2007.
    [92]Reichle W. T.. Synthesis of anionic clay minerals (mixed metal hydroxide, hydrotalcite[J]. Solid State Ionics,1986,22:135-141.
    [93]杜以波,何静,李峰,Evans D. G.,段雪,王作新.水滑石及柱撑水滑石的制 备和表征[J].北京化工大学学报,1997,24:76-88.
    [94]Israeli Y., Taviot-Gueho C., Besse J. P., Morel J. P., Morel-Desrosiers N.. Thermodynamics of anion exchange on a chloride-intercalated zinc-aluminum layered double hydroxide:a microcalorimetric study[J]. Journal of the Chemical Society, Dalton Transactions,2000,791-796.
    [95]Morel-Desrosiers N., Pisson J., Israeli Y., Taviot-Gueho C., Besseb J. P., More J. P.. Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide:microcalorimetric determination of the enthalpies of anion exchange[J]. Journal of materials chemistry,2003,13:2582-2585.
    [96]Weir M. R., Kydd R. A.. Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-Hydroxide Precursors [J]. Inorganic Chemistry,1998,37:5619-5624.
    [97]Rao K. K., Gravelle M., Valente J. S.., Figueras F.. Activation of Mg-Al hydrotalcite catalysts for aldol condensation reactions[J]. Journal of Catalysis, 1998,173:115-121.
    [98]Prinetto F., Tichit D., Teissier R., Coq B.. Mg-and Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone[J]. Chemical Communications,2000,55:103-116.
    [99]岳美娥,徐洁,侯万国.苯乙双胍/类水滑石纳米杂化物的制备及体外释药行为研究[J].材料导报:研究篇,2010,24:111-113.
    [100]Suchanek W. L., Byrappa K., Shuk P., Riman R. E., Janas V. F., TenHuisen K. S.. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution[J]. Journal of Solid State Chemistry,2004,177:793-799.
    [101]Isupov V. P., Chupakhina L. E., Mitrofanova R. P.. Mechanochemical Synthesis of Double Hydroxides[J]. Journal of Materials Synthesis and Processing,2000, 8:251-253.
    [102]Chitrakar R., Tezuka S., Sonoda A., Sakane K., Ooi K., Hirotsu T. A Solvent-free Synthesis of Zn-Al Layered Double Hydroxides[J]. Chemistry Letters,2007,36:446-447.
    [103]Tongamp W., Zhang Q., Saito F.. Mechanochemical route for synthesizing nitrate form of layered double hydroxide[J]. Powder Technology,2008,185, 43-48.
    [104]Khusnutdinov V. P., Isupov V. P.. Mechanochemical synthesis of a hydroxycarbonate form of layered magnesium aluminum hydroxides[J]. Inorganic Materials,2008,44,263-267
    [105]Ay A. N., Zumreoglu-Karan B., Mafra L.. A simple mechanochemical route to Layered Double Hydroxides:Synthesis of Hydrotalcite-like Mg-Al-NO3-LDH by manual grinding in a mortar[J]. Zeitschrift fur anorganische und allgemeine Chemie,2009,635,1470-1475.
    [106]于洪波,徐冰,边令喜,高宏.机械力化学法合成Mg-Al类水滑石研究[J].人工晶体学报,2010,39:1292-1307.
    [107]Iwasaki T., Shimizu K., Nakamura H., Watano S.. Novel mechanochemical process for facile and rapid synthesis of a Co-Fe layered double hydroxide[J]. Materials Letters,2012,68,406-408.
    [108]Jia C. X., Zhang X. Q., Li S. P.. Studies on Mechanochemical Method to Synthesize LDH Nanoparticles[J]. Chinese Journal of Chemistry,2012,30: 277-282.
    [109]Pavlovic I., Perez M. R., Barriga C., Ulibarri M. A.. Adsorption of Cu2+, Cd2+ and Pb2+ ions by layered double hydroxides intercalated with the chelating agents diethylenetriaminepentaacetate and meso-2,3-dimercaptosuccinate[J]. Applied Clay Science,2009,43:125-129.
    [110]Komarneni S., Kozai N., Roy R.. Novel function for anionic clays:selective transition metal cation uptake by diadochy[J]. Journal of Materials Chemistry, 1998,8:1329-1331.
    [111]Seida Y., Nakano Y., Nakamura Y.. Rapid removal of dilute lead from water by pyroaurite-like compound[J]. Water Research,2001,35:2341-2346.
    [112]Mavrov V., Erwe T., Chmiel H.. Selective separation of heavy metals from industrial wastewater streams by means of heavy metal bonding agents[J]. Water, Air, Soil, Pollution,2004,4:147-155.
    [113]Lazaridis N. K.. Sorption removal of anions and cations in single batch systems by uncalcined and calcined Mg-Al-CO3 hydrotalcite[J]. Water, Air, Soil, Pollution,2003,146:127-139.
    [114]Park M., Choi C. L., Seo Y. J., Yeo S. K., Choi J., Komameni S., Lee J. H.. Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide[J]. Applied Clay Science,2007,37:143-148.
    [115]Liang X. F., Hou W. G., Xu Y. M., Sun G. H., Wang L., Sun Y., Qin X.. Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid[J]. Colloids and Surfaces A,2010,366: 50-57.
    [116]朱洪涛,马玉晶.水滑石类材料在重金属废水治理中的应用进展[J].水处理技术,2011,37:11-14.
    [117]Crespo I., Barriga C., Rives V., Ulibarri M. A.. Intercalation of iron hexacyano complexes in Zn,Al-hydrotalcite[J]. Solid State Ionics,1997,101-103:729-735.
    [118]Kloprogge J. T., Weier M., Crespo I., Ulibarri M. A., Barriga, C., Rives, V., Martens, W. N., Frost, R. L.. Intercalation of iron hexacyano complexes in Zn,Al-hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study[J]. Journal of Solid State Chemistry,2004,177:1382-1387.
    [119]Carja G., Nakamura R., Niiyama H.. Tailoring the porous properties of iron containing mixed oxides for As(V) removal from aqueous solutions[J]. Microporous and Mesoporous Materials,2005,83:94-100.
    [120]徐淑芬,倪哲明,夏盛杰,陈爱民,赵少芬.Mg/Al双金属氧化物吸附Cr(Ⅵ)的动力学和热力学机理[J].硅酸盐学报,2009,37:773-777.
    [121]朱玲,梁存珍,於俊杰,谭潮洪,曾庆蔚.CuAl水滑石衍生物吸附Cr(Ⅵ)的性能研究[J].环境科学与技术,2010,33:39-46.
    [122]Perez M. R., Pavlovic I., Barriga C., Cornejo J., Hermosin M. C., Ulibarri M. A.. Uptake of Cu2+, Cd2+ and Pb2+ on Zn-Al layered double hydroxide intercalated with edta[J]. Applied Clay Science,2006,32:245-251.
    [123]Nakayama H., Hirami S., Tsuhako M.. Selective adsorption of mercury ion by mercaptocarboxylic acid intercalated Mg-Al layered double hydroxide[J]. Journal of Colloid and Interface Science,2007,315:177-183.
    [124]Kameda T., Takeuchi H., Yoshioka T.. Uptake of heavy metal ions from aqueous solution using Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate[J]. Separation and Purification Technology,2008,62: 330-336.
    [125]Anirudhan T. S., Suchithra P. S.. Synthesis and characterization of tannin-immobilized hydrotalcite as a potential adsorbent of heavy metal ions in effluent treatments[J]. Applied Clay Science,2008,42:214-223.
    [126]李学慧,吴业,刘宗明.磁流体的研制[J].化学世界,1998,1:15-17.
    [127]张海永,景晓燕,王君,张密林,段雪.磁性纳米镁铝水滑石的合成及表征[J].应用化学,2002,19:734-737.
    [128]Rojas R., Perez M. R., Erro E. M., Ortiz P. I., Ulibarri M. A., Giacomelli C. E.. EDTA modified LDHs as Cu2+ scavengers:Removal kinetics and sorbent stability[J]. Journal of Colloid and Interface Science,2009,331:425-431.
    [129]Liu C. X., Hou W. G, Li L. F., Li Y., Liu S. J.. Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide[J]. Journal of Solid State Chemistry,2008,181:1792-1797.
    [130]Zhao L. X., Hou, W. G.. The effect of sorbent concentration on the partition coefficient of pollutants between aqueous and particulate phases[J]. Colloids and Surface A,2012,396:29-34.
    [131]Zhao L. X., Song S. E., Du N., Hou W. G.. A sorbent concentration-dependent Langmuir isotherm[J]. Acta Physico-Chimica Sinica,2012,28:2905-2910.
    [132]Zhao L. X., Song S. E., Du N., Hou W. G.. A sorbent concentration-dependent Freundlich isotherm[J]. Colloid and Polymer Science,2013,291:541-550.