环境因素对植物细胞微核率及热激蛋白诱导的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技进步、工业发展以及人们生活水平的提高,环境问题日益加剧,其危害性可归为三类:致畸、致癌、致突变性,称为三致性,而三致性的根本又在于致突变性,致畸、致癌常常是致突变的结果。因此,检测环境中的各种具致突变性的因素以及物质一直是众多生物学者的研究热点。蚕豆微核技术即是一种较有效的致突变性检测手段之一。另外,由于环境对生物的负面影响,生物本身为了生存必须适应环境,在其长期的进化长河中逐步获得了一系列的适应机制来消除或部分减轻这些不良影响,而热激蛋白就是生物在受到环境胁迫时产生的并能帮助细胞免受胁迫伤害的一类蛋白质。本实验即主要以蚕豆为材料研究了重金属Cr~(6+)与高温两种常见环境因素对蚕豆根尖细胞微核率的影响,以大麦为材料初步探讨了温度对植物叶片热激蛋白的诱导,并摸索了一套比较经济且方便的植物叶片可溶性蛋白双向电泳的方法。
     1.环境对蚕豆根尖细胞微核率的影响
     利用蚕豆根尖细胞微核技术比较研究了Cr~(6+)和温度对植物根尖细胞微核率的影响,证实了温度和Cr~(6+)等重金属一样,也可以对蚕豆根尖细胞的细胞核和染色体产生影响,其遗传学毒理效应与危害性也相似。当处理温度在28℃-34℃之间递增时,蚕豆根尖的微核率虽然变化不大,不过仍然呈现递增关系,而当温度在37℃-43℃递增,则呈现很明显的递增关系;但当温度升高到46℃以后,其微核率却反而降低。这与Cr~(6+)和蚕豆根尖细胞微核率以及以往的相关实验结果都相吻合。
     2.蚕豆叶片可溶性蛋白提取及双向电泳
     以蚕豆叶片为材料,探讨了植物叶片可溶性蛋白在提取、双向电泳中的等电聚焦、平衡以及固定染色方面的一些改进,并通过银染得到了清晰的双向电泳图谱,从图中可肉眼观察到300多个清晰的蛋白斑点,等电点多在4-7之间,分子量在14-100kDa之间。
    
    ⑨羔糕
    3.温度对大麦叶片热激蛋白的诱导
     以大麦叶片为材料,利用355一Met作为蛋白标记,通过对双向电泳中等电
    聚焦后的凝胶PH值的测定,结合双向电泳图谱,简单地分析了双向电泳的分
    辨能力与等电聚焦后的凝胶中的PH梯度之间的关系;并通过SDS一PAGE着重研
    究了大麦叶片在黑暗和光照的条件下诱导热激蛋白强度的差异。结果表明,凝
    胶在PH值6一8.4区间,其pH值与PH值测定点间的距离成直线关系,形成了
    良好的pH梯度,所以此区间对蛋白质的分离效果最佳,分辨能力也最强。除
    此,本实验首次发现在相同的温度热激处理下,植物在黑暗条件下的热激反应
    比光照下要强烈,热激蛋白的合成量也更多一些,其机理尚待进一步研究。
Following the progress of science and technology, the development of industry and the improvement of standard of people' s living, the problems of environment prick up increasingly. The imperils can turn to three kinds: aberration, carcinogen and mutant. And the root of them rest with mutant, because both aberration and carcinogen often result from mutant. Thus, monitoring all kinds of mutant factors and materials in our environment is always the study hotspot by many biologists. Vicia micronucleus technology is just one of rather efficient measures of monitoring mutagens. In the other hand, because of the negative effects on the organisms by the surroundings, they themselves have to adapt to live. So they have tried to acquire a series of adaption mechanism to avoid or partly alleviate the bad effects step by step during the long evolutional period. The HSPs belong to these sorts of proteins which can be induced by heat shock and help avoiding the hurt from it. This experiment chiefly study on the comparati
    ve effects of micronucleus frequency on Vicia root tips after treating with two familiar factors: heat shock and Cr6+. Then by use of barley, discuss preliminaryly the HSPs induced by temperature and fish out a suit of quite economical and convenient method of two-dimensional gel electrophoresis of soluble proteins from the leaves of plant.
    1. Effects on micronucleus frequency of Vicia root tips induced by environmental factors
    Applying with micronucleus test of Vicia root tips, the paper comparatively study on the effects on micronucleus frequency of Vicia root tips after treating with heat shock and Cr6+, and confirm temperature
    
    
    can affect the cell nucleolus and chromosome of Vicia root tips as heavy metal. And the genetic toxicological effects and imperils are also comparable. When the treating temperatures increase by degrees from 28癈 to 34℃, the micronucleus frequency of Vicia root tips increase though it is very slight. Also, between 37℃-43℃, the micronucleus frequency of Vicia root tips increase clearly. But when the temperature add up to 46℃, the micronucleus frenquency decrease on the contrary. Such are also tallied with the relative experimental results of Cr6+ and other heavy metals ago.
    2. Research on the isolation and two-dimensional gel electrophoresis of soluble proteins from the leaves of plant
    By use of Vicia, this paper studies on soluble proteins of leaves of plant, including isolation, the course of two-dimensional gel electrophoresis, and dying. Following these courses, stable and rather clear map of two-dimensional gel electrophoresis is obtained through silver dying, and more than 300 spots can be observed by naked-eye. Most of their isoelectric points are from 4.0 to 7. 0, and their molecular weight are from 14 to lOOkDa.
    3. The HSPs of the leaves from barley induced by temperature Applying with the protein marker of 35S-Met, this paper study on the
    testing of pH values in the gel after IEF of two-dimensional gel electrophoresis. Linking to the map of two-dimensional gel electrophoresis, then analyze simply the relation between resolving power of two-dimensional gel electrophoresis and pH values in the gel after IEF. Moreover, this paper stresses on the differences of intensity of HSPs induced by heat shock in the dark and in the light. The results indicate, the pH values between 6 to 8. 4 in the gel are linear with the distances between the testing spots, and form the well-grads of pH values. So the effect of proteins separation and the resolving power are the
    
    
    best of all. Besides, this experiment finds at first plants response more intensively in the dark than in the light at the same temperature of heat shock, and gets more synthetical HSPs. But the mechanism need furthermore study.
引文
1.臧宇,蚕豆根尖微核试验的应用与发展,癌变、畸变、突变,1999;11(3):158-160
    2. Degrassi F and Rizzoni M, Micronucleus test in vicia faba root tips to detect mutagen-damage in fresh-water pollution, Murat Res, 1982: 97:19
    3. Ma TH, Vicia cytogenetic. tests for environmental mutagens:A report of the U. S. Environmental Protection Agency Gen-Tox Program, 1982:99 (3): 257-271
    4.陈光荣等,利用蚕豆根尖的微核技术监测青山湖污染的研究,中国环境科学,1985;5(4):2
    5.陈光荣、金波等,污染指数在微核技术监测水质污染中的应用[J],中国环境科学,1986:6(2):60-63
    6.中国环保局,环境监测技术规范,第四册—生物监测(水环境部分),中国环境科学出版社,1986:75-78
    7.叶亚新,抗癌药物长春新碱的微核效应,铁道师院学报,2001;18(1):53-55
    8.谢育新,蚕豆根尖微核技术监测农药污染的研究,环境保护科学,1993;19(1):82-84
    9.唐维、吕康鸿,蚕豆根尖细胞微核试验监测甲基对硫磷污染研究,2003;13(2):68-69
    10.钱晓薇、朱小春等,三氧化二砷对蚕豆根毒性效应的细胞遗传学研究,遗传,2002;24(3):305-309
    11.杨其伟等,四硼酸钠诱导蚕豆根尖细胞微核及染色体畸变的实验研究,生物学杂志,1994;2:14-15
    12.段昌群、王焕校,重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J],植物学报,1995;37(1):14-16
    13.刘瑞祥、常惠丽,用蚕豆根尖细胞微核技术监测浊漳河水污染,山西大学学报(自然科学版),2002;25(3):260-262
    14.仪慧兰、孟紫强,SO_2对蚕豆根尖细胞微核的诱导作用,生态学报,2003;23(2):292-296
    15.吕敏,常州地区土壤的致突性监测研究,常州师专学报,2002:20(2):23-26
    16.杨辉等,蚕豆根尖微核试验法监测土壤污染的研究,农业环境保护,1997;16(1):20-23
    
    
    17.嵇庆、屈艾等,蚕豆根尖细胞微核法监测连云港市近海海水污染的研究,环境科学学报,1994;14(3):316-322
    18.唐庆国、陈晓春,蚕豆根尖微核技术检测化妆品的致突变性,环境与健康杂志,1997;14(5):199-201
    19.嵇庆、宋卫中等,蚕豆根尖微核技术法检测10种脂溶性面霜的致突变性,环境与健康杂志,1994:11(3):137
    20.浦明秋、毛飞鹏,蚕豆根尖细胞微核试验—尼古丁引起的蚕豆根尖细胞损伤的诱变效应,中原医刊,1996;23(4):12
    21.徐鑫成,香烟烟雾凝集物对蚕豆微核的诱变效应,高师理科学刊,1998;18(4):53-55
    22.蒋辉权 倪晓平等,应用蚕豆根尖微核试验技术对二氧化氯消毒剂诱变性的研究,癌变.畸变.突变,2001:13(2):98-101
    23.佟凤芹 李荀等,洗涤剂对蚕豆根尖细胞诱变性研究,辽宁师专学报(自然科学版),2000;2(4):103-105
    24. Grant WF, Plant mutagen assays based upon chromosome mutations :E. J. Klekowak; Jr. (Ed), Environmental Mutagenesis, Carciongenesis and Plant Biology; Vol. 2, New York:Praeger Press, 1982
    25. Vig BK, Environ Health Perspect, 1978; 27:27
    26. Grant WF, The present status of higher plant bioassays for the detection of environmental mutagens, Mutat. Res. 1994; 310:175
    27.王英彦、汤大友,蚕豆根尖细胞微核技术检测技术的污染指示性与其他指标的比较,中国环境科学,1987;7(5):45-50
    28.王英彦等,~(60)Co γ-射线和平阳霉素诱发蚕豆根尖细胞微核技术与染色体畸变,环境科学,1984;5(4):20
    29.王焕校等,利用蚕豆根尖细胞微核技术监测滇池水质污染的初步研究[J],云南大学学报(自然科学版),1993;15(2):138-144
    30.张宗等,蚕豆叶尖细胞及人淋巴细胞微核率对超声波诊断仪的监测[J],中国环境科学,1994:10(5):15-19
    31.朱必才等,利用蚕豆根尖细胞诱变法监测浐河西安段污染的研究[J],遗传,1988;10(5):15-19
    
    
    32. Reiger R et al, Comparative Chemical Mutagenesis, Eds. F.J, de Serrea et al, Plemun Press, New York, 1981:339
    33. Schmid W, The micronucleus test, Mut. Res. 1975:31 (1): 9-15
    34. Yingyan Wang et al, Mut. Can.& Mal. Eds. E. H, Y. Chu & W.M, Generoso, Plemun Press, New York, 1984:841(Abs.)
    35.王英彦,环境科学,1984;5(4):20
    36.王英彦,中国环境科学,1986;6(2):19
    37. D Swinbanks, Government backs proteome proposal, Natures, 1995; 378 (6558):653
    38. Wasinger VC et al, Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium, Electrophoresis, 1995; 16(7): 1090-1094
    39. Blackstock WP et al, Proteomics: quantitative and physical mapping of cellular proteins, Trend Biolo. Techonol, 1999; 17:121-127
    40. Klose J, Protein mapping by combined isoelectric focusing and eletrophoresis of mouse tissues:A novel approach to testing for induced point mutations in mammals, Human Genetik, 1975;26(3): 231-243
    41. O'Farrell PH, High resolution two-dimensional eletrophoresis of proteins[J], J. Biochem, 1975:250(10): 4007-4021
    42. Bjellgvist B et al, J. Biochem. Biophys Methods, 1982; 6:317
    43. Corbett JM, Dunn MJ, Posch A, et al, Positional reproducibility of protein spots in two-dimensional polyarylamide gel eletrophoresis using immobilized pH gradient isoelectric focusing in the first dimension:an interlabratory comparison [J], Eletrophoresis, 1994:15(8-9): 1205-1211
    44. Westbrook JA, Yah JX, Wait R et al, Zooming-in on the proteome: very narrow-range immobilized pH gradients reveal more protein species and isoforms[J], Eletrophoresis, 2001; 22 (14): 2865-2871
    45. Grog A, Obermaier G, Bougth G et al, The current state of two-dimensional eletrophoresis with immobilized pH gradients[J], Eletrophoresis, 2001;22(6):1037-1053
    
    
    46. Cordwell SJ, Nouwens AS, Verrills NM et al, Subproteomics based upon protein cellular location and relative solubities in conjunction with composite two-dimensional eletrophoresis gels[J], Eletrophoresis, 2000;21(6): 1094-1103
    47. Fountoulakis M, Takacs B, Effect of strong detergents and chaotropes on the detection of proteins in two-dimensional gels[J], Eletrophoresis, 2001;22(9):1593-1602
    48.兰彦、钱小红等,蛋白质组分析中蛋白质分步提取方法的建立,生物化学与生物物理进展,2001;28(3):415
    49.郭尧君,蛋白质电泳实验技术,科学出版社,1999,2
    50. Rittossa F, A new puffing pattern induced by heat shock and DNP in Drosophila,Experimentia, 1962:18:571-573
    51. E Altman et al, Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli, EMBO J, 1991; 10:239-245
    52. Kunihiko Yasuda et al, Cloning and Expression of Murine High Molecular Mass Heat Shock Proteins-HSP105, J. Biol. Chem., Dec 1995; 270:29718-29723
    53. R Morimoto and E Fodor, Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes, J. Cell Biol, Oct 1984; 99:1316-1323
    54. Waters E.R. et al, Evolution, structure and function of the small heat shock proteins in plants, J Exp Bot, 1996; 47:325-338
    55. Bouchard R.A., Characterization of expressed meiotic prophase repeat transcript clones of Lilium: meiosis-specific expression, relatedness, and affinities to small heat shock protein genes, Genome, 1990:33(1):68-79
    56. Dietrich, P.S. et al, Isolation and characterisation of a small heat shock protein gene from maize, Plant Physiology, 1991:96:1268-1276
    57. Atkinson, B.G. et al, The independent stage-specific expression of the 18kDa heat shock protein genes during microsporogenesis in Zea mays L., Dev Genet, 1993; 14:15-26
    58. Zarsky, V. et al, The expression of small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation, Plant Cell and Env.,
    
    1995;18: 139-147
    59. Zimmerman J. L. et al, Novel regulation of heat shock genes during carrot somatic embryo development, Plant Cell, 1989; 1(12): 1137-1146
    60. Gyorgyey, J. et al, Alfalfa heat shock genes are differentially expressed during somatic embryogenesis, Plant Mol Biol, 1991; 16:999-1007
    61. Hernandez L. D. and Vierling E, Expression of low molecular weight heat shock proteins under field conditions, Plant Physiol, 1993; 101: 1209-1216
    62. Coca M.A. et al, Expression of sunflower lowmolecular-weight heat-shock proteins during embryogenesis and persistence after germination: localisation and possible function implications, Plant Mol Biol, 1994; 25:479-492
    63. DeRocher, A.E. and Vierling, E., Developmental control of small heat shock protein expression during pea seed maturation, Plant J, 1994; 5:93-102
    64. zur Nieden, U. et al, Tissue specific localisation of heat-stress proteins during embryo formation, Planta, 1995; 196:530-538
    65. Dong J.Z. and Dunstan D. I., Characterization of three heat-shock-protein genes and their developmental regulation during somatic embryogenesis in white spruce, Planta, 1996:200(1): 85-91
    66. Sch(?)ffl F. et al, Regulation of heat shock response, Plant Physiol, 1998; 117: 1135-1141
    67. Nover L., HSFs and HSPs--a stressful program on transcription factors and chaperones: Stress Proteins and the Heat Shock Response, New Biol., 1991;3(9):855-859
    68. Forreiter C. Nover L., Heat induced stress proteins and the concept of molecular chaperones, J Biosci, 1998; 23:287-302
    69. Scharf KD et al, The expanding family of Arabidosis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains(Acdproteins), Cell Stress Chaperones, 2001; 6(3): 225-237
    70. Plesofsky-Vig N et al, Phylogeny of the alpha-crystallin-related heat-shock proteins, J Mol Evol, 1992; 35:537-545
    
    
    71. Czarnecka E. et al, DNA sequence and transcript mapping of a soybean gene encoding a small heatshock protein, Proc Natl Acad Sci USA, 1985; 82:3726-3730
    72. Lindquist S and Craig EA, The heat-shock proteins, Annu. Rev. Genet, 1988; 22:631-677
    73. Vierling, Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein, Mol. Gen. Genet, 1991;226 (3): 425-431
    74. Vierling E., The molecular evolution of the small heat shock proteins in plants, Genetics, 1995; 141:785-795
    75. Sanders BM, Stress proteins in aquatic organisms:an environmental perspective, Crit. Rev. Toxicol, 1993, 23(1): 49-75
    76. Queitsch et al, Hsp90 as a capacitor of phenotypic variation, Nature, 2002;417:618-624