二氧化钛纳米管材料在环境污染物痕量分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2纳米管作为一种新型的二氧化钛材料,其主要在传感器、染料敏化太阳能电池、光电催化和光催化等领域有比较多的应用,在环境领域的应用主要是光电催化和光催化等方面。基于TiO2纳米管比TiO2纳米颗粒具有更大的比表面积,应具有更强的吸附能力。高度有序的TiO2纳米管阵列是近年来发展起来的一种TiO2新型材料,具有比TiO2纳米管颗粒更好的理化性质、更大的比表面积,TiO2纳米管与基底直接相连,结合非常牢固,不易脱落。TiO2纳米管阵列排列有序,不易团聚。为应用的稳定性及其回收利用奠定了比较好的基础,受到了国内外同行的广泛关注。但是它们在环境分析化学方面的应用非常少,基于其独特的理化性质,在环境领域理应发挥更大的作用,尤其是在环境污染物的高效富集与检测方面,应该具有更好的应用前景。
     本文在大量文献的基础上采用TiO2纳米管及其阵列开发了系列环境污染物的痕量分析检测方法,提出了微固相平衡萃取(μSPEE)技术,并初步研究了TiO2纳米管阵列对典型环境污染物的吸附机制。论文从总体上可分为四部分:
     第一部分综述了固相萃取与TiO2纳米管的研究进展。
     第二部分对TiO2纳米管作为萃取有机磷和苯甲酰脲杀虫剂的固相萃取吸附剂的可行性进行了探索。以毒死蜱、甲拌磷和甲基对硫磷作为研究对象,以正己烷作为洗脱剂,以气相色谱火焰光度检测作为分析手段,建立了以TiO2纳米管作为固相萃取剂检测环境水样中毒死蜱、甲拌磷和甲基对硫磷的灵敏方法。研究结果表明,TiO2纳米管可以实现对毒死蜱、甲拌磷和甲基对硫磷的高效富集,方法的检测限对毒死蜱、甲拌磷和甲基对硫磷分别为0.11、0.014、0.0025μg L-1,环境水样分析的加标回收率在86.5%-115.1%之间。TiO2纳米管对除虫脲、灭幼脲、杀铃脲、氟虫脲、氟啶脲等苯甲酰脲类杀虫剂也展现了优越的富集性能,与高效液相色谱联用建立的方法检测限在0.062-0.21μg L-1之间,对四种实际环境水样分析,加标回收率在82-100.2%之间。
     第三部分对TiO2纳米管阵列作为高效吸附剂的可行性进行了探索,提出了一种新型的萃取方式一微固相平衡萃取。以典型环境污染物联苯菊酯、甲氰菊酯、三氟氯氰菊酯、氰戊菊酯、溴氰菊酯等拟除虫菊酯类杀虫剂、六六六、DDT及其代谢产物、多氯联苯作为目标物,采用微固相平衡萃取考察了TiO2纳米管阵列的吸附性能,建立了相应的灵敏分析方法,并用实际水样进行了方法验证。研究结果表明,TiO2纳米管阵列对拟除虫菊酯类杀虫剂、六六六、DDT及其代谢产物、多氯联苯均具有很好的吸附性能,建立的方法对拟除虫菊酯类杀虫剂的检测限在0.018-0.070μgL-1,实际水样加标回收率在81.9-110.6%;六六六和DDT及其代谢产物的检测限在0.0076-0.10μg L-1,环境水样的加标回收率在78-102.8%;多氯联苯的检测限在0.02-0.10μg L-1,实际水样的加标回收率在95.8-110.5%。
     第四部分采用阳离子表面活性剂十六烷基三甲胺对TiO2纳米管阵列进行了修饰,研究发现用阳离子表面活性剂十六烷基三甲胺修饰过的TiO2纳米管阵列对多环芳烃有很强的吸附性能,多环芳烃能定量的被吸附在修饰过的TiO2纳米管阵列片上,实现高效富集。将微固相平衡萃取与高效液相色谱联用建立了多环芳烃的痕量分析方法,检测限在0.026-0.82μgL-1,实际环境水样的加标回收率在75.0-114%之间。以芘和荧蒽作为代表性物质,初步研究了它们的吸附等温线,对其在TiO2纳米管阵列上的吸附机制进行了初步探讨。
Titanium dioxide nanotubes, a new type of TiO2 materials, have mainly used in many fields such as sensors, dye sensitized solar cells, photoelectric catalysis and photocatalysis, etc. They were widely used for photoelectric catalysis and photocatalysis in environmental field. They have larger specific surface area than that of titanium dioxide nanoparticles, titanium dioxide nanotubes should have much better adsorption ability. Recently, highly ordered TiO2 nanotube array was introduced as a new kind of TiO2 materials. In contrast, it has better physical and chemical properties, much larger specific surface area than that of TiO2 nanotube powders. Except these, TiO2 nanotube is connected with the substrate directly and tightly, and not easy to be desquamated. Because of the highly ordered structure and non-agglomeration, it is very easy to realize stable and cycled application of TiO2 nanotube array. So TiO2 nanotube array absorbed much more attention. However, there are very few reports on the application of TiO2 nanotube array in environmental analytical field. Due to their special physical and chemical properties, TiO2 nanotube array should play an important role in environmental field, especially in preconcentration and detection of environmental pollutants, and have a great prospect.
     In this thesis, a series of new analytical methods were developd to determine environment pollutants with TiO2 nanotubes and TiO2 nanotube array, and a novel enrichment technique micro-solid phase equilibrium extraction was well established. Further a preliminary study on the sorption mechanism was carried out. This thesis consists, of the following four parts:
     In the first part, the research progress of solid phase extraction and TiO2 nanotubes were reviewed.
     In the second part, the feasibility of TiO2 nanotubes as solid phase extraction absorbents for organophosphorus and benzoylurea pesticides was investigated. The experimental results showed that organophosphorus pesticides such as chlorpyrifos, phorate and methyl parathion could be quantitatively absorbed onto TiO2 nanotubes packed cartridge, and these compounds retained on the cartridge can be desorbed quantitatively with suitable amounts of n-hexane. The detection limits of the proposed method for the determination of chlorpyrifos, phorate and methyl parathion were 0.11,0.014,0.0025μgL-1 respectively. The analysis of real water samples demonstrated that satisfied spiked recoveries were achieved in the range of 86.5%-115.1%. The experimental results indicated that TiO2 nanotubes had good adsorption capacity for diflubenzuron, chlorbenzuron, triflumuron, flufenoxuron and chlorfluazuron in environmental water samples. A new, sensitive, and rapid method was developed for determination of such compounds with TiO2 nanotubes cartridge in combination with high performance liquid chromatography, and the detection limits were in the range of 0.0.62-0.21μgL-1. Four real water samples were used to validate the developed method, and the spiked recoveries were in the range of 82-100.2%.
     The potential of TiO2 nanotube array as absorbent for some organic pollutants was investigated in the third part. A new method micro-solid phase equilibrium extraction (μSPEE) procedure was established. The experimental results show that some organic pollutants such as pyrethroid pesticides, organochlorine pesticides and polychlorinated biphenyls can be quantitatively absorbed on TiO2 nanotube array sheet, then these compounds retained on the TiO2 nanotube array sheet can be desorbed quantitatively with little amounts of organic solvent, finally the analytes can be detennined by gas chromatography-electron capture detector. This method has been applied to determine pyrethroid pesticides, organochlorine pesticides and polychlorinated biphenyls in several environmental water samples. The detection limits of the developed method were 0.018-0.070μgL-1,0.10-0.0076μgL-1,0.020-0.10μgL-1 respectively. The spiked recoveries from real environmental water samples were in the range of 81.9-110.6%,78-102.8% and 95.8-110.5% respectively.
     In the last part, ordered TiO2 nanotube array which was modified with cetyltrimethylammonium bromide was used to preconcentrate polycyclic aromatic hydrocarbons (PAHs) based on micro-solid phase equilibrium extraction. The experimental results show that the modified ordered TiO2 nanotube array has good enrichment ability to PAHs. The detection limits of the developed method were in the range of 0.026-0.82μgL-1. The spiked recoveries from real environmental water samples were in the range of 75.0-114%. A primary study on the absorption mechanism was carried out with pyrene and fluoranthene as the model targets.
引文
[1]Barker, S. A., Long, A. R.,Short, C. R. Isolation of drug residues from tissues by solid phase dispersion [J]. J. Chromatogr.,1989,475:353-361.
    [2]Capriotti, A. L., Cavaliere, C., Giansanti, P. et al. Recent developments in matrix solid-phase dispersion extraction [J]. J. Chromatogr. A,2010,1217:2521-2532.
    [3]Basheer, C., Alnedhary, A. A., Rao, B. S. M. et al. Development and Application of Porous Membrane-Protected Carbon Nanotube Micro-Solid-Phase Extraction Combined with Gas Chromatography/Mass Spectrometry[J]. Anal. Chem.,2006,78:2853-2858.
    [4]Kanimozhi, S., Basheer, C., Narasimhan, K. et al. Application of porous membrane protected micro-solid-phase-extraction combined with gas chromatography-mass spectrometry for the determination of estrogens in ovarian cyst fluid samples[J]. Anal. Chim. Acta,2011,687:56-60.
    [5]Basheer, C., Chong, H. G., Hii, T. M. et al. Application of porous membrane-protected micro-solid-phase extraction combined with HPLC for the analysis of acidic drugs in wastewater[J]. Anal. Chem.,2007,79:6845-6850.
    [6]Braus, H., Middleton, F. M.,Walton, G. Organic chemical compounds in raw and filtered surface waters [J]. Anal. Chem.,1951,23:1160-1164.
    [7]Fu, C.-G.,Xu, H.-D. High-performance liquid chromatography with post-column chemiluminescence detection for simultaneous determination of trace N-nitrosamines and corresponding secondary amines in groundwater[J]. The Analyst,1995,120:1147-1151.
    [8]傅承光,万谦宏.微型吸附柱富集—高效液相色谱法测定水中痕量N-亚硝胺[J].分析化学,1985,13:595-598.
    [9]Sojo, L. E.,Djauhari, J. Determination of chlorophenolics in waters by membrane solid-phase extraction:comparison between C and activated carbon 18 membranes and between modes of extraction and elution[J]. J. Chromatogr. A,1999,840:21-30.
    [10]Slobodnfk, J., Oztezkizan, O., Lingeman, H. et al. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns [J]. J. Chromatogr. A,1996,750:227-238.
    [11]Ensafi, A. A.,Shiraz, A. Z. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry[J]. J.Hazard.Mater.,2008,150:554-559.
    [12]Starvin, A. M.,Rao, T. P. Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon[J]. Talanta,2004,63:225-232.
    [13]Ensafi, A. A.,Ghaderi, A. R. On-line solid phase selective separation and preconcentration of Cd(II)by solid-phase extraction using carbon active modified with methyl thymol blue[J]. J.Hazard.Mater., 2007,148:319-325.
    [14]Ghaedi, M., Ahmadi, F.,Soylak, M. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples[J]. J.Hazard.Mater.,2007, 147:226-231.
    [15]Riley, J. P.,Taylor, D. The analytical concentration of traces of dissolved organic materials from sea water with Amberlite XAD-1 resin [J]. Anal. Chim. Acta,1969,46: 307-309.
    [16]Burnham, A. K., Calder, G. V., Fritz, J. S. et al. Identification and estimation of neutral organic contaminants in potable water [J]. Anal. Chem.,1972,44:139-142.
    [17]Gimeno, R. A., Aguilar, C., Marce, R. M. et al. Monitoring of antifouling agents in water samples by on-line solid-phase extraction-liquid chromatography-atmospheric pressure chemical ionization mass spectrometry[J]. J. Chromatogr. A,2001,915:139-147.
    [18]Weigel, S., Bester, K.,Huhnerfuss, H. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2001,912:151-161.
    [19]Mendas, G., Drevenkar, V.,Zupancic-Kralj, L. Solid-phase extraction with styrene-divinylbenzene sorbent for high-performance liquid or gas chromatographic determination of urinary chloro- and methylthiotriazines[J]. J. Chromatogr. A,2001,918:351-359.
    [20]Bratkowska, D., Fontanals, N., Borrull, F. et al. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water[J]. J. Chromatogr. A,2010,1217: 3238-3243.
    [21]Bratkowska, D., Marce, R. M., Cormack, P. A. G. et al. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples[J]. J. Chromatogr. A,2010,1217:1575-1582.
    [22]Lazaro Martinez, J. M., Leal Denis, M. F., Denaday, L. R. et al. Development and characterization of a new polyampholyte-surfactant complex applied to the solid phase extraction of bisphenol-A[J]. Talanta,2009,80:789-796.
    [23]May, W. E., Chesler, S. N., Cram, S. P. et al. Chromatographic analysis of hydrocarbons in marine sediments and seawater[J]. J. Chromatogr. Sci.,1975,13:535-540.
    [24]Little, J. N.,Fallick, G. J. New considerations in detector-application relationships[J]. J. Chromatogr., 1975,112:389-397.
    [25]Zamperlini, G. C. M., Santiago-Silva, M.,Vilegas, W. Solid-phase extraction of sugar cane soot extract for analysis by gas chromatography with flame ionisation and mass spectrometric detection[J]. J. Chromatogr. A,2000,889:281-286.
    [26]Otero, R. R., Grande, B. C.,Gandara, J. S. Multiresidue method for fourteen fungicides in white grapes by liquid-liquid and solid-phase extraction followed by liquid chromatography-diode array detection[J]. J. Chromatogr. A,2003,992:121-131.
    [27]Delcarlo, M., Pepe, A., Sacchetti, G. et al. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry[J]. Food Chem.,2008,111:771-777.
    [28]Fan, Y., Feng, Y. Q.,Da, S. L. On-line selective solid-phase extraction of 4-nitrophenol with beta-cyclodextrin bonded silica[J]. Anal. Chim. Acta,2003,484:145-153.
    [29]马云云,李红莉,时杰等.C18-固相萃取/气相色谱法检测水中氯酚类[J].中国环境监测,2009,25:46-48.
    [30]Chladek, E.,Marano, R. S. Use of bonded phase silica sorbents for the sampling of priority pollutants in wastewaters[J]. J. Chromatogra. Sci.,1984,22:313-320.
    [31]薛群基,徐康.纳米化学[J].化学进展,2000,12:431-444.
    [32]Iijima, S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [33]Cai, Y., Jiang, G., Liu, J. et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol[J]. Anal. Chem.,2003,75: 2517-2521.
    [34]Zhou, Q., Wang, W., Xiao, J. et al. Comparison of the enrichment efficiency of multiwalled carbon Nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples[J]. Microchim. Acta,2005,152:215-224.
    [35]Zhou, Q., Ding, Y.,Xiao, J. Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-perfonnance liquid chromatography[J]. Anal. Bioanal. Chem.,2006,385: 1520-1525.
    [36]Zhou, Q., Xiao, J.,Wang, W. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection[J]. J. Chromatogr. A,2006, 1125:152-158.
    [37]Zhou, Q., Xiao, J.,Wang, W. Trace analysis of triasulfuron and bensulfuron-methyl in water samples using a carbon nanotubes packed cartridge in combination with high-performance liquid chromatography[J]. Microchim. Acta,2006,157:93-98.
    [38]Zhou, Q., Xiao, J.,Ding, Y. Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge [J]. Anal. Chim. Acta,2007,602:223-228.
    [39]Zhou, Q., Xiao, J., Xie, G. et al. Enrichment of pyrethroid residues in environmental waters using a multiwalled carbon nanotubes cartridge, and analysis in combination with high performance liquid chromatography[J]. Microchim. Acta,2008,164:419-424.
    [40]Afzali, D., Jamshidi, R., Ghaseminezhad, S. et al. Preconcentration procedure trace amounts of palladium using modified multiwalled carbon nanotubes sorbent prior to flame atomic absorption spectrometry[J]. Arabian Journal of Chemistry,2011:in press.
    [41]Vellaichamy, S.,Palanivelu, K. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture[J]. J. Hazard. Mater.,2011,185:1131-1139.
    [42]Wang, J., Ma, X., Fang, G. et al. Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions[J]. J. Hazard. Mater.,2011,186:1985-1992.
    [43]Wu, H., Wang, X., Liu, B. et al. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochim. Acta, Part B:At. Spectrosc.,2011,66:74-80.
    [44]Vassileva, E., Proinova, I.,Hadjiivanov, K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase)[J]. Analyst,1996,121:607-612.
    [45]Liu, Y., Liang, P.,Guo, L. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry[J]. Talanta,2005,68:25-30.
    [46]Liu, R.,Liang, P. Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples [J]. Anal. Chim. Acta,2007,604:114-118.
    [47]Liang, P.,Liu, R. Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination[J]. Anal. Chim. Acta,2007,602:32-36.
    [48]Quetel, C. R., Vassileva, E., Petrov, I. et al. First results on Fe solid-phase extraction from coastal seawater using anatase TiO2 nano-particles[J]. Anal. Bioanal. Chem.,2010,396:2349-2361.
    [49]Cheng, G., Lee, C., Hsu, K. et al. On-line microdialysis-nano-Au/TiO2-high-performance liquid chromatography system for the simultaneous determination of cobalt and nickel in water[J]. Journal of Chromatography A,2008,1201:202-207.
    [50]Zhou, Q., Zhao, X.,Xiao, J. Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsorbents coupled with flame atomic absorption spectrometry[J], Talanta, 2009,77:1774-1777.
    [51]Zhou, Q., Mao, J., Xiao, J. et al. Determination of paraquat and diquat preconcentrated with N doped TiO2 nanotubes solid phase extraction cartridge prior to capillary electrophoresis[J]. Anal. Methods, 2010,2:1063-1068.
    [52]Zhou, Q., Ding, Y., Xiao, J. et al. Investigation of the feasibility of TiO2 nanotubes for the enrichment of DDT and its metabolites at trace levels in environmental water samples[J]. J. Chromatogr. A,2007, 1147:10-16.
    [53]Niu, H., Cai, Y., Shi, Y. et al. Cetyltrimethylammonium bromide-coated titanate nanotubes for solid-phase extraction of phthalate esters from natural waters prior to high-performance liquid chromatography analysis[J].J. Chromatogr. A,2007,1172:113-120.
    [54]Sellergren, B. Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer [J]. Anal. Chem.,1994,66:1578-1582.
    [55]Alizadeh, T., Ganjali, M. R., Nourozi, P. et al. Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples[J]. Anal. Chim. Acta,2009,638:154-161.
    [56]Wu, G., Wang, Z., Wang, J. et al. Hierarchically imprinted organic-inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution[J]. Anal. Chim. Acta,2007,582:304-310.
    [57]Xiao, Y., Wu, J., Yue, G. et al. The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells[J]. Electrochim. Acta,2010,55:4573-4578.
    [58]Wang, D., Yu, B., Zhou, F. et al. Synthesis and characterization of anatase TiO2 nanotubes and their use in dye-sensitized solar cells[J]. Mater. Chem. Phys.,2009,113:602-606.
    [59]Liu, Z., Liu, C., Ya, J. et al. Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells[J]. Renewable Energy,2011,36:1177-1181.
    [60]Lee, K.-M., Suryanarayanan, V., Huang, J.-H. et al. Enhancing the performance of dye-sensitized solar cells based on an organic dye by incorporating TiO2 nanotube in a TiO2 nanoparticle film[J]. Electrochim. Acta,2009,54:4123-4130.
    [61]Flores, I. C., de Freitas, J. N., Longo, C. et al. Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte[J]. J. Photochem. Photobiol, A:Chem.,2007,189:153-160.
    [62]Xue, W., Zhang, G., Xu, X. et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chem. Eng. J.,2011:in press.
    [63]Xu, Y.-H., Chen, C., Yang, X.-L. et al. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes[J]. Appl. Surf. Sci.,2009,255:8624-8628.
    [64]Xu, S., Ng, J., Zhang, X. et al. Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube[J]. Colloids Surf., A:Physicochem. Eng. Aspects,2011,379:169-175.
    [65]Peng, Y.-P., Lo, S.-L., Ou, H.-H. et al. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis[J]. J Hazard. Mater.,2010,183: 754-758.
    [66]Liu, H., Liu, G., Xie, G. et al. Gd3+, N-codoped trititanate nanotubes:Preparation, characterization and photocatalytic activity[J]. Appl. Surf. Sci.,2011,257:3728-3732.
    [67]Li, H., Zhu, B., Feng, Y. et al. Synthesis, characterization of TiO2 nanotubes-supported MS (TiO2NTs@MS, M=Cd, Zn) and their photocatalytic activity[J]. J. Solid State Chem.,2007,180: 2136-2142.
    [68]Leghari, S. A. K., Sajjad, S., Chen, F. et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst[J]. Chem. Eng. J.,2011, 166:906-915.
    [69]Costa, L.,Prado, A. TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye[J]. J. Photochem. Photobiol., A:Chem.,2009,201:45-49.
    [70]Grigorieva, A. V., Goodilin, E. A., Derlyukova, L. E. et al. Titania nanotubes supported platinum catalyst in CO oxidation process[J]. Appl. Catal., A:General,2009,362:20-25.
    [71]Xu, S., Ng, J., Zhang, X. et al. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water[J]. Int. J. Hydrogen Energy,2010,35:5254-5261.
    [72]Khan, M. A.,Yang, O. B. Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube[J]. Catal. Today,2009,146:177-182.
    [73]Seo, M.-H., Yuasa, M., Kida, T. et al. Detection of organic gases using TiO2 nanotube-based gas sensors[J]. Procedia Chem.,2009,1:192-195.
    [74]Hong, D., Han, C., Park, S. et al. Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S[J]. Curr. Appl. Phys.,2009,9:172-178.
    [75]Han, C.-H., Hong, D.-W., Kim, I.-J. et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor[J]. Sens. Actuators, B:Chem.,2007,128:320-325.
    [76]Zwilling, V, Aucouturier, M.,Darque-Ceretti, E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J]. Electrochim. Acta,1991,45:921-929.
    [77]Gong, D., Grimes, C. A., Varghese, O. K. et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res.,2001,16:3331-3334.
    [78]Mor, G., Varghese, O., Paulose, M. et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications[J]. Sol. Energy Mater. Sol. Cells,2006,90:2011-2075.
    [79]Zhang, F., Chen, S., Yin, Y. et al. Anodic formation of ordered and bamboo-type TiO2 anotubes arrays with different electrolytes[J]. J. Alloys Compd.,2010,490:247-252.
    [80]Albu, S. P., Ghicov, A., Macak, J. M. et al.250 μn long anodic TiO2 nanotubes with hexagonal self-ordering[J]. Phys. stat. sol. (RRL),2007,1:R65-R67.
    [81]Mor, G. K., Shankar, K., Paulose, M. et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett.,2006,6:215-218.
    [82]Kim, D., Ghicov, A., Albu, S. P. et al. Bamboo-type TiO2 nanotubes:improved conversion efficiency in dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2008,130:16454-16455.
    [83]Park, J. H., Lee, T.-W.,Kang, M. G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays:use in dye-sensitized solar cells[J]. Chem. Commun.,2008:2867-2869.
    [84]Rustomji, C. S., Frandsen, C. J., Jin, S. et al. Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes[J]. J. Phys. Chem. B,2010,114:14537-14543.
    [85]Gao, X.-F., Li, H.-B., Sun, W.-T. et al. CdTe quantum dots-Sensitized TiO2 nanotube array photoelectrodes[J]. J. Phys. Chem. C,2009,113:7531-7535.
    [86]Sun, W.-T., Yu, Y., Pan, H.-Y. et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J. Am. Chem. Soc.,2008,130:1124-1125.
    [87]Varghese, O. K., Gong, D., Paulose, M. et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[J]. Adv. Mater.,2003,15:624-627.
    [88]Mor, G. K., Varghese, O. K., Paulose, M. et al. A self-Cleaning, room-temperature titania-nanotube hydrogen gas sensor [J]. Sens. Lett.,2003,1:42-46.
    [89]Varghese, O. K., Mor, G. K., Grimes, C. A. et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations [J]. J. Nanosci. Nanotechnol.,2004,4: 733-737.
    [90]Mor, G. K., Carvalho, M. A., Varghese, O. K. et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [J]. J. Mater. Res.,2004,19: 628-634.
    [91]Paulose, M., Varghese, O. K., Mor, G. K. et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes [J]. Nanotechnol.,2006,17:398-402.
    [92]Raja, K. S., Misra, M., Mahajan, V. K. et al. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light[J]. J. Power Sources,2006,161: 1450-1457.
    [93]Mor, G. K., Shankar, K., Paulose, M. et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Lett.,2005,5:191-195.
    [94]Paulose, M., Mor, G. K., Varghese, O. K. et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. J. Photochem. PhotobioL., A:Chem., 2006,178:8-15.
    [95]Mor, G. K., Varghese, O. K., Wilke, R. H. T. et al. p-Type Cu-Ti-O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation[J]. Nano Lett., 2008,8:1906-1911.
    [96]卢露,张云怀,肖鹏等.TiO2纳米管光催化分解水产氢研究新进展[J].化工进展,2008,28:1913-1917.
    [97]Macak, J. M., Zlamal, M., Krysa, J. et al. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts[J]. Small,2007,3:300-304.
    [98]Albu, S. P., Ghicov, A., Macak, J. M. et al. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications[J]. Nano Lett.,2007,7:1286-1289.
    [99]Sun, L., Li, J., Wang, C. L. et al. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity[J]. Sol. Energy Mater. Sol. Cells,2009,93: 1875-1880.
    [100]Zhang, Z. H., Yuan, Y., Shi, G. et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for Azo dye degradation[J]. Environ. Sci. Technol.,2007,41:6259-6263.
    [101]Kar, A., Smith, Y. R.,Subramanian, V. R. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires[J]. Environ. Sci. Technol.,2009,43: 3260-3265.
    [102]Liu, H., Liu, G.,Zhou, Q. Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity[J]. J. Solid State Chem.,2009,182: 3238-3242.
    [103]Liu, H., Liu, G.,Shi, X. N/Zr-codoped TiO2 nanotube arrays:Fabrication, characterization, and enhanced photocatalytic activity[J]. Colloids Surf., A:Physicochem. Eng. Aspects,2010,363:35-40.
    [104]Liu, H., Liu, G., Fan, J. et al. Photoelectrocatalytic degradation of 4,4'-dibromobiphenyl in aqueous solution on TiO2 and doped TiO2 nanotube arrays[J]. Chemosphere,2011,82:43-47.
    [105]Zhang, J., Zhou, B., Zheng, Q. et al. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array[J]. Water Res.,2009,43:1986-1992.
    [106]Liu, H., Wang, D., Ji, L. et al. A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity[J]. J. Chromatogr. A,2010,1217: 1898-1903.
    [107]Honeycutt, R. C.,Schabcker, D. J. Mechanisms of pesticides movement into ground water[M]. CRC Press, Boca Raton, FL,1994.
    [108]Tsoukali, H., Theodoridis, G., Raikos, N. et al. Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples[J]. J. Chromatogr. B,2005,822: 194-200.
    [109]Zhao, E., Han, L., Jiang, S. et al. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice[J]. J. Chromatogr. A,2006,1114:269-273.
    [110]Schellin, M. Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection gas chromatography mass spectrometric detection[J]. J. Chromatogr. A,2004,1040:251-258.
    [111]Liang, P., Guo, L., Liu, Y. et al. Application of liquid-phase microextraction for the determination of phoxim in water samples by high performance liquid chromatography with diode array detector[J]. Microchem. J.,2005,80:19-23.
    [112]Ferrer, C., Gomez, M., Garciareyes, J. et al. Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry[J]. J. Chromatogr. A,2005,1069:183-194.
    [113]Brito, N. M., Navickiene, S., Polese, L. et al. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection[J]. J. Chromatogr. A,2002,957:201-209.
    [114]Wang, S., Zhao, P., Min, G. et al. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry [J]. J. Chromatogr. A,2007,1165:166-171.
    [115]Dasilva, G., Augusto, F.,Poppi, R. Simultaneous optimization by neuro-genetic approach of a multiresidue method for determination of pesticides in Passiflora alata infuses using headspace solid phase microextraction and gas chromatography[J]. J. Chromatogr. A,2007,1138:251-261.
    [116]Padron Sanz, C., Halko, R., Sosa Ferrera, Z. et al. Micellar extraction of organophosphorus pesticides and their determination by liquid chromatography[J]. Anal. Chim. Acta,2004,524:265-270.
    [117]Cai, Y., Jiang, G., Liu, J. et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol[J]. Anal. Chem.,2003,75: 2517-2521.
    [118]Tomiyama, N., Tsuji, H., Watanabe, M. et al. High-performance liquid chromatographic method for determination of DDT and its degradation products in rat plasma, liver and brain:validation and application to a pharmacokinetic study[J]. J. Chromatogr. B,2000,748:361-368.
    [119]Arend, M. W.,Ballschmite, K. A new sample preparation technique for organochlorines in cod liver oil combining SPE and NP-HPLC with HRGC-ECD[J]. Fresenius J. Anal. Chem.,2000,366: 324-328.
    [120]Zhou, Y., Wang, S., Kim, K. et al. Evaluation of expanded graphite as on-line solid-phase extraction sorbent for high performance liquid chromatographic determination of trace levels of DDTs in water samples[J]. Talanta,2006,69:970-975.
    [121]Laor, Y.,Rebhun, M. Complexation-flocculation:a new method to determine binding coefficients of organic contaminants to dissolved humic substances[J]. Environ. Sci. Technol.,1997,31:3558-3564.
    [122]Fitch, A.,Du, J. Solute transport in clay media:effect of humic acid[J]. Environ. Sci. Technol.,1995, 30:12-15.
    [123]Rav-Acha, C.,Rebhun, M. Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment [J]. Water Res.,1992,26:1645-1654.
    [124]Johnson, W. E., Fendinger, N. J.,Plimmer, J. R. Solid-phase extraction of pesticides from water: possible interferences from dissolved organic material [J]. Anal. Chem.,1991,63:1510-1513.
    [125]Schellin, M. Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection?gas chromatography-mass spectrometric detection[J]. J. Chromatogr. A,2004,1040:251-258.
    [126]Lopez, F. J., Pitarch, E., Egea, S. et al. Gas chromatographic determination of organochlorine and organophosphorus pesticides in human fluids using solid phase microextraction[J]. Anal. Chim. Acta, 2001,433:217-226.
    [127]Raveloperez, L., Hernandezborges, J.,Rodriguezdelgado, M. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices[J]. J. Chromatogr. A,2008,1211:33-42.
    [128]Tomlin, C. The pesticide manual[M]. The Royal Society of Chemistry, Cambridge,1994.Vol.10
    [129]Mensah, J. K., Lundanes, E. T. G.,Holen, B. Determination of diflubenzuron in apples by gas chromatography[J]. J. Chromatogr. A,1997,765:85-90.
    [130]Dekoning, S., Lach, G., Linkerhagner, M. et al. Trace-level determination of pesticides in food using difficult matrix introduction-gas chromatography-time-of-flight mass spectrometry[J]. J. Chromatogr. A,2003,1008:247-252.
    [131]Bicchi, C., Balbo, C., Binello, A. et al. HPLC—UV determination of pesticide residues at 0.01 ppm in apple and pear pulp used for baby food[J]. J. High Resolut Chromatogr.,1996,19:105-108.
    [132]Bicchi, C., Balbo, C., D'Amato, A. et al. SFC-UV Determination of diflubenzuron residues, teflubenzuron and triflumuron in apple and pear pulps for baby food[J]. Chromatographia,1996,43: 439-443.
    [133]Balinova, A. Multiresidue determination of pesticides in plants by high-performance liquid chromatography following gel permeation chromatographic clean-up[J]. J. Chromatogr. A,1998,823: 11-16.
    [134]Gamon, M., PelegriR, P. I., de la Cuadra, J. G. et al. Liquid chromatographic determination of five benzoylurea insecticides in fruit and vegetables[J]. J. AOAC. Int.,1998,81:1037-1042.
    [135]Miliadis, G. E., Tsiropoulos, N. G.,Aplada-Sarlis, P. G. High-performance liquid chromatographic determination of benzoylurea insecticides residues in grapes and wine using liquid and solid-phase extraction[J]. J. Chromatogr. A,1999,835:113-120.
    [136]Valenzuela, A. I., Lorenzini, R., Redondo, M. J. et al. Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit[J]. J. Chromatogr. A,1999,839:101-107.
    [137]Martmez-Galera, M., Lopez-Lopez, T., Gil-Garcia, M. D. et al. Determination of benzoylureas in tomato by high-performance liquid chromatography using continuous on-line post-elution photoirradiation with fluorescence detection[J]. J. Chromatogr. A,2001,918:79-85.
    [138]Gilgarcia, M., Martinezgalera, M., Barrancomartinez, D. et al. Determination of benzoylureas in ground water samples by fully automated on-line pre-concentration and liquid chromatography-fluorescence detection[J]. J. Chromatogr. A,2006,1103:271-277.
    [139]Garcia, M. D. G., Martinez, D. B., Galera, M. M. et al. Coupled-column liquid chromatography method with photochemically induced derivatization for the direct determination of benzoylureas in vegetables[J]. J. Sep. Sci.,2004,27:1173-1180.
    [140]Barnes, K. A., Fussell, R. J., Startin, J. R. et al. Determination of the pesticides diflubenzuron and clofentezine in plums, strawberries and blackcurrant-based fruit drinks by high performance liquid chromatographic/atmospheric pressure chemical ionization-mass spectrometry[J]. Rapid Commun. Mass Spectrom.,1995,9:1441-1445.
    [141]Barnes, K., Fussell, R., Startin, J. et al. High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry with ionization polarity switching for the determination of selected pesticides[J]. Rapid Commun. Mass Spectrom.,1997,11:117-123.
    [142]Frenich, A., Garcia, M., Arrebola, F. et al. Determination of parts per trillion levels of benzoylurea pesticides in groundwater by high-performance liquid chromatography-electrospray ionization mass spectrometry[J]. Chromatogr.,2000,52:569-574.
    [143]Valenzuela, A.,Pic6Y, F. Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometric analysis of benzoylurea insecticides in citrus fruits[J]. Rapid Commun. Mass Spectrom.,2000,14:572-577.
    [144]Zrostlikova, J. Determination of seventeen polar/thermolabile pesticides in apples and apricots by liquid chromatography/mass spectrometry[J]. J. AOAC Int.,2003,86:612-622.
    [145]Sannino, A.,Bandini, M. Determination of seven benzoyl-phenylurea insecticides in processed fruit and vegetables using high-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom.,2005,19:2729-2733.
    [146]Vidal, J. L. M., Frenich, A. G, Lopez, T. L. et al. Selection of a sepresentative matrix for calibration in multianalyte determination of pesticides in vegetables by liquid chromatography-electrospray tandem mass spectrometry[J]. Chromatogr.,2005,61:127-131.
    [147]Yang, X., Xia, Y., Liao, X. et al. Fragmentation study and analysis of benzoylurea insecticides and their analogs by liquid chromatography-electrospray ionization-mass spectrometry[J]. Talanta,2006, 70:75-87.
    [148]Dommarco, R., Santilio, A., Fornarelli, L. et al. Simultaneous quantitative determination of thirteen urea pesticides at sub-ppb levels on a Zorbax SB-C column[J]. J. Chromatogr. A,1998,825:200-204.
    [149]Garcia, M. D. G., Martinezgalera, M., Barrancomartinez, D. et al. Determination of benzoylureas in ground water samples by fully automated on-line pre-concentration and liquid chromatography-fluorescence detection[J]. J. Chromatogr. A,2006,1103:271-277.
    [150]Roberts, T.,Hutson, D. Metabolic pathways of agrochemicals. part 2.insecticides and fungicides[M]. The Royal Society of Chemistry, Cornwall, UK,,1999.
    [151]Mak, S., Shan, G., Lee, H. et al. Development of a class selective immunoassay for the type Ⅱ pyrethroid insecticides[J]. Anal. Chim. Acta,2005,534:109-120.
    [152]Chen, Z.-M.,Wang, Y.-H. Chromatographic methods pyrethroid pesticide residues in crops, foods samples for the determination of pyrethrin and and environmental [J]. J. Chromatogr. A,1996,754:367-395.
    [153]Ye, F., Xie, Z., Wu, X. et al. Determination of pyrethroid pesticide residues in vegetables by pressurized capillary electrochromatography[J]. Talanta,2006,69:97-102.
    [154]Elflein, L., Berger-Preiss, E., Levsen, K. et al. Development of a gas chromatography-mass spectrometry method for the determination of household insecticides in indoor air[J]. J. Chromatogr. A,2003,985:147-157.
    [155]Colume, A., Cardenas, S., Gallego, M. et al. Semiautomatic multiresidue gas chromatographic method for the screening of vegetables for 25 organochlorine and pyrethroid pesticides[J]. Anal. Chim. Acta,2001,436:153-162.
    [156]Qin, S.,Gan, J. Enantiomeric differences in permethrin degradation pathways in soil and sediment[J]. J.Agric. Food Chem.,2006,54:9145-9151.
    [157]Kristenson, E. M., Haverkate, E. G. J., Slooten, C. J. et al. Miniaturized automated matrix solid-phase dispersion extraction of pesticides in fruit followed by gas chromatographic-mass spectrometric analysis[J]. J. Chromatogr. A,2001,917:277-286.
    [158]Muccio, A. D., Pelosi, P., Barbini, D. A. et al. Selective extraction of pyrethroid pesticide residues from milk by solid-matrix dispersion [J]. J. Chromatogr. A,1997,765:51-60.
    [159]Hu, Y.-Y., Zheng, P., He, Y.-Z. et al. Response surface optimization for determination of pesticide multiresidues by matrix solid-phase dispersion and gas chromatography[J]. J. Chromatogr. A,2005, 1098:188-193.
    [160]Albaseer, S. S., Nageswara Rao, R., Swamy, Y. V. et al. An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil[J]. J. Chromatogr. A,2010,1217: 5537-5554.
    [161]Wong, J. W., Webster, M. G., Halverson, C. A. et al. Multiresidue pesticide analysis in wines by solid-phase extraction and capillary gas chromatography-mass spectrometric detection with selective ion monitoring[J]. J.Agric. Food Chem.,2003,51:1148-1161.
    [162]Woudneh, M. B.,Oros, D. R. Quantitative determination of pyrethroids, pyrethrins, and piperonyl butoxide in surface water by high-resolution gas chromatography/high-resolution mass spectrometry[J]. J. Agric. Food Chem.,2006,54:6957-6962.
    [163]Vazquez, P., Mughari, A.,Galera, M. Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection[J]. Anal. Chim. Acta, 2008,607:74-82.
    [164]Vazquez, P., Mughari, A.,Galera, M. Application of solid-phase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection[J]. J. Chromatogr. A,2008,1188:61-68.
    [165]Vanhoeck, E., David, F.,Sandra, P. Stir bar sorptive extraction for the determination of pyrethroids in water samples☆A comparison between thermal desorption in a dedicated thermal desorber, in a split/splitless inlet and by liquid desorption[J]. J. Chromatogr. A,2007,1157:1-9.
    [166]Zhou, Q., Gao, Y., Bai, H. et al. Preconcentration sensitive detennination of pyrethroid insecticides in environmental water samples with solid phase extraction with SiO2 microspheres cartridge prior to high performance liquid chromatography[J]. J. Chromatogr. A,2010,1217:5021-5025.
    [167]U. S. Environmental Protection Agency,.
    [168]Qiu, X., Zhu, T., Wang, F. et al. Air-water gas exchange of organochlorine pesticides in taihu lake, China[J]. Environ. Sci. Technol.,2008,42:1928-1932.
    [169]Bustnes, J. O., Yoccoz, N. G., Bangjord, G. et al. Temporal trends (1986-2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern europe[J]. Environ. Sci. Technol., 2007,41:8491-8497.
    [170]Zhang, G., Chakraborty, P., Li, J. et al. Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India[J]. Environ. Sci. Technol.,2008,42:8218-8223.
    [171]Huang, S. Determination of organochlorine pesticides in water using solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction[J]. J. Chromatogr. A,2007, 1176:19-25.
    [172]Cortada, C., Vidal, L., Pastor, R. et al. Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry[J]. Anal. Chim. Acta,2009,649:218-221.
    [173]Tsai, W.-C.,Huang, S.-D. Dispersive liquid-liquid microextraction with little solvent consumption combined with gas chromatography-mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples[J]. J. Chromatogr. A,2009,1216:5171-5175.
    [174]Kim, M.-S., Kang, T. W., Pyo, H. et al. Determination of organochlorine pesticides in sediment using graphitized carbon black solid-phase extraction and gas chromatography/mass spectrometry[J]. J. Chromatogr. A,2008,1208:25-33.
    [175]Fidalgo-Used, N., Montes-Bayon, M., Blanco-Gonzalez, E. et al. Enantioselective determination of the organochlorine pesticide bromocyclen in spiked fish tissue using solid-phase microextraction coupled to gas chromatography with ECD and ICP-MS detection[J]. Talanta,2008,75:710-716.
    [176]Dong, C., Zeng, Z.,Li, X. Determination of organochlorine pesticides and their metabolites in radish after headspace solid-phase microextraction using calix[4]arene fiber[J]. Talanta,2005,66:721-727.
    [177]Zhou, Q., Pang, L.,Xiao, J. Trace determination of dichlorodiphenyltrichloroethane and its main metabolites in environmental water samples with dispersive liquid-liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector[J]. J. Chromatogr. A,2009,1216:6680-6684.
    [178]ATSDR. (Agency for Toxic Substances and Disease Registary, Division of Toxicology/Toxicology Information Branch),Toxicological profile for Polychlorinated biphenyls (PCBs)[M]. Atlanta, USA, 2000.
    [179]Zaater, M., Tahboub, Y.,Qasrawy, S. Monitoring of polychlorinated biphenyls in surface water using liquid extraction,GC/MS,and GC/ECD[J]. Anal. Lett.,2005,38:2231-2245.
    [180]Tor, A., Cengeloglu, Y., Aydin, M. E. et al. Polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH) in wastewater samples from the sewage system of Konya-TURKEY[J]. Fresenius Environ. Bull.,2003,12:732-735.
    [181]Westbom, R., Thorneby, L., Zorita, S. et al. Development of a solid-phase extraction method for the determination of polychlorinated biphenyls in water[J]. J. Chromatogr. A,2004,1033:1-8.
    [182]Ramos, J., Gomara, B., Fernandez, M. et al. A simple and fast method for the simultaneous determination of polychlorinated biphenyls and polybrominated diphenyl ethers in small volumes of human serum[J]. J. Chromatogr. A,2007,1152:124-129.
    [183]Moliner-Martinez, Y., Campins-Falco, P., Molins-Legua, C. et al. Miniaturized matrix solid phase dispersion procedure and solid phase microextraction for the analysis of organochlorinated pesticides and polybrominated diphenylethers in biota samples by gas chromatography electron capture detection[J]. J. Chromatogr. A,2009,1216:6741-6745.
    [184]Lambropoulou, D., Konstantinou, I.,Albanis, T. Sample pretreatment method for the determination of polychlorinated biphenyls in bird livers using ultrasonic extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2006, 1124:97-105.
    [185]Hawthorne, S. B., Grabanski, C. B.,Miller, D. J. Solid-phase-microextraction measurement of 62 polychlorinated biphenyl congeners in milliliter sediment pore Water samples and determination of KDOC values[J]. Anal. Chem.,2009,81:6936-6943.
    [186]Cortazar, E., Zuloaga, O., Sanz, J. et al. MultiSimplex optimisation of the solid-phase microextraction-gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalates from water samples[J]. J. Chromatogr. A, 2002,978:165-175.
    [187]Wang, Y., Li, Y., Zhang, J. et al. A novel fluorinated polyaniline-based solid-phase microextraction coupled with gas chromatography for quantitative determination of polychlorinated biphenyls in water samples[J]. Anal. Chim. Acta,2009,646:78-84.
    [188]Criado, M. Determination of polychlorinated biphenyls in ash using dimethylsulfoxide microwave assisted extraction followed by solid-phase microextraction[J]. Talanta,2004,63:533-540.
    [189]Derouiche, A., Driss, M., Morizur, J. et al. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2007,1138:231-243.
    [190]Rezaei, F., Bidari, A., Birjandi, A. P. et al. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water[J]. J. Hazard. Mater.,2008,158: 621-627.
    [191]Ozcan, S., Tor, A.,Aydin, M. E. Determination of selected polychlorinated biphenyls in water samples by ultrasound-assisted emulsification-microextraction and gas chromatography-mass-selective detection[J]. Anal. Chim. Acta,2009,647:182-188.
    [192]Haglund, P., Sporring, S., Wiberg, K. et al. Shape-selective extraction of PCBs and dioxins from fish and fish oil using In-cell carbon fractionation pressurized liquid extraction[J]. Anal. Chem.,2007,79: 2945-2951.
    [193]Josefsson, S., Westbom, R., Mathiasson, L. et al. Evaluation of PLE exhaustiveness for the extraction of PCBs from sediments and the influence of sediment characteristics[J]. Anal. Chim. Acta,2006, 560:94-102.
    [194]Bert van Bavel, Mattias Jaremo, Lars Karlsson et al. Development of a solid Phase carbon trap for simultaneous determination of PCDDs, PCDFs, PCBs, and pesticides in environmental samples using SFE-LC[J]. Anal. Chem.,1996,68:1279-1283.
    [195]Punincrespo, M.,Lageyusty, M. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples[J]. Chemosphere,2005,59:1407-1413.
    [196]Quintana, J. B., Boonjob, W., Miro, M. et al. Online coupling of bead injection lab-on-valve analysis to gas chromatography:application to the determination of trace levels of polychlorinated biphenyls in solid waste leachates[J]. Anal. Chem.,2009,81:4822-4830.
    [197]Popp, P., Keil, P., Montero, L. et al. Optimized method for the determination of 25 polychlorinated biphenyls in water samples using stir bar sorptive extraction followed by thermodesorption-gas chromatography/mass spectrometry[J]. J. Chromatogr. A,2005,1071:155-162.
    [198]Li, G., Zhang, L.,Zhang, Z. Determination of polychlorinated biphenyls in water using dynamic hollow fiber liquid-phase microextraction and gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1204:119-122.
    [199]Rocco, G, Toledo, C., Ahumada, I. et al. Determination of polychlorinated biphenyls in biosolids using continuous ultrasound-assisted pressurized solvent extraction and gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1193:32-36.
    [200]Thome, J. P.,Vandaele, Y. PCB trace enrichment from contaminated natural water at the sub ppt level on C18 microcartridges [J]. Intern. J. Environ. Anal. Chem.,1987,29:95-103.
    [201]Madichie, C., Greenway, G. M.,McCreedy, T. The effects of surfactants on the analysis of organic pollutants in natural waters[J]. Anal. Chim. Acta,1999,392:39-46.
    [202]Tsai, P. J., Shieh, H. Y., Lee, W. J. et al. Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces [J]. J. Hazard. Mater.,2002, A91:25-42.
    [203]Kishikawa, N. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. B,2003,789: 257-264.
    [204]US. Guidelines establishing test procedures for the analysis of pollutants,Proposed regulations. Federal Register[M]. USEPA.Vol.49.
    [205]Wenzl, T., Simon, R., Anklam, E. et al. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union[J]. TrAC Trends Anal. Chem.,2006,25:716-725.
    [206]Riddle, S. G., Robert, M. A., Jakober, C. A. et al. Size distribution of trace organic species emitted from heavy-duty diesel vehicles[J]. Environ. Sci. Technol.,2007,41:1962-1969.
    [207]Zencak, Z., Klanova, J., Holoubek, I. et al. Source apportionment of atmospheric PAHs in the western balkans by natural abundance radiocarbon analysis[J]. Environ.Sci.Technol.2007,41: 3850-3855.
    [208]Kiss, G., Varga-Puchony, Z.,Hlavay, J. Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromatography [J]. J. Chromatogr. A, 1996,725:261-272.
    [209]Li, N.,Lee, H. K. Solid-phase extraction of polycyclic aromatic hydrocarbons in surface water negative effect of humic acid[J]. J. Chromatogr. A,2001,921:255-263.
    [210]Oliferova, L., Statkus, M., Tsysin, G. et al. On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents[J]. Anal. Chim. Acta, 2005,538:35-40.
    [211]Zhou, Y., Yan, X., Kim, K. et al. Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials[J]. J. Chromatogr. A, 2006,1116:172-178.
    [212]Wang, W., Huang, Y., Shu, W. et al. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography[J]. J. Chromatogr. A,2007,1173:27-36.
    [213]Li, K., Li, H., Liu, L. et al. Solid-phase extraction with C30 bonded silica for analysis of polycyclic aromatic hydrocarbons in airborne particulate matters by gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2007,1154:74-80.
    [214]Marce, R. M.,Borrull, F. Solid-phase extraction of polycyclic aromatic compounds[J]. J. Chromatogr. A,2000,885:273-290.
    [215]Garcia-Falcon, M. S., Perez-Lamela, M.,Simal-Gandara, J. Comparison of strategies for extraction of high molecular weight polycyclic aromatic hydrocarbons from drinking waters[J]. J. Agric. Food Chem.,2004,52:6897-6903.
    [216]Hawthorne, S. B., Grabanski, C. B., Miller, D. J. et al. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of KDOC values[J]. Environ. Sci. Technol.,2005,39:2795-2803.
    [217]Bagheri, H., Ayazi, Z.,Aghakhani, A. A novel needle trap sorbent based on carbon nanotube-sol-gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media[J]. Anal. Chim. Acta, 2011,683:212-220.
    [218]Lopez-Darias, J., Pino, V., Meng, Y. et al. Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection[J]. J. Chromatogr. A,2010,1217:7189-7197.
    [219]Meng, Y.,Anderson, J. L. Tuning the selectivity of polymeric ionic liquid sorbent coatings for the extraction of polycyclic aromatic hydrocarbons using solid-phase microextraction[J]. J. Chromatogr. A,2010,1217:6143-6152.
    [220]Ishizaki, A., Saito, K., Hanioka, N. et al. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection[J]. J. Chromatogr. A,2010,1217:5555-5563.
    [221]Burkhardt, M., Zaugg, S., Burbank, T. et al. Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for semivolatile organic compounds, polycyclic aromatic hydrocarbons (PAH), and alkylated PAH homolog groups in sediment[J]. Anal. Chim. Acta,2005, 549:104-116.
    [222]Hartonen, K., Bφwadt, S., Dybdahl, H. P. et al. Nordic laboratory intercomparison of supercritical fluid extraction for the determination of total petroleum hydrocarbon, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in soil[J]. J. Chromatogr. A,2002,958:239-248.
    [223]Portetkoltalo, F., Oukebdane, K., Robin, L. et al. Quantification of volatile PAHs present at trace levels in air flow by aqueous trapping—SPE and HPLC analysis with fluorimetric detection[J]. Talanta,2007,71:1825-1833.
    [224]Huang, Y., Zhou, Q., Xiao, J. et al. Determination of trace organophosphorus pesticides in water samples with TiO2 nanotubes cartridge prior to GC-flame photometric detection[J]. J.Sep. Sci.,2010, 33:2184-2190.
    [225]Huang, Y., Zhou, Q., Xie, G. et al. Titanium dioxide nanotubes for solid phase extraction of benzoylurea insecticides in environmental water samples, and determination by high performance liquid chromatography with UV detection[J]. Microchim. Acta,2010,172:109-115.
    [226]Zhou, Q., Wang, W., Xiao, J. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography[J]. Anal. Chim. Acta,2006, 559:200-206.
    [227]Zhou, Q., Xiao, J., Wang, W. et al. Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector[J]. Talanta,2006,68:1309-1315.
    [228]Trojanowicz, M. Analytical applications of carbon nanotubes:a review[J]. Trends Anal. Chem,2006, 25:480-489.
    [229]Moral, A., Sicilia, M., Rubio, S. et al. Sodium dodecyl sulphate-coated alumina for the extraction/preconcentration of benzimidazolic fungicides from natural waters prior to their quantification by liquid chromatography/fluorimetry[J]. Anal. Chim. Acta,2006,569:132-138.
    [230]Moral, A., Sicilia, M., Rubio, S. et al. Determination of bisphenols in sewage based on supramolecular solid-phase extraction/liquid chromatography/fluorimetry[J]. J. Chromatogr. A,2005, 1100:8-14.
    [231]Saitoh, T., Kondo, T.,Hiraide, M. Concentration of chlorophenols in water to dialkyated catinonic surfactant-silica gel admicelles[J]. J. Chromatogr. A,2007,1164:40-47.
    [232]Weber Jr, W. J., McGinley, P. M.,Katz, L. E. Sorption phenomena in subsurface systems:Concepts, models and effects on contaminant fate and transport[J]. Water Res.,1991,25:499-528.