可更新流动注射液滴传感技术用于流体室温磷光分析法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温磷光法(Room Temperature phosphorescence,RTP)是一种微量技术与痕量分析相结合的测试手段,具有灵敏度高、分析曲线线性范围宽、检出限低、选择性好等特点,而且操作简便快速,投资少,适用于常规痕量分析。
     液滴光化学传感器是光化学传感器研究领域中的一个新兴领域,这类光化学传感器是将小液滴的独特物理性能融入到光化学传感探头的设计思想中,构建可更新的光池、无光窗污染的具有自聚焦功能的新型液滴光化学传感器,因而避免了德统的光化学测量试剂和样品对比色池的污染以及因反应池池壁对光的吸收、散射或过程中产生的吸附物质等所引起的对测量信号的干扰,可提高传感器检测的灵敏度和准确性。
     本论文旨在将动态液滴光化学传感技术应用于室温磷光测量体系中,利用液滴作为无光窗光池进行室温磷光测量,研制了以可更新动态液滴光化学技术为基础的磷光化学传感器,拓展了液滴光化学传感技术的应用领域和范围。
     本文具体内容如下:
     利用以LS55型荧光/磷光/发光光度计为基础的液滴磷光化学传感装置,对流体室温磷光体系下的多种物质如邻菲罗啉、Fe~(3+)、苏丹Ⅲ等进行检测;
     1.溴代菲-脱氧胆酸钠体系能在非除氧条件下产生出强室温磷光,邻菲罗啉可显著猝灭此体系的室温磷光。利用自制的可更新液滴磷光化学传感装置,实施检测邻菲罗啉的含量。在优化条件下,体系的相对磷光强度与邻菲罗啉的浓度在4.0×10~(-7) mol·L~(-1)~4.0×10~(-5) mol·L~(-1)范围内呈良好的线性关系,线性回归方程为:I_0/I-1=53086C+0.017(R=0.997),检出限为0.031μg/mL。将该法用于样品中微量邻菲罗啉的测定,结果满意。
     2.在非除氧和常温条件下,环糊精能诱导卤代菲(XP)发射较强的室温磷光。金属离子选择实验结臬表明,Fe~(3+)能选择性猝灭卤代菲的磷光发射,利用可更新动态液滴技术对体系的磷光强度变化进行了测定,实验结果显示:优化条件下,氯代菲.环糊精体系中,Fe~(3+)在4.0×10~(-7)mol·L~(-1)~6.0×10~(-4)mol·L~(-1)的浓度范围内呈良好的线性关系,线性回归方程为I_0/I-1=0:027+0.67×10~4C。在溴代菲-环糊精体系中,在4.0×10~(-7)mol·L~(-1)~6.0×10~(-4) mol·L~(-1)的浓度范围内,Fe~(3+)浓度和体系的磷光强度呈良好的线性关系,线性回归方程为I_0/I-1=0.39+1.34×10~4C。在碘代菲-环糊精体系中,Fe~(3+)浓度在1.0×10~(-6) mol·L~(-1)~1.0×10~(-4)mol·L~(-1)的浓度范围内呈良好的线性关系,线性回归方程为I_0/I-1=0.42+1.47×10~4C。将该液滴磷光传感器用于实际样品中Fe~(3+)含量的检测,结果满意。
     3.在室温下,利用微量的苏丹Ⅲ能显著猝灭溴代菲(BrP)在β-环糊精体系中的的室温磷光发射(RTP),而苏丹其它系列无影响的现象,使用液滴磷光传感技术对体系磷光强度进行测量,并对实验条件进行了优化,建立了可更新动态液滴磷光传感技术测量微量苏丹Ⅲ的方法。实验结果显示苏丹Ⅲ的浓度在2.0×10~(-7)mol/L至6.0×10~(-5)mol/L的范围内,苏丹Ⅲ的浓度与体系的Stern-Volmer猝灭曲线呈现良好的线性关系,线性相关系数为0.998,苏丹Ⅲ的检出限为0.1μg/mL。并对实际样品进行检测,结果良好。
The Room Temperature phosphorescence is a analyze method with wide linear range and higher precision, lower limit of detection, higher selection. The method is operated much fast, more simply and fewer investment for general analyze.
     As a new focus in the field of optical chemical sensors, The original idea of liquid-drop chemical optrode is constructive in exploiting some unique features of liquid drop, namely, reproducibility, renewability, the lack of containment wall and lens like optical cell. The infection of optical signal caused by the absorption and scattering of cell surface or the contaminations of reagents and samples to cells in conventional photometric analysis can be avoided. The unique features of a liquid drop can be characterized in its reproducibility, renewability, defined volume, and lack of containment walls. The features individually or in combination, may result in high sensitivity and accuracy for analyses.
     In this paper, the technique of droplet optical chemical sensor has been applied in room temperature phosphorescence. A novel method of drop-based analysis, which regarding LS55 luminescence spectrometers as its experiment window, has been developed, many new phosphorescence chemical sensors combined with flow-injection analysis and the technique of dynamical drop-based sensing are developed. The apply domain and area of droplet optical chemical sensor has been extended.
     The contents of this thesis include as following:
     1. A room temperature phosphorescence based on renewable optical chemical biosensor combined with flow injection technique has been developed for the determination of o-phenanthroline.The RTP of 9-bromophenanthrene can be induced by sodium deoxycholate (NaDC) in the presence of oxygen, but it is obviously quenched by trace o-phenanthroline. A method of flow injection renewable drop (FIRD) phosphorescence for monitoring o-phenanthroline was established. The experimental conditions was investigated and discussed. Under the optimum conditions, the linear range was 4.0×10~(-7) mol·L~(-1)to 4.0×10~(-5)mol·L~(-1), and the limit of detection was 0.031μg/mL. This method has been applied to the determination of o-phenanthroline with satisfactory results.
     2. Iron ion can quench 9-chlorophenanthrene, 9-bromophenanthrene, 9-Iodophenanthrene RTP of reducing byβ-CD. Based on this reaction, the content of iron ion was determined utilizing renewable droplet optical- chemical phosphorescence sensor. Under the optimum conditions, the sensor shows linear response in the range from 4.0×10~(-7) mol·L~(-1)-6.0×10~(-4) mol·L~(-1) in 9-chlorophenanthrene solution. The regression equation is I_0/I-1=0.027+0.67×10~4C. The sensor shows linear response in the range from 4.0×10~(-7) mol·L~(-1)-6.0×10~(-4) mol·L~(-1) in 9-bromophenanthrene solution. The regression equation is I_0/I-1= I_0/I-1=0.39+1.34×10~4C. The sensor shows linear response in the range from 1.0×10~(-6) mol·L~(-1)-1.0×10~(-4)mol·L~(-1) in 9-iorophenanthrene solution. The regression equation is I_0/I-1 =0.42+1.47×10~4C. This method has been applied to the determination of Fe~(3+) with satisfactory results. Thetechnique provides a simple, effective and sensitive method to assay the Fe~(3+).
     3. The room temperature phosphorescence (RTP) of 9-bromophenanthrene (BrP) can beinduced byβ-cyclodextrin (β-CD) and micro cyclohexane (CH) in the presence of oxygen, but it is quenched obviously by trace SudanⅢ. A novel optical phosphorescence chemical sensor based on the flow injection renewable drop was established for monitoring SudanⅢ. The experimental conditions were investigated. Under the optimum conditions, the linear range of was SudanⅢ2.0×10~(-7)mol/L to 6.0×10~(-5) mol/L, and the limit of detection was 0.1μg/ml. This method has been applied to the determination of SudanⅢwith satisfactory results. The technique provides a simple, effective and sensitive method to assay the SudanⅢ.
引文
[1] Zeng H H, Wang K M, Yu R Q, et al. Development of an optode membrane for the determination of picric acid based on fluorescence energy transfer. Anal. Chim. Acta, 1994, 298(7): 271-277
    
    [2] 王柯敏.光化学传感器理论与方法.长沙:湖南教育出版社,1995,2和129
    
    [3] Mathewson P R, Finley J W. Biosensor design and application. American ChemicalSociety, Washington, D. C, 1992,11-12
    
    [4] Zhang Z E, Liu H Y, Deng J Q, et al. A glucose biosensor based on immobilization ofglucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbonelectrode. Anal. Chem., 1996, 68 (9): 1632-1638
    
    [5] Liu B H, Hu R Q, Deng J Q. Characterization of immobilization of an enzyme in amodified Y Zeolite Matrix and its Application to an amperometric glucose biosensor.Anal. Chem., 1997, 69 (13): 2343-2348
    
    [6] Liu H Y, Deng J Q. Amperometric glucose sensor using tetrathiafulvalene in Nafion gelas electron shuttle, Anal. Chim. Acta, 1995, 300 (1): 65-70
    
    [7] Zeng H H, Wang K M, Yang X H, et al. Fiber-optic senor for the determination ofcarboxylic acid based on fluorescence enhancement of lipophilized fluoresceinisologues. Anal. Chim. Acta.. 1994,287(3): 267-273
    
    [8] 王柯敏.“光化学传感器进展”,黄本立,章竹君主编.分析化学的成就与挑战.中国化 学会第七届分析化学年会暨原子光谱学术会议论文集.西南师范大学出版社,重庆: 2000,173-175
    
    [9] Adamson T W. Physcial Chemistry of Surfaces, 4th edn. New York: Wiley. 1982, 28
    
    [10] Hool K, Schuchardt B. A new instrument for the measurement of liquid-liquidinterfacial tension and the dynamics of interfacial tension reduction. Meas. sci. technol.,1992, 3(5): 451-457
    
    [11] Heyroveska M. Progress in polargraphy, Vol 1. New York: Wily, 1962,1
    
    [12] Young J P, White J C. Absorption spectra of molten fluoride salts. Solutions ofpraseodymium, neodymium, and samarium fluoride in molten lithium fluoride. Anal.??Chem., 1960,32(12): 1658-1661
    
    [13] Diebold G J, Zare R N. Laser fluorimetry: Subpicogram detection of aflatoxins usinghigh-pressure liquid chromatography. Science, 1977,196(4297): 1439-1441
    
    [14] Mahoney P P, Hieftje G M. Fluorimetric analysis on individual nanoliter sampledroplets. Appl. Spectrosc, 1994,48(8): 956-958
    
    [15] McMillan N D, Finlayson O, Fortune F M. The fibre drop analyser: a new multianalyseranalytical instrument with applications in sugar processing and for the analysis of pureliquids. Meas. Sci. Technol., 1992, 3(8): 746-764
    
    [16] McMillan N D, Fortune F M, Finlay O, et al. A fiber drop analyser: A new analyticalinstrument for the individual, sequential, or collective measurement of the physical andchemical properties of a liquid. Rey. Sci. Instrum., 1992,63(6): 3431-3454
    
    [17] McMillan N D, Omongain E, Walsh J E, et al. Preliminary investigation into theanalytical potential of the fiber drop analyser for body fluid analysis. Proc. SPIE, 1993,2005: 216-217
    
    [18] Huang H M, Wang K M, Xiao D. et al. Slective optode for o-monoriitrophenol based onfluorescence quenching of a conjugated polmer. Anal. Chim. Acta, 2001, 439(1): 55-63
    
    [19] 冯锋,王柯敏,杨荣华,等.基于汞离子氧化作用的硫胺素液滴光化学传感器的研究.高 等学校化学学报,2003,24(12):2189-2191
    
    [20] Yang R H, Wang K M, Yang X H, et al. A selective optical chemical sensor for thedetermination of Tween-60 based on. fluorescence enhancement of tetraphenyl-porphyrin. Anal. Chim. Acta, 2000,404(2), 205-211
    
    [21] Yang R H, Wang K M, Yang X H, et al. A host-gust optical sensor for aliphatic aminesbased on lipophilic cyclodextrin. Fresenius J. Anal. Chem., 2000,367(5), 429-435.
    
    [22] H Liu, P. K. Dasgupta. A Liquid drop' A Windowless qpticalal wall and a reactorwithout walls for flow injection aanlysis. Anal. Chim. Acta, 1996, 326:13-19
    
    [23] Huang C R, Milliman A, Price H L, et al. Photoemission probes of catalysis ofbenzo[a]pyrene epoxide reactions in complexes with linear, double-stranded andclosed-circular, single-stranded DNA. J. Am. Chem. Soc, 1993,115(17): 7794-7805
    
    [24] Chu X, Shen G L, Yu R Q. Voltammetric studies of the interaction of daunomycinanticancer drug with DNA and analytical applications. Anal. Chim. Acta, 1998, 373 (1):29-38
    
    [25] Barnes N R, Scheiner A F, Dolan M A. Measurement and interpretation of QO and Q1 band property changes of two cationic metalloporphyrins upon binding with B-DNA: electronic MCD, CD, and optical absorption. J. Inorg. Biochem., 1998, 72(1-2): 1-12
    
    [26] Udenfriend S, Zaltzman P. Fluorescence characteristics of purines, pyrimidines, and their derivatives: Measurement of guanine in nucleic acid hydrolyzates. Anal. Biochem., 1962,3:49-59
    
    [27] 曹瑛,李一俊,何锡文.中性红作为DNA作用方式光谱探针的研究.高等学校化学 学报,1999,20(5):709-712
    
    [28] Wang Y T, Zhao F L, Li K A, et al. Molecular spectroscopic study of DNA binding withneutral red and application to assay of nucleic acids. Anal. Chim. Acta, 1999, 396(1):75-81
    
    [29] Chen Q Y, Li D H, Zhao Y, et al. Interaction of a novel red-region fluorescent probe,nile blue, with DNA and its application to nucleic acids assay. Analyst, 1999, 124(6):901-906
    
    [30] 李天剑,沈含熙.乙基紫-脱氧核糖核酸共振发光体系的研究及其分析应用.高等学校 化学学报,1998,19(10):1570-1573
    
    [31] 李华平,汪鹏飞,吴世康.含芘荧光化学敏感器化合物同小牛胸腺DNA分子间的相 互作用.高等学校化学学报,1999,20(6):872-878
    
    [32] Suenaga H, Nakasima K, Mizuno T, et al. Pyrenylboronic acids as a novel entry forphotochemical DNA cleavage: diradical-forming pyrenc-l,6-diyldiboronic acid mimicsthe cleavage mechanism of enediyne antitumor antibiotics. J. Chem. Soc, PerkinTrans.1, 1998 (7): 1263-1268
    
    [33] Yang R H, Wang K M, Yang X H, et al. How injection renewable drops technique forassay of micro-amounts of DNA. Anal. Chim. Acta, 2001,432(1): 135-141
    
    [34] Dasgupta P K. Automated measurement of atmospheric trace gases diffusion-basedcollection and analysis. Adv. Chem. Ser., 1993, 232: 41-90
    
    [35] Ali Z, Thomas C L P, Alder J F. Denuder tubes for sampling of gaseous species. Analyst,1989,114(7): 759-769
    
    [36] Liu H H, Dasupta P K. Analytical chemistry in a drop. Solvent extraction in a microdrop.Anal. Chem., 1996, 68(11): 1817-1821
    
    [37] Liu H H, Dasgupta P K. A renewable liquid droplet as a sampler and a windowless??optical cell. Automated sensor for gaseous chlorine. Anal. Chem., 1995, 67(23):4221-4228
    
    [38] Diebold G J. Apparatus for consistency control of manufactured tomato pulp. U. S.Patent, 1987, 4 650 582
    
    [39] Hool K, Schuchardt B. A new instrument for the measurement of liquid-liquidinterfacial tension and the dynamics of interfacial tension reduction.Meas. sci. technol.,1992, 3(5): 451- 457
    
    [40] Hool K. Method for determining liquid/liquid interfacial tension and dynamic interfacialtension reduction. U. S. Patent, 1996,5 269 176
    
    [41] 朱若华,晋卫军.室温磷光分析法原理与应用.北京:科学出版社,2006,2
    
    [42] LewisGN, K ashaM. Phosphorescence and the Triplet State.J.Am.Chem.Soc.,1944,66
    
    [43] (12 ):2100-2116.
    
    [44] Freed,S.et al. Low Temperature Phosphorescence.Science,1958,128:1341-1344
    
    [45] PaynterR .A .,W ellonsS .L .,Winefordnerl .D.New method of analysis based on roomtemperature phosphorescence. A nal.Chem.,1974,46(6):736-738,
    
    [46] We]Io nsS .L. ,P aynterR .A .,W inefordnerJ .D.Spectrochim.Acta,I974,30A:2133-2136.
    
    [47] Cline Love LJ., Skrilec M.,Habarta J.GAnalysis of micelle-stabilized room temperaturephosphorescencei solution.A nal.Chem.,1980,52(4):754-759.
    
    [48] Scypinski S., Cline Love L.J. Room-temperature phosphorescence of polynucleararomatic hydrocarbons in cyclodextrins.Anal.Chem.,1984,56(3):322-327.
    
    [49] Scypinski S.,Cline Love L.J.,Cyclodextrin-induced room-temperature phosphorescenceof nitrogen heterocycles and bridged biphenyls.Anal.Chem.,1984,56(3):3 31-336.
    
    [50] Femia R.A., Cline Love L.J.Phosphorescence of polynuclear aromatic hydrocarbons in heptakis( 6-bromo-6-deoxy,beta.-cylcodextrin).J. Phys.chem., 1985,89(10): 1897-1901.
    
    [51] DonkerbroekJ.J.,GooijerC.,Velthorst NH. Sensitized room temperature phosphorescencein liquid solutions with 1,4-dibromonaphthalene and biacetyl as acceptors. Anal.Chem.,1982,54 (6 ):8 91-895
    
    [52] 黄素梅.室温磷光光度分析.化学通报,1982,(3):23-28
    
    [53] RamosG .R.,Khasawneh I.M.,G arcia-Alvarez-CoquaM .L.,et al. Room-temperature phosphorescence of polyaromatic hydrocarbons with organized media and paper substrate: Acomparative study.Talanta, 1988,35: 41-44
    
    [54] Li LD,Chen Y L,Zhao Y,et al.Room-temperature phosphorescence of dansyl chloride solution in the absence of protective medium and its medium effectt.Anal.Chim. Acta .,1 997,341(2-3):241-249.
    
    [55] 宫志龙,章竹君.Chelex100螯合树脂与某些金属离子的发光行为及其分析应用.分析 化学,1996,24(9):1007-1010
    
    [56] Jaromir R, Hansen E H. ptpsensing at active surfaces - a new detection principle inflow injection analysis. Anal. Chim. Acta,1985,173:3-21
    
    [57] Juan D G, Jose M C, Nerea B G,et al. Room-temperature phosphorescence fiber-opticinstrumentation for simultaneous multiposition analysis of dissolved oxygen. Anal.Chim. Acta,2001,429:55-64
    
    [58] 章竹君,李建中.光导纤维光谱法:Ⅱ.光导纤维光谱仪器.分析试验室,1991,10(1): 61-67
    
    [59] 章竹君,马望百.光导纤维光潜法:V光导纤维化学传感器.分析试验室,1991,10(5): 59-66
    
    [60] 段群章.邻非罗啉化合物在光度分析中的实际应用.有色金属与稀土应用,1995,15(2): 29-37
    
    [61] 马卫兴,钱保华.邻菲罗啉在分析化学中的应用进展.稀有金属,992,16(4):301-305
    
    [62] 王蕊,林海,林华宽.新颖的邻菲罗啉衍生物的合成及其配合物稳定性研究.物理化 学学报2006,26(11):24-29
    
    [63] 吴宇雄,周尽花,赵鸿斌,等.邻菲罗啉系列衍生物的表征及分析.中南林学院学报, 2005,15(3):37-40
    
    [64] 阎冰,王淑彬,王淑彬.稀土N-苯基邻氨基苯甲酸-1,10邻菲罗啉二元、三元配合物 的合成、表征及光物理性质.高等学校化学学报,1998,19(5):671-675
    
    [65] 丁素芳.次甲基绿-溴酸钾体系催化光度法测定微量邻菲罗啉.光谱实验室, 2001,18(3):323-326
    
    [66] 刘峥,丁时晨.催化动力学光度法测定微量邻菲啰啉.理化检验-化学分册,1999,35(3): 129-132
    
    [67] 刘佳铭,付艳.异硫氰酸荧光素标记抗体的固体基质室温磷光性质研究.光谱学与光 谱分析,2002,22(3):423-426
    
    [68] Pulgarin M, Molina A A, Pardo A. Determination of nafcillin by room temperature phosphorescence, Anal. Chim. Acta, 2000,423(1):85-93
    
    [69] 李伟,曹玲娴.磷光光度法在药物分析中的应用.光谱学与光谱分析,2002,22(3): 518-523
    
    [70] 卞伟,魏玉霞,卫艳丽,等.四溴荧光素与DNA作用的研究.光谱学与光谱分析,2006, 26(1):125-127
    
    [71] 刘力宏,晋卫军,谢剑炜,等.胆酸盐簇集体刚性化微环境的灵敏指示-室温光探 针法.高等学校化学学报,2002,23(2):219-220
    
    [72] 浦部晶夫,徐璐.药物性贫血.日本医学介绍,2007,28(8):384-384
    
    [73] 韩海年,宫临征,张金霞.肝精补血素联合铁剂治疗缺铁性贫血临床观察.中国误诊 学杂志.2007,19(7):4467-4467
    
    [74] 杨青俊,赵显峰,赖建强,等.应用血清铁蛋白与运铁蛋白受体比值评价儿童铁营 养状况.中国预防医学杂志,200,78(4):388-390
    
    [75] 郝新焕.邻菲罗啉分光光度法测定污水中的总铁.石油化工腐蚀与防 护,2006,23(4):44-46
    
    [76] 刘佳铭.抑制-桑色素褪色光度法测定痕量铁.分析化学,2001,29(2):247-247
    
    [77] 王晓佳,王保宁.混合线性分析-分光光度法同时测定微量铁和铝.分析化 学,2001,29(2):142-145
    
    [78] 胡孝贵,谢素雯.催化动力光度法测定痕量铁.理化检验-化学分 册,2006,12(3):265-269
    
    [79] 刘绣华,刘海谰.催化动力学分析法测定痕量铁的新体系.分析化 学,1994,22(5):535-540
    
    [80] 孙登明,马伟,王晨璐.双指示剂催化动力学光度法测定痕量铁.分析化 学,2006,34(10):1512-1512
    
    [81] 孙登明,阮大文.萃取催化动力学光度法测定痕量铁.分析化学,1998,26(2):196-199
    
    [82] 谢立群.火焰原子吸收光谱法测定芦荟中锰、铁、铜、锌、镍、钴.分析化学,2001,29(4): 489-489
    
    [83] 古俊,常雁.环糊精的实际应用进展.应用化学,1996,13(4):5-9
    
    [84] 宋乐新,孟庆金.环糊精和环糊精包合物.无机化学学报,1997,13(4):368-374
    
    [85] 彭景吓,朱亚先,鹿贞彬,等.六氢吡啶存在下β-环糊精诱导a-溴代萘室温磷光分 析分析化学2006,34(9):1335-1337
    
    [86] 张海容,张建军.环己烷存在下环糊精诱导邻菲咯啉室温磷光的研究.山西大学学报: 自然科学版,2005,28(3):286-289
    
    [87] Collier S. W., Storm J. E., Bronaugh R. L.. Reduction of Azo Dyes During in Vitro PercutaneousAbsorption. Toxicol Appl Pharm acol, 1993,118:73
    
    [88] H G Daood, P A Biacs. Simultaneous Determination of Sudan Dyes and Carotenoids in Red pepperand Tomato Products by HPLC.J Chromatogr Sci, 2005,43:461
    
    [89] V Cornet, Y Govaert, G Moens, et al. Development of a Fast Analytical Method for the Determinationof Sudan Dyes in Chili- and Curry-Containing Foodstuffs by High-Performance LiquidChromatography-Photodiode Array Detection. J. Agric. Food Chem., 2006,54 (3): 639
    
    [90] GB/T 19681-2005食品中苏丹红染料的检测方法高效液相色谱法
    
    [91] Wu L P, Li Y F, Huang C Z, Zhang Q. Visual Detection of Sudan Dyes Based on the Plasmon Resonance Light Scattering Signals of Silver Nanoparticles. Anal. Chem., 2006, 78 (15): 5570
    
    [92] Calbian i F, Careri M, Elviri L, et al. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry. J Chromatogr A, 2004,1 058:127