银纳米微粒与碱性染料、蛋白质、抗生素相互作用的共振瑞利散射光谱研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Study on the Resonance Rayleigh Scattering Spectra of the Reaction between Basic Dye, Protein or Antibiotics and Silver Nanoparticle and Their Analytical Application
  • 作者:周贤杰
  • 论文级别:硕士
  • 学科专业名称:分析化学
  • 学位年度:2003
  • 导师:刘绍璞
  • 学科代码:070302
  • 学位授予单位:西南师范大学
  • 论文提交日期:2003-04-01
摘要
本文研究了银纳米微粒的制备,微粒尺度和浓度与吸收光谱,共振瑞利散射(RRS)光谱特征及强度的关系,并用共振瑞利散射技术研究了银纳米微粒与多种阳离子染料的相互作用,其中包括碱性三苯甲烷类染料,碱性吩嗪染料,碱性吩噻嗪,碱性呫吨染料等。此外还用RRS技术研究了银纳米微粒与蛋白质和某些抗生素的反应。考察了它们的光谱特征、影响因素、化学特性及分析应用的可能性,初步建立了快速、简便的测定银纳米、蛋白质和药物的新方法。一、纳米微粒的尺度和浓度与吸收光谱、共振瑞利散射光谱关系的研究
     通过控制反应的温度和时间,可用硝酸银柠檬酸钠还原法制备出不同粒径和颜色的液相银纳米微粒。用透射电子显微镜(TEM)测量了银纳米微粒的平均粒径。银纳米微粒具有特定的吸收光谱,其吸收峰随银纳米微粒粒径增大逐渐红移。与此同时将产生明显的共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS),其最大散射峰λ_(RRS)、λ_(SOS)、λ_(FDS)分别位于470nm、940nm和470nm。当银浓度一定时,散射强度I_(RRS)、I_(SOS)和I_(FDS)分别与银纳米微粒的粒径成直线关系;而当银纳米微粒的粒径一定时,A及I_(RRS)、I_(sos)和I_(FDS)又与银的浓度成正比。因此,吸收光谱和RRS、SOS、FDS光谱可以作为研究银纳米微粒尺度和浓度的有用手段。
    
     银纳米微粒与碱性染料、蛋白质、药物等相互作用的共振瑞利散射方法研究及其应用
     二、银纳米微粒与碱性三苯甲烷染料相互作用共振瑞利散射光谱研究
     研究发现,当一定粒径的银纳米微粒在 pH 2.dsZ.6的酸性介质中与结晶紫、
     甲基紫、乙基紫、甲基绿、碘绿等三氨基三苯甲烷染料反应形成结合产物时会使
     nS显著增强,并产生新的RRS光谱,但银纳米微粒与孔雀石绿、亮绿等H氨基
     三苯甲烷染料的作用不明显。40m银纳米微粒的IAgAIV/I叱最大,故实验用粒径
     为 40urn;同时银·结晶紫体系也产生明显的倍频散射qDS)和二级散射(SOS人
     其中以RRS最灵敏,对银的检出限达1二~1.3ttg/thL。这种对银纳米进行化学修
     饰的方法为银纳米的研究和检测提供一种灵敏、简便的方法。吸收光谱可以观测
     到银纳米微粒对碱性三苯甲烷染料体系的增色效应。研究了反应的适宜条件。并
     初步探讨了在相同条件下,20gb银检测水中痕量结晶紫染料的可能性,方法
     有很高的灵敏度,但干扰物质较多,尚需进一步提高选择性,或进行必要的预分
     离,才能用于实际。文中还对RRS增强的原因做了初步的探讨。
     三、银纳米微粒与碱性吩噎染料相互作用的共振瑞利散射光谱研究
     当40urn的银纳米微粒在pH=2.4-2石范围内与酚藏花红仅X中性红(NR)
     等碱性吩嚎染料作用形成结合产物时会使RRS强度大大增强,并产生新的RRS
     光谱。同时也产生明显的倍频散射(FDS)和 H级散射(SOS),其中以 RRS最
     灵敏。ngs、FDS和SOS的增强与银浓度成正比,当用RRS测定银时,其对
     银的检出限分别达0.snghL和0.6n咖L。吸收光谱显示出了银纳米微粒对酚藏
     花红和中性红吸收光谱的有关变化。大量银纳米微粒Q0#g/thL)与 PC和 NR
     作用,分别在580urn和370urn处产生较宽波峰。共振瑞利散射强度在
     0.05叶卜g/m L的范围内与PC和NR浓度成正比。方法具有较高的灵敏度,对PC
     和NR的检出限(为。-3时)32n咖L和3刀n咖L,但干扰物质较多,尚需进
     一步提高选择性,或进行必要的预分离,才能用于实际。
     四、银纳米微粒与碱性吩唆噎染料相互作用的共振瑞利散射光谱研究
    
     扬要
     一
     粒径在40 urn以下的银纳米微粒产生的RRS强度很弱,但当40urn的银纳米
     微粒在pH==2.4-2石范围内与天青A等碱性吩噎咦染料作用形成结合产物时,会
     使RRS强度大大增强,并产生新的nS光谱。同时也产生明显的倍频散射吓DS)
     和二级散射3OS),其中以 RRS最灵敏。RRS、FDS和 SOS的增强与银浓度
     成正比,当用 RRS测定银时,其对银的检测限分别达1.lug/inL。吸收光谱显示
     出了银纳米微粒对天青A的吸收光谱的有关变化。文中还研究了反应的适宜条
     件。
     五、银纳米微粒与碱性咕吨染料相互作用的共振瑞利散射光谱研究
     采用硝酸银柠檬酸钠还原法制备出不同粒径和颜色的银纳米微粒,它们有不
     同程度的共振瑞利散射(RR S人但强度较弱。以40n银纳米微粒为例,本文
     研究发现,在酸性介质中,它与罗丹明 B(RB)反应形成结合产物时,会使 RRS
     大大增强,并产生新的MS光谱。最大散射峰为5 80urn处的共振荧光峰。在
     470urn处还出现一个大的共振瑞利散射峰,在 0刀54.7pg/ffiL范围内银纳米微粒
In this paper, silver nanoparticle has been prepared. The relationship between absorption spectra and resonance Rayleigh scattering (RRS) and the size and concentration of silver nanoparticle have been inverstigated. Furthermore, the reaction between silver nanoparticle and some cation dyes such as basic triarymethane dye, basic phenazine dye, basic phenoxazine dye. basic xanthene dye and protein and antibiotics were studied by RRS. The spectral characteristics, the influencing factors, the properties of analytical chemistry and the probability of their analytical application have been investigated. The new, simple and fast methods for the determination of silver nanoparticle, protein and antibiotics have been proposed.
    1. Study on the relationship between absorbance spectra and resonance Rayleigh scattering spectra and the size and concentration of silver nanoparticle.
    Liquid phase nanoparticles with different diameters and colors can be prepared with sliver nitrate-sodium citrate reduction method by controlling temperature and reaction time. The mean diameters of sliver nanoparticle are measured by transmission electron microscopy (TEM). They have specific absorption spectra for the absorption peaks and there are bathchromic shifts gradually with the increase of diameters of silver nanoparticles. And there are obvious resonance Rayleigh scattering (RRS), second-order scattering (SOS), frequency-doubling scattering (FDS). The maximum peaks λRRS, λsos, λFDS are located at 470nm, 940nm, 470nm respectively. When the concentration of silver is constant, the scattering intensity IRRS, ISos and IFDS have linear relation with the diameters of silver nanoparticles. And, when the diameter of silver nanoparticle is constant, IRRS, Isos and IFDS are directly proportional to the concentration of silver nanoparticle. Therefore, absorption and RRS, SOS, FDS spectra can be used to study
    the size and to determine concentration of silver nanoparticle.
    2.Resonance Rayleigh scattering spectral study of the reaction between triarymethane dye and silver nanoparticle.
    
    
    Our experimental results have shown that, in pH 2.4~2.6 acid medium, when silver nanoparticle reacts with a basic triaminotriarymethane dye such as Crystol Violet, Methyl Violet, Ethyl Violet, Methyl Green or Iodine Green to form a compound, the intensity of RRS enhanced greatly and a new RRS spectrum appears. But the RRS of the basic diaminotriarymethane dye such as Malachite Green, Brillant Green enhances weekly. Because the ration of IAg-cv /IAg is maxium when silver nanoparticle diameter is 40nm, the diameter was selectived in the experiment. And the system of Ag-CV has obvious frequency-doubling scattering (FDS) and second -order scattering (SOS). Among which, RRS is the most sensitive, and the detection limits of Ag is 1.1-1.3 ng/mL. The method which modifies silver nanoparticle chemically provides a sensitive and simple method for the study and detection of silver nanoparticle. The hyerchomic effect of silver nanoparticle and basic triarymethane dye system can be observed. The suitable reaction conditions have been studied in the paper. And the probability of determination trace Crystol Violet in water has been discussed preliminarly using 20ng/mL silver nanoparticle. The method has high sensitivity, but there exist more interfering substance. If the selectivity is improved or the necessary preseparation is complemeted, it can be used to practical analysis.
    3.Resonance Rayleigh scattering spectral study of the reaction between basic phenazine dye and silver nanoparticle.
    In pH 2.4-2.6 acid medium, when a silver nanoparticle with diameter of 40nm react with basic phenazine dye such as Phenosafranine Chroma (PC) and Netruel red (NR) to form a compound, the intensity of RRS enhanced greatly and a new RRS spectrum appears, and obvious freguency-doubling scattering (FDS) and second-order scattering (SOS) appears at the same time. Among which, RRS is the most sensitive, and the detection limit of Ag is 0.8ng/mL (PC-Ag) and 0.6ng/mL (N
引文
1 吴伟农(Wu W N),中国科学报(Chinese Seience News),1997年3月24日
    2 王佛松,王夔,陈新滋,彭旭明主编,展望21世纪的化学,化学工业出版社,101
    3 王佛松,王夔,陈新滋,彭旭明主编,展望21世纪的化学,化学工业出版社 102
    4 Tian Tian(田甜),Han Song(韩松),LV Shengkai(吕绳凯),Tao yichuan(陶义川),Shanghai Joural of Laboratory Medicine(上海医学检验杂志),1996,11(4):226
    5 C.P. Cllier, R.J.Saykally, Jjshiang and J R Heath. Science 1997, 277:1978
    6 E braun,Y Eichen,U Sivan et al.Nature, 1998,391:775
    7 Ahmadi T.S.,Wang Z.L., Green T.C et al..Science[J],1996,272:1924-1926
    8 黑目祥一,金属,1985,55(2):50
    9 Zhu Yingjie ,Qian Yitai,Zhang Manwei,et al.,Mater. Lett.,1993,17:314
    10 Fievent F, Lagier T P, Blin B,et ai..Solid State Ionies, 1989,32/33:198
    11 Peng Zifei(彭子飞),Wang Guozhong(汪国忠),Zhang Lide(张立德),Yang Jinlong杨金龙.Materials Research Acta(材料研究学报),1997,11:11
    12 李亚栋,贺蕴谱,钱逸泰,Chinese Joural of Chemical Physics(化学物理学报),1999,12(4):465
    13 Hulteen J C,Treichel DA. MT et al.,J.Phys. Chem.B.1999,103(19),3854-3856
    14 Erez Braun,Yoav Eiehen,Uri Sivan et al.,Nature [J],1998,391:775-778
    15 Zhou Yaong ,Yu ShuH.,Wang Gui Y. et al.,Adv. Mater. [J], 199,11 (10):850-852
    
    
    16 Zhu Junjie,Liu Suwen,Palchik O.et al..Langmuir[J],2000,16:6396-6399
    17 蒋志良,钟福新,李延盛 Acta Chemica Sinica,2001,59(3),438-441
    18 彭必先,崔卫东,赵翔,Progress in Chemistry (化学进展),1993,10(4):362
    19 徐相凌 倪永红 殷亚东 叶强 张志成 Progress in Chemistry(化学进展)1999,11(3):239
    20 郑化桂,曾京辉,梁家和,刘方新,Phys-Chem Sinica(物理化学学报),2000,15(11):980
    21 廖学红,朱俊杰,赵小宁,陈宏渊,Chemical Joural of Chinese Universities(高等化学学报)2000,21(12),1337
    22 钟福新,蒋治良,李延盛,梁宏,Spctroscopy and Spectral Analysis(光谱学与光谱分析)2000,20(5):746
    23 舒磊,愈书宏,钱逸泰,Journal of Inorganic Chemistry(无机化学学报)1999,15(1):1
    24 (a)Wang Y.,Mahler W. Opt. Commun.,1987,61,233;(b)Hilinski E.,Lucas P.,Wang Y.J. Chem. Phys.,1988,89,3435
    25 Li Quang ,Zeng Guangbin ,Xi Shiquan , Chinese Chemical Bulletin, 1995 (6):129
    26 蒋治良,冯忠伟,李延盛,Science China(Series B)中国科学 (B辑)2001,31(2):184
    27 Kubo R.J.Phys. Soc.Jpn.,1962,17,995
    28 张立德主编,纳米化学,化学工业出版社
    29 Brow G T, Daffwent J R.J,Phys. Chem.,1984,88(21):4995
    30 Anpo M ,Shima T, Kodama S.et al.,J.Phys. Chem.,1989,91(16):4305
    31 钟子宜,陈立刚,颜其洁等,科学通报,1995,40(14):1279
    32 王彦妮,张志琨,崔作林,催化学报,1995,16(4):304
    33 王宝辉,王德军,崔毅等,高等化学学报,1995,16(10):1610
    34 沈耀春,陆祖宏,韦钰,科学通报,1994,39(24):2438
    35 Hodes G, Howell I D J,Peter L.M.J. Electrochem .Soc.,1992,139(11):3136
    36 张玉林,袁金锁,唐其琼等,中国科学(B辑),1995,25(7):701
    37 吴景雷,刘椎敏,董引语等,科学通报,1993,38(3):210
    38 Kamat P V ,Dimitrijevic N M.Solar Energy, 1990,44(2):83
    39 McCarty G S,Weiss P S ,Chem. Rev.,1999,99(7),1983-1990
    40 Knoll B,Keilmann F, Nature, 1999, 399, 134-137
    41 Bhushan B,Intern, Mater. Rev., 1999,44(3), 105-117
    42 王忠怀,戴长春,张平成等,科学通报,1993,38(21):1958
    43 刘方新,王寅生,毛俊军,科学通报,199438(10):884
    
    
    44 程光煦 何宇亮 张维等,科学通报,1994,38(10):884
    45 王晶遂 王成云,胡源等,科学通报,1994,39(5):414
    46 Lee P A, Critrin P H , Eisenberger P, et al.Rev. Mod. Phys., 1981, 53 (4): 769
    47 Moller K,Bein T, Herron N,et al.Mol. Cryst. Liq. Cryst.,1990,18(1):305
    48 Moller K,Bein T, Herron N,et al.Mol. Inorg. Chem.,1989,28(15):291
    49 刘学东,朱浩,姜健等,科学通报,1996,39(5):411
    50 李相箐,蒋可玉,阮春梅等,科学通报,1996,41(7):598
    51 王之江,科学通报,1993,38(23):2205
    52 BogomovoV N,Kholodkevich S V, Romanov S G, et al.Solid State Communicalions, 1983,47(3). 181
    53 Sun T, Seff K, Heo N H,et al.Science, 1993,259(5):495.
    54 Sun T, Seff K.J.Phys. Chem.,1993,97(20): 5213
    55 Kim Y ,Han Y W, Seff K.J.Phys. Chem.,1993,97(49):12663
    56 Nie S Emory SR.science, 1997,275:1102
    57 张振宇,周群,孙素琴,郁鉴源,张新荣Analytical Chemistry:Achievements and Challengs(分析化学的成就与挑战) 西南师范大学出版社,2000,453
    58 郑军伟,李晓伟,周跃国,顾仁敖Spectroscopy and Spectral Analysis(光谱学与光谱分析)2000,20(6):814
    59 Dedye P.,J.Appl. Phys.,1994,15,388(1994)
    60 Tanford C.,Physical Chemistry of Macromolecules, John Wily and Sons,Inc.,New York and London, 1996,275
    61 Burchard W., Bichem.Sovc. Trans.,1991,19:478
    62 Huglin ,pure and Appl. Chem.,1997,49: 929
    63 Kratochvil P., pure and Appl.Chem.,1982,54:379
    64 左渠,激光散射原理及在高分子科学中的应用,河南科技出版社,郑州,1994,234-235
    65 Timasheff S.N.,J. Chem. edu.,1996,41: 314
    66 Burchard W.,Biochem.soc. Tras.,1991,19: 478
    67 Stanton S.G. Pecora R., J . Chem. Phys.,, 1981,75(12): 5615
    68 中国百科全书编辑委员会编,中国大百科全书(物理学Ⅰ),中国大百科全书出版社,北京,1987,.237
    69 Anglister J.Steinberg,I.Z.,Chem. Phys.,1981,74(2):786
    70 蒋治良 分析测试技术与仪器,2000 6(4):216
    71 R.F. Pasternack C.Bustamante. Collings A.Giannetto E.J.Gibbs,.J. Am.Chem. Soc.,1993,115. 5393
    72 Cheng zhi Huang ,Ke an Li,Shen yang Tong.Anal. Chem. 1996,68:2259
    
    
    73 Cheng zhi Huang ,Ke an Li,Shen yang Tong.Anal. Chem.1997,69:514
    74 Cheng zhi Huang, Ke an Li,Yuan fang Li,Shen yang Tong.bull. Chem. Soc. Jpn.,1998,71:1791
    75 Cheng zhi Huang ,Ke an Li,Shen yang Tong,Bull. Chem.Soc.Jpn.,1997,70:1843
    76 Cheng zhi Huang ,Kean Li,Shen yang Tong,Anall. Chem. Acta.,1997,345:235
    77 Cheng zhi Huang, Yuan fang Li,Hong qun Luo,Anal. Lett.,1998,31(7): 1149
    78 黄承志,李克安,沈童阳,高等化学学报,1997,18(4),525
    79 Cheng zhi Huang, Yuan fang Li, Jiang guo Mao,Analyst, 1998,123:1401
    80 C .Q.Ma ,K.A.Li,S.Y. Tong,Anal. Biochem,1996,239:86
    81 C .Q.Ma ,K.A.Li,S.Y. Tong,Analyst, 1997,122:361
    82 C .Q.Ma ,K.A.Li,S.Y. Tong,Fresenius J. Anal. Chem.,1997,357:915
    83 C .Q.Ma ,K.A.Li,S.Y. Tong,Bull. Chem.Soc. Jpn., 1997,70:129
    84 C .Q.Ma ,K.A.Li,S.Y. Tong,Anal. Chim. Acta, 1997,338:225
    85 魏永巨 李克安 沈童阳,化学学报,1998,56:290
    86 Liu S.P, Liu Z.F..Spectrachim. Acta, 1995,51A:1497
    87 刘芹,西南师范大学硕士论文,1998,P39
    88 Cao Q E.,Zhao Y K.,Yao X J.,HuQ.H.Anal Lett,2001,34(5):773
    89 蒋治良,李芳,梁宏,化学学报,2000,58(8):1059-1062.
    90 Oshima M.,Goto N.,Susanto J.P.,Motomizus, Analyst, 1996, 121 (8). 1085
    91 Shao pu Liu,Guang ming Zhou,Zhong fang Liu. Fresenius J. Anal. Chem., 1999,363:651
    92 杨睿,西南师范大学硕士论文,1999
    93 龙秀芬,西南师范大学硕士论文,2000
    94 奉平,西南师范大学硕士论文,2000
    95 范莉,西南师范大学硕士论文,2001
    96 陈飒,西南师范大学硕士论文,2002
    97 刘绍璞,刘忠芳,李明,化学学报,1995,53:1185—1192
    98 刘绍璞,刘忠芳,李明,分析化学,1996,28(5):501—505
    99 刘绍璞,刘忠芳,李明,化学学报,1995,53:1178—1184
    100 刘绍璞、刘忠芳、蒋治良、李明、龙秀芬,化学学报,2001,11:1864—1869
    101 高建华,林鹏,陈彬,毛陆原,冶金分析,2000,20(4):1
    102 刘绍璞,刘忠芳,西南师范大学学报(自然科学版),1998,24(4):412
    
    
    103 刘绍璞,杨睿,分析化学,1998,26(12):1432
    104 蒋治良,冯忠伟,刘庆业等,无机化学学报,2001,17(3):355—360
    105 蒋治良,光子学报,2001,30:460
    106 蒋治良,钟福新,李芳,化学学报,2001,59(3):438—441
    107 梁宏,沈星灿,蒋治良,中国科学(B辑),2000,30(5):560—566
    108 谢齐运,蒋治良,物理化学学报,2001,17(5):406—411
    109 Hang C.Z.,Li Y.F.,Hu X.L.,Li N.B.,Anal. Chim. Acta, 1999,395:187
    110 刘绍璞,刘忠芳,李明,化学学报,1995,53:1178
    111 刘绍璞,刘忠芳,李明,化学学报,1995,53:1185
    112 蒋治良 分析测试技术与仪器 2000 6(4):201
    113 钟福新,蒋治良,李芳,光谱学与光谱分析 2000,20(5):724
    114 蒋治良,李芳,梁宏,分析测试技术与仪器,2000,6(2):98
    115 蒋治良,李芳,李延盛,高等化学学报,2000,21(10):1488-1490
    116 Cramp J. H. W.,Hillson P. J. J Photogr. Sci.,1975,23.1.
    117 徐相凌,倪永红,殷亚东,葛学武,叶强,张志成 Progress in Chemistry 化学进展 1999,11(3):239
    118 Belloni J.,Mostafavi M.,Mariginier I.L., Amblard J.J. Imag. Sci.,1991,35(2):68
    119 郭立俊,张兴堂,杜祖亮.银纳米粒子与R6G分子间的电荷转移,光谱学与学谱分析,2001,21(2):16.
    120 舒磊,愈书宏,钱逸泰,Journal of Inorganic Chemistry (无机化学学报)1999,15(1):1
    121 Shuming Nie,Steven R. Emory.,Science., 1997, 275(12):1102
    122 Peter Hildebrandt, Manfred Stockburger. Surface-enhanced resonance spectroscopy of Rhodamine 6G adsorbed on colloidal silver[J]. J. phys. Chem. 1984,88:5935-5944