MONCPT对膀胱癌细胞5637的抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱癌是我国泌尿系统最常见的恶性肿瘤,90%以上为移行细胞癌。初次就诊的患者中70%~80%为浅表性膀胱癌,其中70%为Ta期,30%为T1期,不论肿瘤分化程度的高低,都未侵及膀胱肌层。经尿道切除术或者膀胱部分切除术可以切除原发肿瘤,但由于膀胱癌的多中心性和多发性特点,术后5年复发率高达三分之二,而术后15年的复发率则高达88%,复发的患者中约有15%会进展为浸润性膀胱癌。因此,浅表性膀胱癌手术后如何预防复发和疾病进展是泌尿外科医生共同努力的目标。自上个世纪60年代起开始的膀胱内灌注治疗有效地延缓或者阻止了肿瘤的复发和进展,因此,膀胱灌注治疗己成为膀胱癌治疗的重要手段之一。目前膀胱灌注治疗的药物主要为两大类,分别为化学药物和免疫制剂,其中喜树碱类衍生物是膀胱灌注化疗的重要药物之一。
     喜树碱类衍生物的构效关系分析表明在7,9,10位被基团取代的喜树碱类衍生物具有很强的抗肿瘤活性。尽管在10位被羟基和烷基取代后,如10-甲氧基喜树碱有一定的抗肿瘤活性,但是其有较强的毒副作用限制了它的临床应用。相反在9位引入硝基,如9-硝基喜树碱,不仅能保证其治疗效果,同时还具有较低的毒副作用。但要将喜树碱硝化得到9-硝基喜树碱是比较困难的,因为12-硝基喜树碱会是最主要的产物。而对10—羟基喜树碱进行硝化则容易得到10—甲氧基—9—硝基喜树碱(MONCPT),国内华东师范大学合成了该化合物。该药系我国有自主知识产权的喜树碱类抗肿瘤新药,目前正在进行临床前研究。膀胱癌是泌尿系统最常见的肿瘤,本课题就是考察MONCPT对膀胱癌细胞增殖的抑制作用并对其作用机制进行研究。
     目的:
     1、研究MONCPT对膀胱癌5637细胞增殖的抑制作用(在体和离体);
     2、考察MONCPT对膀胱癌5637细胞周期的影响,若有影响则进一步探讨其作用机制;
     方法:
     1)采用MTT法,评价MONCPT体外抑制膀胱癌5637细胞活性;
     2)采用裸小鼠皮下移植瘤模型,观察MONCPT对荷人膀胱癌5637裸小鼠的实验治疗作用;
     3)应用流式细胞术检测不同浓度MONCPT和MONCPT在不同作用时间对5637细胞周期的影响;
     4)采用Western blotting的方法检测MONCPT对5637细胞p53,CDK7,p21,AKT,Mat1,Wee1,Cyclin B1,CDK1,Cyclin H,Cdc25C等蛋白表达水平的影响;
     结果:
     1、MONCPT对人膀胱癌细胞株的体外抑制作用:
     采用MTT法对人膀胱癌5637细胞进行体外IC_(50)测定,结果表明,MONCPT对人膀胱癌5637细胞作用48小时有较强的抑制增殖作用,IC_(50)值为1.31±0.16μM。结果还显示,随浓度的下降,MONCPT在体外对人膀胱癌5637细胞的抑制率迅速降低,呈明显的剂量依赖关系。
     2、MONCPT对人膀胱癌5637细胞的实验治疗作用:
     对裸小鼠体内5637肿瘤的实验治疗作用试验结果显示,MONCPT 5、10和20mg/kg组裸小鼠体重无明显影响(P>0.05)。与相应的溶剂对照组比较,Irinotican10mg/kg和MONCPT 10mg/kg组移植瘤体积从第5天开始显著减小(P<0.05—0.01),而MONCPT 20mg/kg组植瘤体积从第3天开始显著减小(P<0.05),MONCPT 5mg/kg组植瘤体积从第9天开始显著减小(P<0.01)。MONCPT 5mg/kg组在给药后第3、5、7、9、11、13和15天的相对肿瘤增殖率(T/C,%)分别为103.2%、84.6%、95.7%、80.2%、62.0%、41.6%和23.8%,从第13天开始相对肿瘤增殖率小于60%;MONCPT 10mg/kg组相应的相对肿瘤增殖率分别为95.3%、67.7%、61.4%、34.2%、21.2%、11.1%和6.2%,从给药后第9天开始相对肿瘤增殖率小于60%;MONCPT 20mg/kg组相应的相对肿瘤增殖率分别为73.2%、51.9%、40.3%、20.9%、11.7%、6.9%和3.3%,从给药后第5天开始相对肿瘤增殖率小于60%;Irinotican 10.0mg/kg组相应的相对肿瘤增殖率分别为88.1%、70.4%、50.5%、31.3%、20.8%、13.8%和7.3%,从给药后第7天开始相对肿瘤增殖率小于60%。给药15天后剖杀裸小鼠取瘤块称重发现,MONCPT 5mg/kg、10mg/kg和20mg/kg组的人膀胱癌5637移植瘤平均重量分别为0.63±0.12g、0.24±0.06g和0.06±0.03g,与阴性对照组的1.83±0.30g比较均有明显下降(P<0.01),三个剂量组相应的肿瘤抑制率分别为64.8%、86.2%和96.5%,肿瘤抑制率均大于40%。Irinotican 10.0mg/kg组的平均瘤重为0.36±0.09g,与溶剂对照组比较也有显著下降(P<0.01),抑瘤率为81.1%,大于40%。
     3、MONCPT诱导人膀胱癌5637细胞周期阻滞作用:
     MONCPT10,1,0.1,0.01μM分别对人膀胱癌5637细胞作用24小时后,DNA分析结果表明,溶剂对照组的G2/M期的肿瘤细胞百分率分别为8.56±2.13%;而MONCPT10,1,0.1,0.01μM处理24小时后,处于G2/M期肿瘤细胞百分率分别为19.7±3.6%、46.9±7.3%、76.8±9.2%和18.55±3.5%,0.1μM的MONCPT能达到最大的肿瘤细胞周期阻滞作用。用0.1μM的MONCPT处理5637细胞12h,24h,36h和48h,并设溶剂对照,收集各组细胞,用流式细胞术检测细胞的周期阻滞率。结果显示,溶剂对照组的G2/M期的肿瘤细胞百分率为11.45±2.3%,随着MONCPT作用时间的延长,G2/M期比率分别为22.4±3.85%(12h)、79.18±7.3%(24h)、50.15±6.25%(36h)和29.7±3.85%(48h)。
     4、MONCPT对5637细胞周期相关蛋白表达量的影响:
     用0.1μM MONCPT分别处理5637细胞12,24,36和48h,并设对照,收集各组细胞,提取蛋白,用Western印迹法检测CDK1、CyclinB1、Cyclin H、MAT1、AKT、Wee1、CDK7,Cdc25C,p21和p53蛋白表达量的变化。结果显示,随给药时间的延长,MONCPT可使人膀胱癌5637细胞p53,p21的表达先增加后下降,MAT1、CyclinB1的表达先下降后增加,CDK1、CDK7、Cdc25C、Cyclin H、AKT、Wee1的表达量下降。
     讨论和结论:
     MONCPT是新合成的喜树碱类衍生物。体内外的抗肿瘤实验证实MONCPT对人膀胱癌5637细胞具有很强的抑制增殖作用,同时我们还证实这种作用是可以通过对细胞周期G2/M期阻滞实现的。
     近几年来,植物来源的抗肿瘤药物受到了广泛的关注。当哺乳动物细胞遇到DNA损伤时,细胞周期会停滞直到错误被纠正,细胞周期G2/M期被阻滞后细胞将停滞生长。相比较G1/S,人们对G2/M了解的并不多,然而这个周期检验点对于肿瘤发生却是非常重要的。G2/M的转变是受到Cdc家族蛋白和cyclin调控的,Cdc2可以被四个转录靶点p53,Gadd45,p21和14—3—3σ所抑制。p53可作为转录因子,诱导另外几种蛋白的产生,如p21,从而达到调控细胞周期的作用。在哺乳动物细胞中,cyclin的结合和CAK对Cdc2的Thr161位磷酸化对于Cdc2-cyclin B复合物的活性都是非常重要的。若没有Cdc25C对Cdc2的Thr14和Tyr15位去磷酸化,且Plk1磷酸化cyclin B时,细胞周期将被停滞。当用0.1μM MONCPT分别处理5637细胞12,24,36和48h,Western印迹法检测结果显示,随给药时间的延长,5637细胞的p53,p21表达先增加后下降,MAT1、CyclinB1表达先下降后增加,CDK1、CDK7、Cdc25C、Cyclin H、AKT、Wee1表达量下降。因此,我们推测,MONCPT使人膀胱癌5637细胞终止在G2/M期的作用可能是其通过诱导细胞p53、p21表达上调和CyclinB1、CDK1、CDK7、AKT、Wee1、Cyclin H、Mat1和Cdc25C表达下调,从而使细胞终止在G2/M期,达到抑制肿瘤细胞增殖的作用。
     综上所述,我们实验证实,MONCPT对人膀胱癌5637细胞的增殖具有明显的抑制作用,其作用机制可能与p53通路、CDK7、Cdc25C及cyclin B1-CDK1复合物有密切关系,通过阻滞膀胱癌细胞周期而发挥抗肿瘤活性。在体和离体实验证实,MONCPT具有良好的抗膀胱癌实验治疗作用,值得在临床进一步实验以确证疗效。
Bladder cancer is the most common urologic cancer in our country. Morethan 90% of bladder cancer is transitional cell carcinoma (TCC). About 70-80% ofcases are superficial at the time of diagnosis, of which 70% are stage Ta and 30%are stage T1. Low-grade non-invasive tumors may be treated with resection andfulguration. However, despite complete tumor resection, two thirds of patients willdevelop tumor recurrence in five years and by 15 years 88% of patients willdevelop a recurrence. Progression from superficial bladder cancer to deepmuscle invasion occurs in 15% of patients. The high rate of tumor recurrence andpotential progression provides an opportunity to institute chemoprevention orprophylactic therapy. Now intravesical therapy is the important modality forbladder cancer treatment.There are two main categories of intravesical therapy,that is, chemotherapy and immunotherapy. Camptothecin analogs is one of theimportant chemotherapeutic drugs for intravesical therapy.
     The structure-activity relationship (SAR) analysis of the CPTs hasdemonstrated that substitutions at the 7-, 9-, or 10-positions of most camptothecinanalogs can enhance their antitumor activity. Although the induction of hydroxylor alkoxy at position 10, such as, 10-methoxycamptothecin, has antitumor activity,its low therapy index limited further research. In contrast, the induction of a nitroat position 9, such as 9-nitrocamptothecin, has shown satisfactory activity with lowtoxicity. 9-nitrocamptothecin was difficultly prepared by nitration of camptothecinbecause the 12-nitrocamptothecin was the main product,and the 10-methoxy-9-nitrocamptothecin could easily be prepared from10-hydroxycamptothecin.The present study was conducted to estimate theanti-cancer activity of MONCPT against bladder cancer both in vitro and in vivo,and the molecular mechanisms of anti-tumor effect.
     Purposes: To determine the anticancer activity of MONCPT both in vitro and invivo against bladder cancer cell 5637; estimate the effect on cell cycle of bladdercancer cell 5637 and elucidate its mechanism.
     Methods:
     1) Cancer cell killing ability of MONCPT was measured by MTT method;
     2) Tumor growth inhibition activity of MONCPT was measured by murine bearinghuman xenografted tumor models in vivo;
     3) After MONCPT treating,cell cycle distribution was detected by flow cytometry;
     4) Protein (p53, CDK7, p21, AKT, Mat1, Wee1, Cyclin B1, CDK1, Cyclin H,Cdc25c) expression was detected by Western blotting;
     Results:
     1. Cytotoxicity Assay
     Using the MTT method, we determined the cytotoxic activity of MONCPTagainst bladder cancer cell lines (5637 cells). All the cells exhibiteddose-dependent sensitivity to 48-hours exposure with MONCPT and the IC_(50)value was 1.31±0.16μM.
     2. Effect of MONCPT on Tumor Growth in vivo in 5637 Xenografted Models.
     On the basis of the encouraging in vitro data, the antiproliferation activity ofMONCPT was evaluated in human tumor models xenografted in athymic mice.The study showed that MONCPT possessed of significant effect on tumorweight(P<0.01) compared with the negative control group , but not on athymicmice body weight (P > 0.05). The tumor weights were 0.63±0.12g (MONCPT5mg/kg), 0.24±0.06g (MONCPT10mg/kg) and 0.06±0.03g (MONCPT20 mg/kg).In the negative control group the tumor weight was 1.83±0.30g. Compared withthe control group, the tumor volumes were significantly inhibited from day 5 in thegroups treated with MONCPT (10.0 mg/kg) and Irinotican (10.0 mg/kg) (P<0.05-0.01) and from day 3 in the groups treated with MONCPT (20.0 mg/kg) (P<0.05) , from day 9 in the groups treated with MONCPT (5.0 mg/kg) (P <0.01).The relative tumor proliferation rates (T/C, %) of 5 mg/kg MONCPT were 103.2%,84.6%,95.7%,80.2%,62.0%,41.6% and 23.8% at treatment day 3, 5, 7, 9,11,13, and 15 respectively, while these of 10 mg/kg MONCPT were 95.3%,67.7%,61.4%,34.2%, 21.2%,11.1% and 6.2%. The T/Cs (%) of 20 mg/kg MONCPTwere 73.2%、51.9%、40.3%、20.9%、11.7%、6.9% and 3.3%, from day 5the T/Cs (%) < 60% . The T/Cs (%) of 10 mg/kg Irinotican were 88.1%、70.4%、50.5%、31.3%、20.8%、13.8% and 7.3%,from day 7 the T/Cs(%) <60%.
     3. Cell cycle Assay of MONCPT against 5637.
     5637cells were respectively treated with 10,1, 0.1, 0.01μM MONCPT for 24hours. Collect the treated cells and the control cells, and then use the flowcytometry to detect the cell cycle distribution. It was showed that G2/M distributionwere 19.7±3.6%、46.9±7.3%、76.8±9.2%and 18.55±3.5%respectively,and 8.56±2.13% in control group . 0.1μM MONCPT has the greatest effectto arrest cell cycle in G2/M phase. 5637 cells were treated with 0.1μM MONCPTfor 12, 24, 36 and 48 hours, collectting the treated cells and the control cells, andthen used the flow cytometry to detect the cell cycle distribution. It was indicatedthat the increase of the cell cycle G2/M distribution was detected in 5637 cells.The percentages of cell cycle G2/M in 5637 cells induced by 0.1μM MONCPT for0, 12, 24, 36 and 48 hour were 11.45±2.3%, 22.4±3.85%(12h), 79.18±7.3%(24h), 50.15±6.25%(36h) and 29.7±3.85% (48h) respectively.
     4. Determination of the Expression of Cell cycle G2/M phase-relatedProteins.
     Incubate the 5637 cells with 0.1μM MONCPT for 12, 24, 36 and 48 hours,collectting the treated cells and the cells without exposure to MONCPT, followedby extracting proteins from these cells. It was showed that MAT1、CyclinB1 wereobviously down-regulated from 12 to 24h, and then up-regulated from 36 to 48hby MONCPT (0.1 pM). CDK1、CD7、Cdc25C、Cyclin H、AKT、Wee1 weredown-regulated within 48 hours by MONCPT (0.1μM). The high-level expression of p21 and p53 proteins at 24 h after treatment of MONCPT (0.1μM ) in 5637cells indicated that MONCPT exert its potency through affecting the expression ofproteins related with cell cycle.
     Discuss and Conclusion:
     MONCPT is a new synthetic derivative of Camptothecin. Our results showedthat MONCPT exerted potent antiproliferative action on human bladder cancercells in vitro and in vivo. We also identified that cell cycle G2/M phase waseffectively arrest by MONCPT in human bladder cancer 5637 cells, whichindicated that its mechanism of anti-bladder cancer effect was through cell cyclepathway.
     In previous study, it was reported that MONCPT induced cell cycle G2/Mphase arrest by several pathways simultaneously, including p53 pathway, theMAPK pathway and the activation of Akt. Cell cycle regulation and itsmodulation by various plant-derived agents are gaining widespread attention inrecent years. Mammalian cells respond to DNA-damaging agents by activatingcell cycle checkpoints, acting by delaying cell cycle progression until errors havebeen corrected. Usually these control mechanisms determine a temporaryarrest at a specific stage of the cell cycle to allow the cell to correct possibledefects. The arrest at G2/M prevented the cells from completing the cell cycleand proliferating. In contrast to the G1/S checkpoint, the mammalian G2/Mcheckpoint is poorly understood.This checkpoint prevents the improper segregation of chromosomes, which is likely to be important in humantumorigenesis. G2/M transition provides an effective checkpoint in cell cycleprogression that is regulated by the sequential activation and deactivation of Cdcfamily proteins and cyclin complexes. The Cdc2-cyclin B kinase is pivotal inregulating this transition. Cdc2 is inhibited simultaneously by four transcriptionaltargets of p53, Gadd45, p21, and 14-3-3σ. p53 is a transcription factor thatup-regulates a number of important cell cycle-modulating genes such as p21.Part of the mechanism by which p53 blocks cells at the G2 checkpoint involvesinhibition of Cdc2, the cyclin-dependent kinase required to enter mitosis. Inmammalian cells, both cyclin binding and phosphorylation by CAK are required forthe activation of Cdc2-cyclin B complex, Thr161 on Cdc2 of the complex isphosphorylated by CAK, a complex containing cyclin H, MAT1 and CDK7. In theabsence of Cdc2 dephosphorylation by Cdc25C, and also the directphosphorylation of cyclin B by Plk1, the accumulation of cyclin B-Cdc2 in thenucleus is prevented and entry into mitosis is stalled. In addition, Plk1 also hasbeen shown to function via the Cdc25C and Cdc2/cyclin B1 positive feedbackloop at the onset of mitosis. Our results were showed that MAT1、CyclinB1 wereobviously down-regulated from 12 to 24h, and then up-regulated from 36 to 48hby MONCPT (0.1μM ). CDK1、CDK7、Cdc25C、Cyclin H、AKT、Wee1 weredown-regulated within 48 hours by MONCPT (0.1μM ) . The high-levelexpression of p21 and p53 proteins at 24 h after treatment of MONCPT (0.1μM)in 5637 cells indicates that MONCPT exert its potency through affecting theexpression of proteins related with cell cycle.
     In conclusion, MONCPT exhibited high anti-proliferation activity in humanbladder cancer 5637 cell line both in vivo and in wfro.lt was shown that MONCPTcould induce cell cycle G2/M phase arrest in human bladder cancer 5637 cellsand its mechanism may be associated with cyclinB1-CDK1 complex, p53, CDK7and Cdc25c.
引文
1 Ro JY,Staerkel GA,Ayala AG.Cytologic and histologic features of superficialbladder cancer(Review)[J].Urol Clin North Am,1992,19(3):435-453.
    
    2 Lamm DL,Griffith JG.Intravesical Therapy:does it affect the natural history ofsuperficial bladder cancer? [J]Semin Urol,1992,10(1):39-44.
    
    3 Althausen AF,Prout GR Jr,Daly JJ.Non-invasive papillary carcinoma of thebladder associated with carcinoma in situ[J].J Urol,1976,116(5):575-580.
    
    4 Lutzeyer W,Rubben H,Dahm H.Prognostic parameters in superficial bladdercancer:an analysis of 315 cases[J].J Urol ,1982,127(2):250-252.
    
    5 Hsiang YH,Hertzberg R,Hecht S,et al.Camptothecin induces proteinlinkedDNA breaks via mammalian DNA topoisomerase I[J].J Biol Chem1985,260(27):14873-14878.
    
    6 Stewart L,Redinbo MR,Qiu X,Hol WG,Champox JJ.A model for themechanism of human topoisomerase I.Science, 1998 Mar6;279(5356):1534-1541.
    
    7 Redinbo MR,Champox JJ,Hol WG.Novel insights into catalytic mechanismfrom a crystal structure of human topoisomerase I in complex with DNA.Biochemistry.2000 Jun 13;39(23):6832-6840.
    
    8 Goldwasser F,Shimizu T,Jackman J,et al.Correlations between S and G2arrest and the cytotoxicity of camptothecin in human colon carcinomacells[J].Cancer Res,1996,56(19):4430-4437.
    
    9 Pardee AB.Regulation,restriction,and reminiscences[J].J Biol Chem,2002,277(30):26709-26716.
    
    10 细胞生物学教程绍兴文理学院生物科学系www.celIa_cn/book/13/04.htm.
    
    11 李瑶莹,刘晓明,安利佳等.新的喜树碱类化合物-喜树异碱抑制鳞癌细胞增殖及对其细胞周期影响的实验研究[J].中国中西医结合皮肤性病学杂志,2005,4(3):137-140.
    
    12 Lupi M,Matera G,Branduardi D,et al.Cytostatic and cytotoxic effects oftopotecan decoded by a novel mathematical simulation approach[J].CancerRes,2004,64(4):2825-2832.
    
    13 Chai LP,Su ZZ,Xian ZX.Inhibition of hydroxy camptothecin on laryngealsquamous carcinoma cell line[J].Ai Zheng,2003,22(4):372-375.
    
    14 King RW,Jackson PK,Kirschner MW.Mitosis in transition[J].Cell,1994,79(4):563-571.
    
    15 Krek K and Nigg EA.Differential phosphorylation of vertebrate p34cdc2 kinaseat the G1/S and G2/M transitions of the cell cycle:identification of majorphosphorylation sites[J].EMBO J,1991,10(2):305-316.
    
    16 Ferrell JE,Wu M,Gerhart JC ,et al.Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopusoocytes nad eggs[J].Mol Cell Biol,1999,11(4):1965-1971.
    
    17 Peihua L,Qiaojun H,Xungui H,et al.Potent antitumor activity of10-methoxy-9-nitro camptothecin[J].Mol Cancer Ther,2006,5(4):962 -968.
    
    18 杨德安,李慎勤.表浅型膀胱肿瘤术后复发的预防[J].临床泌尿外科杂志,1996,11(2):123-125.
    
    19 Morgan DO.Cyclin-dependentkinases:engines,clocks,and microprocessors[J].Annu Rev Cell Dev Biol,1997,13:261 -291.
    
    20 Roberts JM.Evolving ideas about cyclins[J].Cell,1999,98(2):129-132.
    
    21 Pantazis P,Early JA, Mendoza JT,et al.Cytotoxic efficacy of9-nitrocamptothecin in the treatment of human malignant melanoma cells invitro[J].Cancer Res,1994,54(3):771-776.
    
    22 Tamura K,Yamakido M,Kawase I,et al.Enhancement of tumorradioresponse.Radioresponse by irinotecan in human lung tumor xenografts[J].Jpn J CancerRes,1997,88(2):218-223.
    
    23 Obaya AJ,Sedivy JM.Regulation of cyclin-Cdk activity in mammalian cells.Cell Mol Life Sci 2002;59(1):126-142.
    
    24 Sherr CJ.Cancer Cell Cycles[J].Science,1996,274(5293):1672-1677.
    
    25 Yu J,Guo QL,You QD,et al.Gambogic acid induced G2/M phase cell cyclearrest via disturbing CDK7 mediated phosphorylation of CDC2/P34 in humangastric carcinoma BGC-823 cells[J].Carcinogenesis,2007,28(3):632-638.
    
    26 Mueller PR,Coleman TR,Kumagai A,et al.Myt1:a membrane-associatedinhibitory kinase that phosphorylates Cdc2 on both threonine-14 andtyrosine-15[J].Science,1995,270(5233):86-90.
    
    27 Parker LL,Atherton-Fessler S,Piwnica-Worms H.p107wee1 is adual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15[J].ProcNatl Acad Sci USA,1992,89(7):2917-2921.
    
    28 Pines,J.Cell cycle.Confirmational change[J].Nature 1995,376(6538):294-295.
    
    29 Hashimoto O,Shinkawa M,Torimura T,et al.Cell cycle regulation by theWee1 inhibitor PD0166285,pyrido [2,3-d] pyimidine,in the B16 mousemelanoma cell line[J].BMC Cancer,2006 Dec 19(6):292.
    
    30 Gautier J,Solomon MJ,Booher RN,et al.Cdc25 is a specific tyrosinephosphatase that directly activates p34cdc2[J].Cell,1991,67(1):197-211.
    
    31 Lopez-Girona A,Furnari B,Mondesert O,et al.Nuclear localization of Cdc25regulated by DNA damage and 14-3-3 protein[J].Nature,1999,397(6715):172-175.
    
    32 FrankeTF,Yang SI,Chan TO,et al.The protein kinase encoded by the Aktproto-oncogene is a target of the PDGF-activated phosphatidylinositol3-kinase[J].Cell 1995;81(5):727-736.
    
    33 Kim CS,Vasko VV,Kato Y,et al.AKT activation promotes metastasis in a mousemodel of follicular thyroid carcinoma.Endocrinology,2005,146(6):4456-4463
    
    34 中华病理学杂志委员会.全国端粒酶、p53和细胞凋亡的研究及应用研讨会纪要[J].中华病理学杂志,2000,29(1):9
    
    35 Ko LJ,Prives C.p53:puzzle and paradigm[J].Genes Dev,1996,10(9):1054-1072.
    
    36 Vogelstein B,Lane D,Levine A J.Surfing the p53 network[J].Nature,2000;408(6810):307-310.
    
    37 Stark GR,Taylor WR.Analyzing the G2/M checkpoint[J].Methods Mol Biol,2004,280 (1):51-82.
    
    38 Morgan D O.Principles of CDK regulation[J].Nature,1995,374(6518):131-134.
    39 Solomon M J. The function(s) of CAK, the p34cdc2-activating kinase[J]. Trends Biochem Sci, 1994,19 (11) :496-500.
    
    40 Eki T, Okumura K, Abe M , et al. Mapping of the human genes encoding cyclin H(CCNH)and the CDK—activating kinase(CAK) assembly factor MAT1(MNAT1) to chromosome bands 5q13.3-q14 and 14q23 , respectively[J]. Genomics, 1998,47(1 ):115—120.
    
    41 Yee A, Nichols MA, Wu L, et al. Molecular cloning of CDK7-associated human MAT1, a cyclin-dependent kinase-activating kinase(CAK)assembly factor[J]. Cancer Res, 1995, 55(24):6058—6062.
    
    42 Kaldis P, Solomon MJ. Analysis of CAK activities from human cells[J]. Eur J Biochem, 2000,267(13):4213-4221.
    
    
    1 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1982,52(2):144-145
    
    2 Wall ME,Wani MC,Cook CE,et al.Antitumor agent I.The isolation and structureof Camptothecin,a novel alkaloidal leukemia and tumor inhibitor fromcamptotheca acuminate[J].J Amer Chem Soc,1966,88(16):3888-3890
    
    3 Wani MC,Nicholas AW,Wall ME.Plant antitumor agent.23.Synthesis andantileukemic activity of camptothecin analogues[J].J Med Chem,1986,29(11):2358-2363
    
    4 Slichenmyer WJ,Von Hoff DD.New natural products in cancerchemotherapy[J].J Clin Pharmacol,1990,30(9):770-788
    
    5 Hsiang YH,Hertzberg R,Hecht S,et al.Camptothecin induces protein-linkedDNA breaks via mammalian DNA topoisomerase-l[J].J Biol Chem.1985,260(27):14873-14878
    
    6 Saijo N.Clinical trials of irinotecan hydrochloride in Japan [J].Ann N Y AcadSci,1996,803(13):292-305
    
    7 Broom C.Clinical studies of Topotecan [J].Ann N Y Acad Sci,1996,803(13):264-271
    
    8 Wang JC.DNA Topoisomerases [J].Annu Rev Biochem.1996;65:635-692
    
    9 Heck MM,Hittelman WN,Earnshaw WC.Differential expression of DNATopoisomerases I and II during the eukaryotic cell cycle [J].Proc Natl Acad SciUSA.1988,85(4):1086-1090
    
    10 Stewart L,lreton GC,Parker LH et al.Biochemical and biophysical analyses ofrecombinant forms of human topoisomerase I[J].J Biol Chem,1996,271(13):7593-7601
    
    11 Redinbo MR,Stewart L,Kuhn P.Crystal structures of human topoisomerase I incovalent and noncovalent complexes with DNA[J].Science,1998,279(5356):1504-1513
    
    12 Peterson BO,Shuman S.DNA strand transfer reactions catalyzed by vacciniatopoisomerase:hydrolysis and glycerololysis of the covalent protein-DNAintermediate[J].Nucleic Acids Res,1997,25(11):2091-2097
    
    13 Takimoto CH,Wright J,Arbuck SG,et al.Clinical applications of thecamptothecins[J].Biochem Biophys Acta.1998,1400(1-3):107-119
    
    14 Potmesil M,Hsiang YH,Liu LF,et al.Resistance of human leukemic andnormal lymphocytes to drug-induced DNA cleavage and low levelsof DNA Topo Isomerase II[J].Cancer Res.1988,48(12):3537-3543
    
    15 Vassal q Pondarre C,Cappelli C,et al.DNA-Topo Isomerase I,a new target forthe treatment of neuroblastoma[J].EurJCancer.1997,33(12):2011-2015
    
    16 Liu LF,Desai SD,Li TK,et al.Mechanism of Action of Camptothecin[J].Ann N YAcadSci.2000,922(1):1-10
    
    17 Tsao YP,Russo A,Nyamuswa G,et al.Interaction between replication forks andTopo Isomerase I-DNA cleavable complexes:studies in a cell-free SV140 DNAreplication systerm[J].Cancer Res.1993,53(24):5908-5914
    
    18 D'Arpa P,Beardmore C,Liu LF.Involvement of nucleic acid synthesis in cellkilling mechanisms of Topo Isomerase poisons[J].Cancer Res.1990,50(21):6919-6924
    
    19 Tsao YP,D'Arpa P,Liu LF.The involvement of active DNA synthesis incamptothecin-induced G2 arrest:altered regulation of p34cdc2/cyclin B[J].Cancer Res.1992,52(7):1823-1829
    
    20 Stivers JT,Harris TK,Mildvan AS,et al.Vaccinia DNA Topo Isomerase l:evidencesupporting a free rotation mechanism for DNA supercoil relaxation[J].Biochemistry,1997,36(17):5212-5222
    
    21 Morris EJ,Geller HM.Induction of neuronal apoptosis by camptothecin,aninhibitor of DNA Topo lsomerase-l:evidence for cell cycle-independenttoxicity[J].J Cell Boil.1996,134(3):757-70
    
    22 Alberts B,et al.Molecular biology of the cell[M].4th ed.New York & London:Garland Publishing lnc,2002
    
    23 宋金丹主编.医学细胞分子生物学[M].北京:人民卫生出版社,2003
    
    24 翟中和,王喜忠,丁明孝,主编.细胞生物学[M].北京:高等教育出版社,2000
    
    25 Coats S,Flanagan WM,Nourse J,et al.Requirement of p27Kip1 for restrictionpoint control of the fibroblast cell cycle[J].Science,1996,272(5263):877-880
    
    26 Roberts JM.Evolving ideas about cyclins[J].Cell,1999,98(2):129-132
    
    27 Goldwasser F,Shimizu T,Jackman J,et al.Correlations between S and G2arrest and the cytotoxicity of camptothecin in human colon carcinomacells[J].Cancer Res,1996,56(19):4430-4437
    
    28 李珺莹,刘晓明,安利佳等.新的喜树碱类化合物-喜树异碱抑制鳞癌细胞增殖及其对细胞周期影响的实验研究[J].中国中西医结合皮肤性病学杂志,2005,4(3):137-140
    
    29 Pantazis P,Early JA,Mendoza JT,et al.Cytotoxic efficacy of9-nitrocamptothecin in the treatment of human malignant melanoma cells invitro[J].Cancer Res,1994,54(2):771-776
    
    30 Peihua L,Qiaojun H,Xungui H,et al.Potent antitumor activity of10-methoxy-9-nitro camptothecin[J].Molecular Cancer Therapeutics,2006,5(4):962-968
    
    31 Lupi M,Matera G,Branduardi D,et al.Cytostatic and cytotoxic effects oftopotecan decoded by a novel mathematical simulation approach[J].CancerRes,2004,64(4):2825-2832
    
    32 Chai LP,Su ZZ,Xian ZX.Inhibition of hydroxy camptothecin on laryngealsquamous carcinoma cell line[J].Ai Zheng,2003,22(4):372-375
    
    33 Weinert TA ,Hartwell LH.The RAD9 gene controls the cell cycle response toDNA damage in Saccharomyces cerevisiae[J].Science,1988,241(4863):317-322
    
    34 Nasmyth K.Viewpoint:putting the cell cycle in order[J].Science,1996,274(5293):1643-1645
    
    35 Morgan DO.Cyclin-dependent kinases:engines,clocks,and microprocessors[J].Annu Rev Cell Dev Biol,1997,13():261-291
    
    36 Sui M,Dziadyx JM,Zhu X,et al.Cell cycle-dependent antagonistic interactionsbetween paclitaxel and gamma-radiation in combination therapy[J].CIinCancer Res 2004,10(14):4848-4857
    
    37 Gamer-Hamrick P A,Fisher C.Antisense phosphorothioateoligonucleotidesspecifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects[J].lnt J Cancer, 1998,76(5):720-728
    38 Turowski P,Franckhauser C,Morris M C,et al.Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells[J]. Mol Biol Cell.2003,14(7):2984-2998
    39 Mailand N,Podtelejnikov A V,Groth A,et al.Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability[J]. EMBO J,2002,21(21):5911-5920
    40 Lindqvist A,Kallstrom H,Lundgren A,et al.Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome[J].J Cell Biol,2005,171(1):35-45
    41 Boutros R.Dozier C.Ducommun B.The when and wheres of CDC25 phosphatases[J].Curr Opin Cell Biol.2006,18(2):185-191
    42 Liang YC.Tsai SH.Chen L.et al.Resveratrol-induced G2 arrest through the inhibition of CDK7 and p34CDC2 kinases in colon carcinoma HT29 cells[J].Biochem Pharmacol.2003, 65(7):1053-1060
    43 Knowles LM,Milner JA.Diallyl disulfide inhibits p34cdc2 kinase activity through changes in complex formation and phosphorylation[J]. Carcinogenesis,2000, 21(6):1129-1134
    44 Kim JM,McGaughy JT,Bogle RK,et ai.Meiotic expression of the cyclin H/CDK7 complex in male germ cells of the mouse[J].Biol Reprod, 2001, 64(5): 1400-1408
    45 Danial NN, Korsmeyer SJ.Cell death:critical control points[J]. Cell, 2004, 116(23):205-219
    46 Wyllie AH.Apoptosis:an overview[J].Br.Med.Bull,1997,53(3):451 -465
    47 Ashkenazi A.Targeting death and decoy receptors of the tumournecrosis factor superfamily[J].Nat.Rev.Cancer,2002,2(6):420-430
    48 Shao RG,Cao CX,Nieves-Neira W,et al.Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cell[J]. Oncogene,2001,20(15): 1852-1859
    49 Sinha I,Sinha-Hikim AP,Hannawa KK,et al.Mitochondrial-dependent apoptosis in experimental rodent abdominal aortic aneurysms[J].Surgery, 2005,138(4):
    806-811
    
    50 Bouchier-Hayes L,Lartigue L,Newmeyer DD.MitochondriaPharmacologicalmanipulation of cell death[J].J Clin invest,2005,115(10):2640-2647
    
    51 Zou H,Li Y,Liu X,et al.An APAF-1 cytochrome c multimeric complex is afunctional apoptosome that activates procaspase-9[J].J Biol Chem,1999,274(17):11549-11556
    
    52 付玉荣,邱宗荫,颜玉蓉.羟基喜树碱通过线粒体途径诱导肝癌SMMC-7721细胞凋亡的观察[J].第四军医大学学报,2006,27(15):1403-1406
    
    53 江颖娟,曾耀英,王通等.喜树碱诱导Jurkat细胞线粒体膜电势和线粒体质量变化的研究[J].中国病理生理杂志,2006,22(5):846-850
    
    54 Sanchez-A Icazar JA,Ault JG,Khodjakov A,et al.Increased mitochondrialcytochrome c levels and mitochondrial hyperpolarization precedecamptothecin-induced apoptosis in Jurkat cells[J].Cell Death Differ,2000,7(11):1090-1100
    
    55 Chou JJ,Li H,Salvesen GS,et al.Solution structure of BID,an intracellularamplifier of apoptotic signaling[J].Cell,1999,96(5),615-624
    
    56 Green DR.Apoptotic pathways:the roads to ruin[J].Cell,1998,94(6):695-698
    
    57 Lee S,Lee HS,Baek M,et al.MAPK signaling is involved in camptothecininducedcell death [J].Mol Celis,2002,14(3):348-354
    
    58 Davis RJ.Signal transduction by the JNK group of MAP kinases[J].Cell,2000,103(2):239-252
    
    59 Bo Zhang,Yu Luo,Qinjie Weng,et al.CPT21,a novel compound withanti-proliferative effect against gastric cancer cell SGC7901[J].Invest NewDrugs,2008,19;[Epub ahead of print]
    
    60 Guo X,Zhang J,Fu X,et al.Analysis of common geneexpression patterns in fourhuman tumor cell lines exposed to camptothecin using cDNAmicroarray:identification of topoisomerase-mediated DNA damage responsepathways[J].Front Biosci,2006,11:1924-1931
    
    61 Costa-Pereira AP,McKenna SL,Cotter TG[J].Activation of SARP/JNK bycamptothecin sensitizes androgen-independent prostate cancer cells toFas-induced apoptosis[J].Br J Cancer,2000,82(11):1827-1834
    
    62 Joyce D,AIbanese C,Steer J,et al.NF-kappaB and cell-cycle regulation:thecyclin connection[J].Cytokine Growth Factor Rev,2001,12(1)73-90
    
    63 Chen C,Edelstein LC,Gelinas C.The Rel/NF-kappaB family directly activatesexpression of the apoptosis inhibitor Bcl-x(L)[J].Mol Cell Biol,2000,20(8):2687-2695
    
    64 Wang CY,Mayo MW,Korneluk RG,et al.NF-kappaB antiapoptosisi:induction ofTRAF1 and TRAF2 and C-IAP1 and C-IAP2 to suppress caspase-8 activation[J].Science,1998,281(5383):1680-1683
    
    65 Huang TT,Wuerzberger-Davis SM,Seufzer BJ,et al.NF-kappaB activation bycamptothecin.A linkage between nuclear DNA damage and cytoplasmicsignaling events[J].J Biol Chem,2000,275(13):9501-9509
    
    66 Cusack JC Jr,Liu R.Houston M,et al.Enhanced chemosensitivity to CPT-11with proteasome inhibitor PS-341:implications for systemic nuclear factorkappaBinhibition[J].Cancer Res,2001,61(9):3535-3540
    
    67 Aoki Y,Kurata H,Watanabe M,et al.Combination chemotherapy with irinotecanhydrochloride(CPT-11)and mitomycin C in platinum-refractory ovarian cancer[J].Am J Clin Oncol,2004,27(5):461-464
    
    68 McCabe MJ Jr,Singh KP,Reddy SA,et al.Sensitivity of myelomonocyticleukemia cells to arsenite-induced cell cycle disruption,apoptosis,andenhanced differentiation is dependent on the inter-relationship betweenarsenic concentration,duration of treatment,and cell cycle phase[J].JPharmacol Exp Ther,2000,295(2):724-733
    
    69 Bhonde MR,Hanski ML,Notter M,et al.Equivalent effect of DNA damageinducedapoptotic cell death or long-term cell cycle arrest on colon carcinomacell proliferation and tumor growth[J].
    
    70 张丽华,候振江.p53基因在肺癌研究中的进展[J].临床肺科杂志,2006,11(1):59-60
    
    71 金焰.肿瘤抑制基因与肿瘤关系以及基因治疗的研究进展[J].国外医学遗传学分册,2001,24(4):202
    
    72 Schwartz D,Rotter V.p53-dependent cell cycle control:response to genotoxicstress[ln Process Citation][J].Cancer Biol,1998,8(5):325-336
    73 Li G,Bush JA,Ho VC.p53-dependent apoptosis in melanoma cells after treatment with camptothecin[J].J Invest Dermatol,2000,114(3):514-519
    
    74 Arango D,Mariadason JM,Wilson AJ,et al.c-Myc overexpression sensitizes colon cancer cells to camptothecin-induced apoptosis[J].Br J Cancer,2003, 89(9):1757-1765