乳酸克鲁维斯酵母(Kluyveromyces lactis)乳糖酶基因的克隆、表达及酶学性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-半乳糖苷酶(B-D-半乳糖苷半乳糖水解酶,β-D-galactoside galactohydrolase,EC3.2.1.23)通常被称为乳糖酶(Lactasc),能将乳糖水解为半乳糖和葡萄糖,并具有半乳糖苷的转移作用。乳糖酶主要用于改良乳制品和生产低聚半乳糖,还可用于蛋白质合成与遗传因子等方面的研究,具有重要的实践价值和理论意义。目前,工业生产中使用的乳糖酶主要来源于乳酸克鲁维斯酵母菌、黑曲霉和米曲霉。
     本论文从一株乳酸克鲁维斯酵母菌中克隆获得乳糖酶基因,在大肠杆菌中进行表达并测定其酶学性质,同时也对利用巴斯德毕赤酵母(Pichia Pastoris)系统表达该基因进行了探索。
     研究内容及结果如下:
     1.乳糖酶基因的克隆及原核表达
     以乳酸克鲁维斯酵母(Kluyveromyces lactis)菌株k538的基因组DNA为模板,设计引物,利用PCR获得乳糖酶基因Klac,经DNA测序验证,得到克隆T1549。乳糖酶基因插入到表达载体pET-30a(+)上构建重组表达质粒pETlac4,将pEFlac4电击转化到大肠杆菌BL21中,分别研究了阳性转化子在28℃、37℃下经IPTG诱导3h后的蛋白表达情况。表达产物的SDS-PAGE分析和酶活性测定表明,Klac基因在大肠杆菌中获得活性表达,其中低温条件28℃下的表达水平明显高于37℃,28℃诱导的细胞经超声波破碎所测酶活力为0.475U/mL,37℃仅为0.134U/mL。
     2.原核表达乳糖酶的酶学性质测定
     制备原核表达乳糖酶的原酶液。以ONPG为底物,分别测定了其最适pH值及pH稳定性、最适温度及热稳定性、金属离子和化学试剂的影响以及K_m值和V_(max)值。该酶最适pH值为5.8和6.4~7.5,属中性酶,碱性条件稳定,酸性条件不稳定;最适反应温度45℃~52℃,热稳定性较差,不适于高温反应;Fe~(2+)、Mn~(2+)、Co~(2+)、Mg~(2+)和Zn~(2+)对乳糖酶有明显的激活作用,且该酶有一定的金属离子依赖性,Cu~(2+)具有很强的抑制作用;37℃、pH6.6条件下K_m=1.143 mmol/L,V_(max)=142.857nmol/min。
     3.乳糖酶基因Klac在巴斯德毕赤酵母中表达
     将Klac基因插入到载体pPIC9上构建重组表达质粒PIC9154983,电击转化巴斯德毕赤酵母受体菌GS115,经筛选和PCR鉴定,1#、8#和24#为重组菌株,Klac基因整合到GS115基因组中。三个重组菌株经甲醇诱导培养未检测到分泌的乳糖酶,但胞内均检测到有活性的乳糖酶,分别为0.1392U/mL、0.3702U/mL和0.2214U/mL,说明乳糖酶基因Klac在巴斯德毕赤酵母中获得表达。
β-D-galactoside galactohydrolase (EC3.2.1.23) is usually named lactase which can hydrolyze lactose into galactose and glucose, and also can transfer galactoside. Lactase is mainly used in improving dairy products and producing oligo-galactose, as well as in the research related to protein synthesis and heredity factor. So lactase is valuable in theory and practice. At present, most of lactases used in industry production come from Kluyveromyces, Aspergillus niger and Aspergillus oryzae.
    The lactase gene from Kluyveromyces lactis was researched in the thesis. The cloned gene was expressed in E.coli and the properties of lactase was determinated. In addition, we studied the expression of lactase gene in the methylotrophic yeast Pichia pastoris.
    The main experiments and results were as follows:
    1. Cloning and expression in E.coli of lactase.
    Specific primers were designed according to the sequence of the beta-galactosidase gene from Kluyveromyces lactis. Klac gene was amplified by PCR and subsequently cloned. Klac gene was ligated to the pET-30a(+) vector for expression.Then the recombinant plasmid pETlac4 was transformed into E.coli BL21.The positive transformants were induced at different temperature for three hours by IPTG with the final concentration of lmM. SDS-PAGE analysis and lactase activity assay showed that Klac gene was expressed in E.coli, and that the expression level at 28℃ was much higher than that at 37 ℃. The former was 0.475U/mL, and the later was 0.134U/mL.
    2. Determination of the properties of lactase expressed in E.coli.
    Preparing the lactase solution expressed in E.coli, we determinated the optimum pH, pH stability, optimum reaction tempreture, thermal stability, effect of metal ions and chemical reagent, Km and Vmax Its optimum pH was 5.8 and 6.4 to 7.5, and the optimum tempreture was 45℃ to 52℃. It had better basicity-tolerance and worse acidity-tolerance. So the lactase was suitable to whey at pH7.0, but couldn't react at high tempreture. The metals, Fe2+, Mn2*, Ca2+, Mg2+ and Zn2+, can
    
    
    
    
    prominently improve lactase activity, but Cu2+ would strongly inhibit the activity. According to the effect of EDTA, we concluded that the lactase depends on metal ions in a certain extent. At 37℃ and pH6.6, the Km was 1.143mmol/L and the Vmax was 142.857nmol/min.
    3. Expression of Klac gene in Pichia pastoris.
    Klac gene was inserted into the vector pPIC9 to construct recombinant plasmid P1C9154983, and then PIC9154983 was transformed by electricity pulse into GS115, Pichia pastoris acceptor. After screening, we obtained recombinant yeast 1#, 8# and 24#, that is, Klac gene was integrated into the genome DNA of GS115. By detecting the lactase activity,we knew that the Klac gene was expressed in vivo of Pichia pastoris,but the lactase was not secreted.
引文
1.G.G.伯奇.酶与食品加工.轻工业出版社,1991,93-110.
    2. Yang ST, Tang IC. Lactose hydrolysis and oligosaccharide formation catalyzed by betagalactosidase Kinetics and mathematical modeling. Ann N YAcadSci. 1988, 542: 417-422.
    3.秦燕,宁正祥,胡新宇.固定化β-半乳糖苷酶催化生成低聚半乳糖.食品与发酵工业.2001,27(11):12-16.
    4. R.H.Jacobson, X-J.Zhang, R.EDttBose, et al.Three-dimensional structure of β-galactosidase from E. coli. Nature. 1994, 369 (30) : 761-766.
    5.相尺孝亮.酶应用手册.上海科学技术出版社,1989,407-414.
    6. Dirk H. Van Den Eijnden, Wiliem M.Blanken, Anja Van Vliet. Branch specificity of β-D-galactosidase from Escherichia coli. Carbohydrate research. 1986, 151: 329-335.
    7. Rusynyk RA, Still CD, Lactose intolerance. J Am Osteopath Assoc. 2001, 101 (4 Suppl Pt 1): 10-12.
    8.吕晓华,刘世贵,高荣.生物技术在乳糖不耐受防治中的应用.中国乳品业.2002,30(1):44-47.
    9. Devrese M, Keller B, Barth CA. Enhancement of intestinal hydrolysis of lactose by microbial beta-galactosidase (EC 3.2.1.23) of kefir. Br J Nutr. 1992, 67 (1) : 67-75.
    10.高焕春.乳糖酶的特性及其在乳品工业中的应用.中国乳品工业.1996,24(3):19-21.
    11.何梅.乳糖酶缺乏和乳糖不耐受.国外医学与卫生学分册.1999,26(6):339-342.
    12.秦燕,宁正祥,吴国杰.乳糖水解时低聚半乳糖的生成及应用.食品与发酵工业.2000,26(5):67-72.
    13.黄北阳.开发低乳制品促进我国乳品产业发展.当代畜牧.2001,3:1-2.
    14.秦燕,宁正祥.β-半乳糖苷酶的应用研究进展.食品研究与开发.2000,21(2):3-6.
    15.尤新.功能性低聚糖.食品工业科技.2001,22(6):1-4.
    16.蒋爱民,李素简,王增勇.乳糖酶菌在乳制品生产中的应用.中国奶牛.1993,2:56-57.
    17.胡学智.功能性低聚糖及其制造概要.工业微生物.1997,1:30-39.
    18. Gouka RJ, Punt PJ, van den Hondel CA.. Efficient production of secreted proteins by Aspergillus:progress, limitations and prospects. Appl Microbiol Biotechnol. 1997, 47 (1) : 1-11.
    19. Minetoki T, Kumagai C, Gomi K, et al. Improvement of promoter activity by the introduction of multiple copies of the conserved region Ⅲ sequence, involved in the efficient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol. 1998, 50(4): 459-467.
    
    
    20.刘谨,王汉中.丝状真菌外源基因表达系统研究的现状及展望.微生物学通报.2000,27(6):453-457.
    21. Cereghino GP, Cregg JM., Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol. 1999, 10 (5) : 422-427.
    22.刘文,胡巍.酵母表达基因工程产物特性分析.生物工程进展.2001,21(2):74-76.
    23.马孟根,王红宁.巴斯德毕赤酵母表达外源蛋白研究进展.四川农业大学学报.2001,19(3):277-280.
    24. Remacle JE, Albrecht G, Brys R, et al. Three classes of mammalian transcription activation domain stimulate transcription in Schizosaccharomyces pombe. EMBO J. 1997, 16(18): 5722-5729. .
    25. Tohda H, Okada H, Giga-Hama Y, et al. A copy-number-controlled expression vector for the fission yeast Schizosaccharomycespombe. Gene. 1994, 150 (2) : 275-280.
    26. Braspenning J, Meschede W, Marchini A, et al. Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of phol+ acid phosphatase. BiochemBiophys Res Commun. 1998, 245(1) : 166-171.
    27.李艳,王正祥,诸葛健.酵母作为外源基因表达系统的研究进展.生物工程进展.2001,21(2):10-14.
    28. Faber K H, Harder W Ab G, Veenhuis M. Methylotrophic yeasts as factories for the production of foreign. Yeast. 1995, 11(4): 1331-1344. ,
    29. Sierkstra L N, Verbakel J M A, Verrips C T. Optimisation of a host/vector system for heterologous gene expression by Hansenula polymorpha. Curr Genet. 1991, 19 (2) : 81-87.
    30. Gellissen G, Weydemann U, Strasser AW, et al. Progress in developing methylotrophic yeasts as expression systems. Trends Biotechnol. 1992, 10 (12) : 413-417.
    31. Mayer A F, Hellmuth K, Schlieker H. An expression system marutes: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. process in developing methylotrophic yeasts as expression systems. Biotechnol Bioeng. 1999, 63(3) : 373-381.
    32. Dijk V, Faber K N, Kid J A. The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme Microb Technol. 2000, 26 (9-10) : 793-800.
    33.陈菊凤,卢善发,胡敦孝.多形汉逊酵母外原基因表达系统.生物工程学报.2001,17(3):246-249.
    34. Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene. 1997, 190 (1) : 55-62.
    
    
    35.彭毅,步威,康良仪.甲醇酵母表达系统.生物技术通报.2000,1:38-41.
    36. Montesino R, Garcia R, Quintero O, et al. Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris, protein Exp Purif. 1998, 14(2): 197-207.
    37. Gemmill T R, Trimble R B. Overview of N-and O-linked oligosaccharide structures found in various yeast sprcies. Biochem BiophysActa. 1999, 1426 (2) : 227-237.
    38. James M. Cregg, Knut R. Madden, Kevin J. Barringer, et al. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology. 1989, 9(3): 1316-1323.
    39.李晶,赵晓祥,沙长清,等.甲醇酵母基因表达系统的研究进展.生物工程进展.1999,19(2):17-20.
    40. James M. Cregg, Kevin J. Barringer, Anita Y. Hessler, et al. Pichia pastoris as a host system for transformations. Molecular and Cellular Biology. 1985, 5 (12) : 3376-3385.
    41.章如安,杨晟,邱荣德,等.巴斯德毕赤酵母表达体系研冗及进展.微生物学报.2000,27(5):371-373.
    42. Liu Z, Cashion LM, Pu H. Protein expression both in mammalian cell lines and in yeast Pichia pastoris using a single expression plasmid. Biotechniques. 1998, 24 (2) : 266-268, 270-271.
    43. She S, Sulter G, Jeffries TW, et al. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeastPichia Pastoris. Gene. 1998, 216: 93-102.
    44. Frank D, Majak, Stephan T, Use of the glyccraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochem Bio-phy Res Commun. 1998, 250, 531-536.
    45.欧阳菁,龙綮新,杨林,王珣章,甲基营养型酵母表达载体系统研究进展,应用与环境微生物,2001,7(5),502-506.
    46. Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997, 186(1): 37-44.
    47. Clare JJ, Romanos MA, Rayment FB, et al. Production of mouse epidermal growth .factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene. 1991, 105(2): 205-212.
    48. Sreekrishna K, Nelles L, Petenz R, et al. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeastPichiapastoris. Biochemistry. 1989, 28(9) : 4117-4125.
    49. Scorer CA, Buckholz RG, Clare JJ, et al. The intracellular production and secretion of HIV-1
    
    envelope protein in the methylotrophic yeast Pichia pastoris. Gene . 1993, 136(1-2): 111-119.
    50. Romanos MA, Clare JJ, Beesley KM, et al. Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: high-level production and immunological properties. Vaccine. 1991, 9(12): 901-906.
    51. Clare JJ, Rayment FB, Ballantine SP, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N 10. 1991, 9(5): 455-60.
    52.崔蕴霞,明文玉,银巍,等.人重组白蛋白基因在巴斯得毕赤酵母中的高效表达.微生物学报.2001,41(2):244-247.
    53. Wegner G H. Biochemical conversions by yeast fermentation at high cell dendities. USA Patent, No.4414329, 1983.
    54. Siegel. R S, Buckoiz RG, Thill GP, et al. Production of epidermal growth factor in methylotrophic yeasts. International Patent, Punl No. WO 90/10697, 1990.
    55. McGrew JT, Leiske D, Dell B, et al. Expression of trimeric CD40 ligand in Pichiapastoris: use of a rapid method to detect high-level expressing transformants. Gene. 1997, 187 (2) : 193-200.
    56. Singh A, Lugovoy JM, Kohr WJ, et al. Synthesis, secretion and processing of alpha-factor-interferon fusion proteins in yeast. Nucleic Acids Res. 1984, 12 (23) : 8927-8938.
    57.李育阳.外源基因在酵母中表达产物的分泌.生物工程学报.1987,3(2):81-85.
    58. Barr KA, Hopkins SA, Sreekrishna K. Protocol for efficient secretion of HAS developed from Pichiapastoris. PharmEng. 1992, 12: 48-51.
    59. Siegel r S, Buckholz R G, Thill G P, et al. Production of epidermal growth factor in methlotrophic yeasts. International Patent Application, WO 90/10697, 1990.
    60. Mei M, Whittaker, James W. Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expression and Purification. 2000, 20: 105-111.
    61. Sreekrishna K, R.C. Dickson, Construction of strains of Saccharomyces cerevisiae that grow on lactose. PROC. Natl. Acad. Sci. USA. 1985, 82: 7909-7913.
    62. Marco Vanoni, Danilo Porro, Enzo Martegani, et al. Secretion of Escherichia coli β-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase encoding STA2 gene. Biochemical and Biophysical Resarch Communications. 1989, 164 (3) : 1331-1338.
    63. Vijay Kumar, Sundaram Ramakrishnan, tuula T.Teeri, et al. Saccharomyces cerevisiae Cells secreting an Aspergillus niger β-galactosidase grow on whey permeate. Bio/Technology. 1992, 10(1) : 82-85.
    
    
    64. Sundaram Ramakrishnan, Brian S.Hartley. Fermentation of Lactose by Yeast Cells Secreting Recombinant Fungal Lactase. Applied and Environmental Microbiology. 1993, 59 (12) : 4230-4235.
    65. Berka, Randy M., Hucul, et al. Increased production of beta.-galactosidase in Aspergillus oryzae. US patent, 5736374, 1998.
    66. Huang, Yue, Karatzas, Costas N, et al. Aspergillus niger beta-galactosidase gene. US patent, 5821350, 1998, 10, 13.
    67. M.Becerra, E.Cerdan, M.I. Gonzalez Siso. Heterologous Kluyveromyces lactics β-galactosidase production and released by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants. Biochimica et BiophysicaActa. 1997, 1335: 235-241.
    68. L.Domingues, M.-L. Onnela, J.A. Teixeira, et al. Construction of a flocculent brewer's yeast strain secreting Aspergillus niger β -galactosidase. Appl Microbiol Biotechnol. 2000, 54: 97-103.
    69. Savaiano D A, Levitt M D. Milk intolerance and microbecontaining dairy foods. J Dairy Sci. 1987, 70: 397-406.
    70.李玉强,王昌禄,顾晓波.米曲霉β-半乳糖苷酶的性质及其水解作用.中国食品添加剂.2002,(1):34-37.
    71. Vassilis gekas, Miguel Lopez-Leiva. Hydrolysis of lactose: a literature review. Process Biochemistry. 1985, 2: 2-12.
    72. Santos A, Ladero M, Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis by a β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology. 1998, 22: 558-567.
    73.张树政.酶制剂工业(下册).北京:科学出版社,1984,818-819.
    74. Peter T, Borgia, Lanie E, et al. DNA preparations from Aspergillusand other Filamentous Fungi. Biotechniques. 1994, 17 (3) :431-432.
    75. Poch O, L'Hote H, Dailery V, et al. Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene. 1992, 118(1):55-63.
    76. Kiefhaber T, Rudolph R, Kohler H H, et al. Protein aggregation in vitro and vivo:a quantitative model of the kinetic competition between folding and aggregation. Biotechnology. 1991, 9: 825-829.
    77.方敏,黄华梁.包涵体蛋白体外复性的研究进展.生物工程学报.2001,17(6):608-612.
    78.吴乃虎.基因工程原理(下册).二版.北京:科学出版社,2001,135-136.
    79.沈为群,郭杰炎,李永福.乳酸克鲁维酵母β-半乳糖苷酶的分离纯化及性质研究.生物
    
    工程学报.1993,9(4):348-354.
    80.姚斌,张春义.高效表达具有生物学活性的植酸酶的毕赤酵母.中国科学.1998,28(3):237-243.
    81.李洪钊,李亮助,孙强明,等.巴斯德毕赤酵母表达系统优化策略.微生物学报.2003,43(2):288-292.
    82.聂东宋,梁宋平,李敏.外源蛋白在巴氏毕赤酵母中高效表达的策略.吉首大学学报(自然科学版).2001,22(3):40-44.
    83. Raemaekers R J M, De Muro L, Gatehouse J A, et al. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal procession and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur Biochem. 1999, 65:394-403.
    84. Martiartinez-Ruiz A, Martiartinez del Pozo A, Lacadena J, et al. Secretion of recombinant proand mature fungal alpha-sarcin ribotoxin by the methylotrophic yeast Pichia pastoris: the Lys-Arg motif is required for maturation. Protin Expr Purif. 1998, 12: 315-322.
    85. Kjeldsen T, Pettersson A F, Hach M. Secretory expression and characterization of insulin in Pichiapastoris. Biotechnol Appl Biochem. 1999, 29: 79-86.