纳米技术在化学传感器中的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是纳米技术的基础,由其本身特有的体积效应、表面效应、量子尺寸效应、量子隧道效应所展现出的气敏、湿敏、热敏、压敏等功能已在许多领域显示出巨大的应用前景。把纳米材料应用于化学传感器上,将有助于进一步实现信息采集与传输、处理的集成化、智能化,化学传感器的功能得到进一步增强和完善,性能进一步提高,更加灵敏、可靠。
     本文首先介绍了20世纪80年代中后期以来纳米材料和化学传感器的研究状况,并对纳米材料在化学传感器上的结合应用进行了综述:1、纳米材料在传感器上的特性主要体现为气敏性、湿敏性、压敏性、热敏性以及高生物活性、高电子传输能力等,可制成灵敏度高、响应迅速、稳定性强、使用寿命长的传感器。2、纳米传感器的产生及应用带来常规技术所不能比拟的优越性,纳米传感器的高分辨率、小体积、极少的样品需求量等性能赋予其全新的使命。目前研制成功的主要是纳米光纤化学传感器,已在化学检测、生物医学等领域得到了应用。3、纳米粒子膜分为厚膜与薄膜。厚膜的制备主要有焙烧法和气相沉积法,薄膜的制备主要包括溅射法、喷雾热分解法、真空蒸发法以及化学沉积法、气相沉积法、溶胶—凝胶法、水解法等。纳米粒子膜应用于化学传感器上有助于难检气体的检测和降低工作温度。
     本文首次把纳米Ag_2O修饰到碳糊电极上,并对其电化学性能进行了对比研究。以简单易行的化学方法合成的纳米Ag_2O平均粒径约为40nm,具有高比表面积、高活性、强吸附能力及高催化效率等特性,在一定范围内修饰到碳糊电极上,并试验了不同组成及不同种类底液条件下的电化学性能,实验发现纳米Ag_2O对碳糊电极的电化学性能有明显改善,电极的吸附性增强,传输电荷的能力高,其中含纳米Ag_2O16%、石蜡17%、碳粉67%的修饰电极在0.2M的HNO_3底
    
    液中峰形最好、峰电流高、峰面积大,显示出优越的电极性能。
     金纳米颗粒由其高催化活性和生物相容性在生物传感器中的应
    用前景非常广阔。本文用溶胶一凝胶法合成粒径约 10urn的金纳米颗
    粒,并把金纳米颗粒引入到葡萄糖传感器中,用核微孔膜作载体制成
    生物活性膜进行研究,分析了电极响应机理和金纳米颗粒对电极电流
    响应的影响,进行了电极的性能测试。金纳米颗粒具有很好的生物相
    容性,并且是电的良导体,可在葡萄糖氧化酶的氧化还原中心与电极
    之间传递电子;金纳米颗粒比表面积大,表面自由能高,葡萄糖氧化
    酶可在纳米颗粒表面得到强有力的固定,不易从酶膜,上渗漏。实验农
    明,金纳米颗粒可显著增强电极响应灵敏度,制成的传感器选择性高、
    稳定性好。
     本文用电沉积的方法把纳米金修饰在玻碳电极上,在玻碳电极表
    面形成一层致密、稳定的膜,利用纳米膜的特殊性质研究了在碱性底
    液中甲醛的电催化氧化并应用于合成样品的分析。纳米金膜稳定性较
    强,且对甲醛的氧化有明显的催化作用,传递电子能力强,甲醛在纳
    米金修饰玻碳电极上的电催化氧化行为比在裸玻碳电极上有了明显
    改善,其电催化氧化分两步进行,氧化峰明显,电极响应电流较大,
    电极的电化学性能较好,有望进一步应用于甲醛传感器的研究。
Nano technology is based on nanodimension materials. Such functions as gas sensibility, humidity sensibility, thermal sensibility, pressure sensibility which are shown by its particular volume effect, surface effect, quanta dimension effect, and quanta tunnel effect have displayed an enormous applying prospect in lots of fields. Nanodimension materials are applied to chemisensor, which will be helpful to integrate and intelligence the gaining, transmitting and managing the information. And chemisensor will become more sensitive and reliable. Its functions will be consummated and capability improved.
    In this thesis the research on nanodimension materials and chemisensor since the middle and the later period of the 1980s is first introduced. Then the conjoint application of nanodimension materials and chemisensor are summarized: 1. Nanodimension materials are mainly characterized of gas sensibility, humidity sensibility, thennal sensibility, pressure sensibility, high biological activity and high electronic transmitting capability in chemisensor. Therefore, nanodimension materials can be used to made more sensitive, quickly responsive, strongly stable sensor with a long life-span. 2. The production and application of nanosensor brings the incomparable superiority compared with the normal technology. For example, its high differentiation rate, small volume and tiny specimen demand endow it with brand-new mission. So far Nano optical fiber chemisensor has been developed and applied to such fields as chemical determination, bio-medicine. 3. Nano-particle membrane is divided into thick membrane and thin membr
    ane. The thick membrane is prepared mainly by calcinations and
    
    
    gas sediment. The thin membrane is prepared mainly by sputtering, spray-heat-decomposition, vacuum evaporation, chemidepositton., vapor deposition, sol-gel process and hydrolysis. Nano-particle membrane is applied to chemi-sensor, which will be helpful to determine the gas that is detected difficult and lower the working temperature.
    In this thesis Nano Ag2O is first modified into carbon paste electrode and a contrast on both electrochemical capability is studied. Nano Ag2O, which is synthesized by feasible chemical method, with a 40-nm-long particle diameter, is characterized of high specific surface area, high activity, intense absorbability and high catalytic efficiency. It is modified into carbon paste electrode in certain scope. And its electrochemical capabilities are experimented in conditions with different compositions and different buffer. My experiments show that Nano Ag2O can obviously improve the electrochemical capability of carbon paste electrode and so intensify the electrode's absorbability, transmit electric charge with a high capability. The modified electrode including 16% Nano Ag2O, 17% paraffin, 67% carbon powder has the best peak form, high peak current, large peak area and displays superior electrode capability in the 0.2M HNO3 buffer.
    Gold nano-particle is expected to be applied widely to biosensor because of its high catalytic activity and high biological compatibility. My thesis synthesizes the 10-nm-long particle diameter gold nano-particle with sol-gel process, introduces it into dextrose sensor, uses nuclear microporous membrane to produce biological active membrane for research, and then analyzes the electrode's responsive mechanism, gold nano-particle's effect to the response of electrode current, and tests the electrode's capability. Gold nano-particle, the good electric conductor, with an excellent biological compatibility, can transmit electron between
    
    the redox center of the glucose oxidase. Gold nano- particle has large specific surface area, high superficial free energy, so glucose oxidase can be forcefully fixed in the surface of nano-particle and cannot leak easily from enzyme membrane. The experiments show that gold nano-particle can obviously intensify the responsive sensitivity of the electrode and so it can be used to produce the sensor with a high selection and good stability.
    In this thesis n
引文
1.郭纯生.传感器技术,1998,17(4):5
    2.丁衡高.微米/纳米技术文集,国防工业出版社,1994
    3.白春礼.科学通报,2001,46(2):89
    4.李瑶.山西科技,2001,4:45
    5.杨光义,陈东等.青岛建筑工程学院学报,2001,4:96
    6.刘冰等.青岛大学学报,2000,13(3):91
    7.蔡传英,陈枫等.化工时刊,2000,1:13
    8.张雪梅,付多才.安徽农业技术师范学院学报,2000,14(1):54
    9.卢柯.中国科学院院刊,2001,1:29
    
    
    10.王柯敏,肖丹.没有生命的感官,湖南教育出版社,1998
    11.张玉忠等.分析化学,1999,27(4):430
    12.申永良.现代化工,1999,19(2):46
    13. Wang ZH, Daicc. Chinese phys lett, 1993, 10: 535
    14.朱星.材料物理的新进展—纳米固体材料.物理,1991,4:203
    15.陈德文,王素华.中国科学(B辑),1996,26(3):262
    16.吴鸣.首届全国纳米材料应用技术交流会论文集,1997:111
    17.颜秀茹,宋宽秀,霍明亮.应用化学,1998,16(4):94
    18.张汝兵,刘宏英,李凤生.现代化工,1999,19(7):49
    19. Collier CP, Saykally Rf. Science, 1997, 277: 2987
    20.林鸿溢.科学,1996,1:27
    21.曹柏林,曹盛林.前景广阔的纳米技术.21世纪,1997,3:44
    22. Karch H, Birringer R, Gleiter H. Nature, 1987, 330: 556
    23.酒金婷等.纺织导报,2000,3:27
    24.陈艾.电子科技导报,1998,12:19
    25.张晔.化学进展,1999,1(11):80
    26.乌学东等.上海交通大学学报,1999,33(2):225
    27.汪信等.无机化学学报,2000,16(2):214
    28.刘允萍等.辐射研究与辐射工艺学报,1997,15(4):195
    29.钱军民,李旭祥,黄海燕.化工新型材料,2001,29(7):1
    30.张玉忠等.分析化学,1999,27(4):430
    31. Egorov V.V. et al. Zb. Anal. Kbim, 1995, 50(4): 463
    32.丰达明.广东有色金属学报,1995,5(2):155
    33.凌晓,张为,邱细敏.湖南医学高等专科学校学报,2000,2(4):57
    34. Greg T, Hermanson A, Mallia. K et al. Ahinity electrodes and biosensors. Immobilized affinity ligand techniques. London: Academic Pcess, 1992: 145
    
    
    35.蒋中华,马立人.军事医学科学院院刊,1995,19(4):306
    36. Janata J. Aanal chem,1992,64:196
    37.奚星林,章咏华.化学传感器,1993,13(2):1
    38.何琳,沈渝生,陈祖耀.化学传感器,1987,7(1):24
    39.罗韵华,周晓彬等.化学传感器,1994,14(2):111
    40. Krawczynski vel kranwczyk. Anal sci Jun,1992,8(3):329
    4l. Ali Z. Denuder tube pre-concentration and detection of gaseous ammonia using a coated quartz piezoelectric crystal Analyst(London),May 1992,117(5):899
    42. Yao S Z. Anal chem Acta,1992,268(2):311
    43. Mizutani F. Nippon Kayakn Kaishi, 1987,3:472
    44. Mizntani F. Koatsu Gasu,1990,22(1):35
    45. Sanchezpedreno JAO. Anal chim Acta, 1986,182:285
    46. Alder J F. Deter mination of hydrogen cyanide inair using mass amplification by haevyligand replacemend on a coated quartz piezoelectric crystal
    47. Mojilevskii A N. Piezoelectric sensor for detection of mercury vapour
    48.周晓宾,张荣坤.化学传感器,1993,(13):20
    49. Muuoz L J A. Determination of formic acid vapor using piezoelectric crystal with pyriclipe coatings. Analnst(London), 1993,118(3): 175
    50. Edmonds T E, Hepher M J, west T S. Anal chim Acta, 1988,207(1~2):67
    51.郭素平等.传感技术学报,1994,3(9):56
    52.任向华,王国华,张淑娟.传感器技术,2001,20(3):6
    53.熊家林等.无机精细化学品的制备和应用,化学工业出版社,1999
    54.张立德等.纳米材料学,辽宁科技出版社,1994,8
    55.李冷等.超细粉体,1999(10):545
    
    
    56. Sopyan I., Watanabe M., Murasawas. etal. Chem. Lett,1996:69
    57. Deki S.,Aoi Y.,Hiroi D. Etal.,Chem.Lett,1996:443
    58. Nneg.shi N., Iyoda T., Hashimoto K. Etal.,Chem Lett,1995:841
    59.石劲松,李晓男,张继红.材料与表面处理,200l,6:35
    60.王子忱等.功能材料,1996,27(3):258
    61. Natta. Tetal. F, Amer.Geram.soc,1990,63(5~6):295
    62. Levinson L Metal. Amcr.Goram.Soc.Bull,1986
    63. Mukae K.Amer. Geram.Soc.Bull, 1987,66(9): 1329
    64.唐雪雅等.材料研究学报,1996,10(5):529
    65.崔国文.缺陷扩散与烧结,清华大学出版社,1990
    66. Tan W H, Shi Z Y, Kopelman R. Anal Chem, 1992,64:2985
    67. Lin J. Trends in Analytical Chemistry, 2000,19:541
    68. Tan W, Shi Z Y, Smith S, etal. Science,1992,258:778
    69. Bui J D, Zelles T, Lou H J, etal. J Neurosci Methods, 1999,89:9
    70. Alarie J P, Vo-Dinh T. Polycydic Aromat Compounds, 1996,8:45
    71. Vo-Dinh T, Cullum B M. Anal chem., 2000,366:540
    72. Vo-Dinh T, Cullum B M, Stokes D L. Sensors and Actuators B, 2001,74:2
    73. Pantano P, WaltD R. Rev Sci Instrum, 1997,68:1357
    74. Bronk K S, Walt D R. Anal Chem, 1994,66:3519
    75. Pantano P, Walt D R. Anal Chem, 1995,67:481A
    76. Saiki T, Mononobe S, etal. Appl Phys Lett, 1996,68:2612
    77. Heather A. Clark, Marion Hoyer, etal. Anal Chem, 1999,71:4831
    78. Heather A.Clark,Raoul Kopelman,etal.Anal Chem, 1999,71:4837
    79. Julia Cordek,Xinwen Wang,etal.Anal Chem, 1999,71:1529
    80. Tan W, Kopehnan R,etal. Anal Chem, 1999,71:606A
    81. Brian G.Healey, David R.Walt. Anal Chem, 1997,69:2213
    82. Murphy Brasuel,Raoul Kopelman,etal.Anal Chem,2001,73:2221
    
    
    83. Susan L.R.Barker, Raoul Kopelman.Anal Chem, 1998,70:971
    84. Kerry P.McNamara,Zeev Rosenzweig.Anal Chem, 1998,70:4853
    85. Hao Xu,Raoul Kopelman,etal.Anal Chem,2001,73 :4124
    86. Ananda J Haes,Richard P.Van D.J.Am.Chem.Soc,2002,8:1021
    87. Cullum B M,Miller G H,etal.Anal Biochem,2000,277:25
    88. Liu Y H,Dam T H.Anal Chem Acta,2000,419(21):215
    89.王亚明.化工新型材料,1999,27(3):7
    90.武田义章.工业材料(日),1983,31(7):24
    91.林主锐,上田良二,田琦明.超微粒子—创造科学技术,三田出版社,1988:298
    92.山内,谦仓.粉体粉末冶金协会昭和60年度春季大会演讲集(日),1985:168
    93.尾山义治等.超微粒子技术入门(日),1984:83
    94. J.G.M, de L A U: Ceram. Bull 1970,(49):572
    95. Zu Y, Li X. Technical development in synthesis of ultrafine titanium dioxide particles[J]. J.North west university, 1994,25(4):319
    96.巨新.原子与分子物理学报,1998,7:278
    97.曹立新,万海保等.化学物理学报,1999,12(2):191
    98.褚道葆,沈广霞等.电化学,2001,7(2):249
    99.于瑞饮,王浩等.材料研究学报,2001,15(4):409
    100.颜秀茹,宋宽秀等.太阳能学报,2001,22(4):196
    101.江鹏,解思深等.电子显微学报,2001,20(5):589
    102.龚正烈,刘冰等.中国激光,1999,26(10):943
    103.崔爱莉等.高等学校化学学报,2001,22:1543
    104.曹亚安,陈咏梅等.感光科学与光化学,1999,17(2):100
    105.曹亚安,白玉白等.物理化学学报,1999,15(8):680
    106.陈治,孙世刚等.科学通报,2001,46(10):806
    107.吕红辉,白玉白等.应用化学,2001,18(10):777
    
    
    108. Xintong Z,Yaan C,etal.Thin Solid Films,1998(327-329):568
    109. Jian Wang,Tao Zhu,etal.Thin Solid Fihns, 1998(327-329):591
    110. Jin Luo, Maria Hepel.Electrochimica Acta,2001,46(19):2913
    111. Xundao Y, Lixin C,etal.Thin Solid Films,1998(327-329):33
    112. 阿部淳,小川久仁.Natl.tech.Rep.,1980,26:457
    113. H.Ogawa,A.Abe,M.Nishikawa, S.Hayakawa,J.Electrochem.Soc, 1981, 128(685):2020
    114. H.Pink, L.Treitinger, L.Vite Jpn.J.Appl.Phys., 1980,19:513
    115.横沟雄二,桂正树.电气学会电子装置研究会资料 EDD-75-53
    116. G.N.Advan, A.G.Jordan, J.Electron.Mater, 1980,9:29
    117. S.C.Chang, U.S.Pat, 4358950,1982
    118.徐甲强,沈渝生,曾恒兴.硅酸盐通报,1990,9(3):23
    119. Nakatani,M. Sakai,M.Matsuoka.Jpn.J.Appl.Phys, 1983,22:912
    120.宋金明.中科院海洋研究所调研报告,1997,3268:14
    121.赵卫东,宋金明.海洋与湖沼,2000,31(4):453
    122.武俊齐.半导体情报,1998,35(3):22
    123. Richard L. Science News,1994, 7:24
    124.胡文祥等.化学通报,1998,5:32
    125.裴晓亮.纳米材料在军事领域的应用—中国航天,2002(11)
    126.胡杰,李蓉,王平.传感技术学报,2001,2:169