基于结构完整性分析的固体火箭发动机药形改进与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体火箭发动机药柱设计是发动机设计的核心部分。药柱设计的目的是在选定固体推进剂之后设计出合理的药形,而药形设计往往以内弹道计算为主体,结构完整性分析只起到被动校核作用。实际上,内弹道性能优良的药柱一般体积装填分数较高,而较高的体积装填分数会导致药柱的结构响应较大,结构完整性难以满足要求。为了解决药形设计过程中这一突出矛盾,本文开展了相关的方法与应用研究,在系统总结发动机结构完整性分析流程的基础上,提出了发动机参数化建模方法并用于药形改进设计与几何参数灵敏度分析,进一步结合遗传算法进行了考虑结构完整性与体积装填分数的药形优化设计。主要研究内容如下:
     推导了一种基于Herrmann变分原理的粘弹性增量型有限元方法,适用于固体发动机药柱恒温过程和变温过程的结构分析,确定了发动机各部件的结构完整性判据,形式简洁且能够满足工程应用要求,为固体火箭发动机结构分析和完整性评估奠定了理论基础。
     总结了利用CAE软件进行固体火箭发动机结构完整性分析的方法与流程,对某型号发动机进行了结构完整性分析,研究了基于结构完整性分析的药形改进设计方法,得到了满足结构完整性要求的改进设计方案。应用表明,固体火箭发动机结构完整性分析和药形改进设计方法切实可行。
     提出了固体火箭发动机参数化建模方法,研究了利用MSC.Patran软件的二次开发工具PCL(Patran Command Language)实现固体火箭发动机参数化建模的相关技术,编制了星形发动机的PCL参数化建模程序,实现了根据几何参数自动建立有限元模型并进行分析计算和结果输出的功能。将其应用于星形发动机药形改进设计过程中,有效提高了结构完整性分析的建模与分析效率。
     实现了圆管伞盘形发动机、星形发动机和车轮形发动机的二维参数化建模,以及圆管星形发动机的三维参数化建模,结合使用中心差分法,对药柱几何参数进行了灵敏度分析,研究了药柱的最大Von Mises应变和体积装填分数随几何参数的变化规律,得到了它们对几何参数的灵敏度系数,确定了关键几何参数,为药形优化设计提供了重要依据。
     建立了固体火箭发动机药形优化设计的数学模型,讨论了遗传算法的基本实现技术,提出了将PCL参数化建模技术与遗传算法相结合的药形优化设计方法,将该方法应用于药形优化设计问题,同时考虑药柱结构完整性和体积装填分数要求,得到了圆管伞盘形药柱的最优纵截面形状、星形药柱和车轮形药柱的最优横截面形状以及圆管星形药柱的最优三维形状。
     总之,本文成功地实现了考虑结构完整性和体积装填分数要求的固体火箭发动机药形改进与优化设计,在应用上和方法上都取得了一定的进展,所得结果可为固体火箭发动机药柱设计提供更加全面的设计依据,所提出的方法对固体火箭发动机药形设计具有重要的应用价值,而且能够方便地应用于类似的复杂结构形状优化设计。
During the Solid Rocket Motor (SRM) design, grain design is the core section. Theaim of grain design is to scheme out reasonable grain configuration after the suitablesolid propellant material is defined. However, in the design process of grainconfiguration, the interior ballistic performance is usually paid more attentions, and thestructural integrity of SRM is not given enough considering but only used to assess thedesign passively. In fact, the grains with excellent interior ballistics performance alwayshave high volumetric loading fraction, and this will lead to poor structural intergritybecause of high structural response. To resolve this confliction, correlative methods andapplications are studied in this dissertation. Based on summarizing the process of SRMstructural integrity analysis systematically, SRM parameterized modeling method isproposed and applied to the grain shape improvement and geometric parametersensitivity analysis. Moreover, combining this method with Genetic Algorithm (GA),the grain shape optimization is conducted taking structural integrity and volumetricloading fraction into account. The main work and achievements are summarized asfollows:
     Based on Herrmann variation principle, a viscoelastic incremental Finite ElementMethod (FEM) is developed, which is suitable for structural analysis of grain subjectedto variational temperature load. Structural integrity criterions of SRM are ascertained,which can satisfy the needs of engineering application. The research work provides thefoundation for structural analysis and integrity assessment of SRM.
     SRM structural integrity analysis method and general processes using CAEsoftware are summarized. The structural integrity analysis is completed for a certainSRM. Grain shape improvement method based on the structural integrity analysis isinvestigated and the improved project that fulfils structural integrity requirement isderived. The application shows that SRM structural integrity analysis and grain shapeimprovement method are practical and feasible.
     SRM parameterized modeling method is proposed. The specific techniques withsecondary development tool Patran Command Language (PCL) of MSC.Patran areresearched. Taking the star shape SRM for example, the finite element model can beautomatically established with geometric parameters and the processing of analysis andresult can also be controlled with corresponding parameters. The working efficiency isimproved obviously through the application for grain improvement of star shape SRM.
     The parameterizations for two-dimensional finite element model of conocyl SRM,star shape SRM, wheel shape SRM, and three-dimensional finite element model offinocyl SRM are realized. The sensitivity analysis of geometric parameters for the grain configuration is carried out with central difference method. The variations of grainmaximum Von Mises strain and volumetric loading fraction along with the geometricparameters are studied, and the sensitivity coefficients are obtained. At last, the keygeometric parameters are chosen for grain shape optimizations.
     Mathematical mode of the SRM grain shape optimization is established and theimplementation techniques of GA are discussed. The grain shape optimization methodis put forward by combining with GA and PCL parameterized modeling technique. Thegrain shape optimization with considering both of grain structure integrity andvolumetric loading fraction is completed and the optimum axial section shape ofconocyl grain, the optimum cross section shape of star shape grain and wheel shapegrain, and the optimum three-dimensional shape of finocyl grain are obtained.
     In conclusion, the SRM grain shape improvement and optimization consideringboth of the structural integrity and volumetric loading fraction are successfully executedin this dissertation, at the same time, some developments in applications and methodshave been attained. The acquired results can provide more comprehensive references forSRM grain design. The proposed methods possess great applicational value for SRMgrain configuration design and can be applied to similar complex sturcture shapeoptimization conveniently.
引文
[1]潘吉星.中国火箭技术史稿-古代火箭技术的起源和发展[M].北京:科学出版社, 1987.
    [2]潘吉星.中国古代四大发明-源流、外传及世界影响[M].合肥:中国科学技术大学出版社, 2002.
    [3]陈汝训.固体火箭发动机设计与研究[M].北京:宇航出版社, 1991.
    [4]王铮,胡永强.固体火箭发动机[M].北京:宇航出版社, 1993.
    [5]刘兵吉.导弹贮存使用失效分析与防护指南[M].第二炮兵装备技术部, 1998.
    [6]阿兰.达维纳著,张德雄,姚润森译.固体火箭推进剂技术[M].北京:宇航出版社, 1997.
    [7]王元友.固体火箭发动机设计[M].北京:国防工业出版社, 1983.
    [8] Williams M L, Blatz P J, Schapery R A. Fundamental studies relating to systemsanalysis of solid propellant[R]. AD-256905, 1961.
    [9] Anon. Engineering methods for grain structural integrity analysis[R]. AD-408799,1963.
    [10]杨挺青,罗文波,许平,等.粘弹性理论与应用[M].北京:科学出版社, 2004.
    [11] Graham G A C. The correspondence principle of linear viscoelasticity theory formixed boundary value problems involving time-dependent boundary regions[J].Quarterly of Applied Mathematics, 1968, 26(2): 167~181.
    [12] Graham G A C. The correspondence principle of linear viscoelasticity forproblems that involve time-dependent regions[J]. International Journal ofEngineering Science, 1973, 11: 135~147.
    [13] Rogers T G, Lee E H. The cylinder problem in viscoelastic stress analysis[J].Quarterly of Applied Mathematics, 1964, 22(2): 117~131.
    [14]魏培君,张双寅,吴永礼.粘弹性力学的对应原理及其数值反演方法[J].力学进展, 1999, 29(3): 317~330.
    [15]王元有.推进剂药柱在内压力载荷下的应力、应变的粘弹性分析[J].兵工学报,1983, 4(3): 20~33.
    [16] White T L. Finite elements in linear viscoelasticity[R]. AFFDL-TR-68-150, 1968.
    [17] Zienkiewicz O C, Waston M, King I P. A numerical method of visco-elastic stressanalysis[J]. International Journal of Mechanics Science, 1968, 10(10): 807~827.
    [18] Swanson S R, Christensen L W. A constitutive formulation for high-elongationpropellants[J]. Journal of Spacecraft and Rockets, 1983, 20(6): 559~566.
    [19] Talor R L, Chang T Y. An approximate method for thermoviscoelastic stressanalysis[J]. Nuclear Engineering and Design, 1966, (4): 21~28.
    [20] Strinatha H R, Lewis R W. A finite element method for thermoviscoelasticanalysis of plane problems[J]. Computer Methods in Applied Mechanics andEngineering, 1981, 25(1): 21~23.
    [21] Podhorecki A. The viscoelastic space-time element[J]. Computers and Structures,1986, 23(4): 535~544.
    [22] Carini A, Gelfi P, Marchina E. An energetic formulation for the linear viscoelasticproblem. Part I: theoretical results and first calculations[J]. International Journalfor Numerical Methods in Engineering, 1995, 38(1): 37~62.
    [23] Idesman A, Niekamp R, Stein E. Continuous and discontinuous Galerkin methodswith finite elements in space and time for parallel computing of viscoelasticdeformation[J]. Computer Methods in Applied Mechanics and Engineering, 2000,190(8): 1049~1063.
    [24] Zocher M A, Groves S E, Allen D H. A three-dimensional finite elementformulation for thermoviscoelastic orthotropic media[J]. International Journal forNumerical Methods in Engineering, 1997, 40(12): 2267~2288.
    [25] Hilton H H, Yi S. Anisotropic viscoelastic finite element analysis mechanicallyand hygrothermally loaded composites[J]. Composites Engineering, 1993, (3):123~135.
    [26] Kennedy T C, Wang M. Three-dimensional, non-linear viscoelastic analysis oflaminated composites[J]. Journal of Composites Material, 1994, (28): 902~925.
    [27] Chyuan S W. Study of loading history effect for thermoviscoelastic solidpropellant grains[J]. Computers and Structures, 2000, 77(6): 735~745.
    [28] Chyuan S W. Nonlinear thermoviscoelastic analysis of solid propellant grainssubjected to temperature loading[J]. Finite Elements in Analysis and Design, 2002,38(7): 613~630.
    [29] Chyuan S W. Dynamic analysis of solid propellant grains subjected to ignitionpressurization loading[J]. Journal of Sound and Vibration, 2003, 268(3): 465~483.
    [30] Chyuan S W. Studies of Poisson's ratio variation for solid propellant grains underignition pressure loading[J]. International Journal of Pressure Vessels and Piping,2003, 80(12): 871~877.
    [31]王本华.固体推进剂的热粘弹性有限元分析[J].推进技术, 1985, 6(4): 18~26.
    [32]王本华,刘晓,张戈.固体药柱的大变形分析[J].推进技术, 1993, 14(5):25~30.
    [33]朱智春,蔡峨.固体火箭发动机药柱三维温度场应力场有限元分析[J].推进技术, 1997, 18(2): 21~26.
    [34]唐国金,周建平.自由装填药柱的结构完整性分析[J].固体火箭技术, 1994,17(2): 13~19.
    [35]冯志刚,周建平.长期贮存固体火箭发动机的温度应力分析[J].推进技术,1994, 15(6): 42~49.
    [36]冯志刚,周建平.固体火箭发动机长期贮存热载荷的有限元分析方法[J].国防科技大学学报, 1994, 16(2): 67~71.
    [37]冯志刚,周建平.固体火箭发动机药柱的长期老化效应分析[J].航空学报,1994, 15(12): 1507~1511.
    [38]冯志刚,周建平.粘弹性有限元法研究[J].上海力学, 1995, 16(1): 20~26.
    [39]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].武汉:华中理工大学出版社, 1996.
    [40]史宏斌,朱祖念,张善祁.多种材料人工脱粘应力场分析[J].固体火箭技术,1995, 18(1): 24~29.
    [41] Shen Y P, Hasebe N, Lee L X. The finite element method of three-dimensionalnonlinear viscoelastic large deformation problems[J]. Computers and Structures,1995, 55(4): 659~666.
    [42]钟万勰,李锡夔.不可压缩材料有限元分析中的广义位移方法[J].大连工学院学报, 1981, 20(4): 1~10.
    [43] Herrmann L R, Toms R M. A reformulation of the elastic field equations, in termsof displacements, valid for all admissible values of Poisson’s ratio[J]. Journal ofApplied Mechanics, 1964, 31: 140~141.
    [44] Herrmann L R. Elasticity equations for incompressible and nearly incompressiblematerials by variational theorem[J]. AIAA Journal, 1965, 3(10): 1896~1900.
    [45] Shariff M. An extension of Herrmann's principle to nonlinear elasticity[J].Applied Mathematical Modelling, 1997, 21(2): 97~107.
    [46]王元有,王新华,胡亚非.适用于固体推进剂药柱应力分析的一种粘弹性有限元法[J].宇航学报, 1994, 15(1): 48~54.
    [47] Wu C C, Yuan L, Tomonari F. Deviatoric hybrid model and multivariableelimination at element level for incompressible medium[J]. International Journalfor Numerical Methods in Engineering, 1999, 46(5): 729~745.
    [48]张建伟,孙冰.固体火箭发动机药柱大变形数值分析[J].固体火箭技术, 2004,27(4): 284~288.
    [49]张建伟,孙冰.固体火箭发动机药柱三维结构非线性分析[J].宇航学报, 2006,27(5): 871~875.
    [50]张海联,周建平.固体推进剂药柱的近似不可压缩粘弹性增量有限元法[J].固体火箭技术, 2001, 24(2): 36~40.
    [51]田四朋,雷勇军,李道奎,等.固体火箭发动机药柱不可压和近似不可压三维分析[J].固体火箭技术, 2006, 29(6): 395~399.
    [52]吴志桥,张书俊,任钧国.近似不可压缩粘弹性结构动力响应的有限元分析[J].应用力学学报, 2008, 25(2): 188~191.
    [53] GJB 770B-2005,火药试验方法[S].北京:国防科工委军标出版发行部, 2005.
    [54] QJ 3228-2005,复合固体推进剂泊松比试验方法[S].北京:中国航天标准化研究所, 2006.
    [55] QJ 2328A-2005,复合固体推进剂高温加速老化试验方法[S].北京:中国航天标准化研究所, 2006.
    [56]刘军虎,王铮.由应力松弛试验数据确定松弛模量和蠕变柔量[J].固体火箭技术, 1995, 18(3): 73~78.
    [57]覃远琳.应力松弛试验的分析及其数据处理方法探讨[J].公路交通技术, 2003,(3): 59~61.
    [58]蒙上阳,唐国金,雷勇军,等. Burgers模型的参数获取方法[J].固体火箭技术,2003, 26(2): 27~29.
    [59]刘甫,唐国金,周建平.药柱结构完整性分析模型参数的确定[J].上海航天,2002, (1): 20~22.
    [60]胡全星,姜豫东,李健,等.推进剂松弛模量主曲线及W.L.F.方程参数的拟和处理[J].固体火箭技术, 2003, 26(2): 46~48.
    [61]赵伯华.体积松弛模量与体积蠕变柔量的研究[J].固体火箭技术, 1995, 18(1):60~63.
    [62]赵伯华.松弛与蠕变力学特性转换关系的研究[J].实验力学, 1995, 10(2):140~144.
    [63]高鸣.固体推进剂体积松驰模量的数值解法[J].推进技术, 1996, 17(3): 64~67.
    [64]阳建红,刘朝丰,徐景龙,等.复合固体推进剂松弛模量与蠕变柔量转换关系[J].推进技术, 2004, 25(2): 159~161.
    [65]沈庭芳,高鸣,赵伯华.固体火箭药柱泊松比的表征与诊断[J].宇航学报,1996, 17(4): 86~90.
    [66]赵伯华.固体推进剂粘弹泊松比的研究[J].北京理工大学学报, 1994, (1):87~90.
    [67]何铁山,蒲远远,王志强,等.圆管发动机法测定固体推进剂的泊松比[J].推进技术, 2001, 22(2): 171~173.
    [68]刘中兵,利凤祥,李越森,等.轴向过载下固体推进剂药柱变形研究[J].推进技术, 2004, 25(2): 162~164.
    [69]唐国金,刘嵩锋,宋先村,等.固体火箭发动机冷增压试验系统的设计与应用[A].中国宇航学会2010年固体火箭推进第27届年会论文集[C].大连, 2010.24~26.
    [70]韦世锋,鲍福廷.点火增压过程中体积模量对药柱结构分析的影响[J].固体火箭技术, 2006, 29(4): 257~260.
    [71]杨月诚,傅学金,张永鑫.固体推进剂药柱在内压载荷下的应力应变分析[J].上海航天, 2004, (4): 44~47.
    [72]利凤祥,刘中兵,李越森,等.药柱结构对其抗轴向过载能力的影响[J].推进技术, 2004, 25(2): 165~169.
    [73]蒙上阳,唐国金,雷勇军.材料性能对固体发动机结构完整性的影响[J].国防科技大学学报, 2002, 24(5): 10~15.
    [74]蒙上阳,唐国金,雷勇军.低温环境下固体火箭发动机药柱伞盘结构设计[J].推进技术, 2004, 25(5): 397~400.
    [75]蒙上阳,唐国金,雷勇军.固体火箭发动机人工脱粘层最佳深度的获取方法[J].广西科学, 2004, 11(2): 106~108.
    [76]李磊,唐国金,雷勇军,等.固体火箭发动机药柱伞盘结构应力应变分析[J].推进技术, 2008, 29(4): 477~480.
    [77]李磊,雷勇军,申志彬,等.温度载荷下伞盘深度与脱粘深度对药柱应变的影响[J].固体火箭技术, 2010, 33(3): 285~288.
    [78]龚曙光. ANSYS操作命令与参数化编程[M].北京:机械工业出版社, 2003.
    [79]博弈工作室. ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社, 2005.
    [80] MSC.Software. PCL and Customization[M]. Los Angeles: The Macneal-Schwendler Corporation, 2005.
    [81]杨剑,张璞,陈火红.新编MD Nastran有限元实例教程[M].北京:机械工业出版社, 2008.
    [82]赵腾伦. ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [83]宋建永,任红伟,黄德耕.波折腹板组合梁桥参数化建模与计算模块开发[J].公路交通科技, 2006, 23(3): 40~43.
    [84]张爽,王栋,郦正能,等.基于ANSYS的复合材料层合板单钉连接件参数化结构仿真[J].航空学报, 2006, 27(6): 1088~1091.
    [85]陆旭,周见行,姜伟.基于APDL的塔式起重机有限元参数化建模与分析[J].机电工程, 2009, 26(7): 34~36.
    [86]关振群,罗阳军,王学军,等.离心式叶轮三维参数化形状优化设计方法[J].机械强度, 2006, 28(6): 833~838.
    [87]冯国庆,任慧龙,李巧彦,等.舰船典型节点参数化建模及形状优化[J].中国舰船研究, 2009, 4(4): 28~33.
    [88]娜日萨,宋竞正.强梁特殊开孔参数化建模技术[J].中国造船, 2004, 45(1):61~64.
    [89]匡国强,张晓晶.基于MSC Patran参数化建模的飞艇蒙皮织物面内刚度预测[J].计算机辅助工程, 2009, 18(3): 42~45.
    [90]蹇开林,李福民,王东升.基于Patran环境的框架结构参数化有限元分析[J].重庆大学学报(自然科学版), 2007, 30(5): 15~18.
    [91]许林,郭忠全,陈小前,等.基于PCL的高超飞行器结构参数化建模[J].计算机工程, 2008, 34(22): 1~3.
    [92]何祖平,王德禹.基于MSC. Patran二次开发的结构参数化建模及其集成开发环境[J].船海工程, 2005, (2): 17~20.
    [93]王小妮.基于MSC.PATRAN环境的参数化有限元建模[J].飞机工程, 2004,(4): 26~29.
    [94]张国栋,顾克秋.基于遗传算法和参数化建模的非线性结构优化[J].计算力学学报, 2003, 20(6): 764~768.
    [95]隋允康,李栋,杜家政,等.用二级控制法对二维连续体进行形状优化[J].计算力学学报, 2007, 24(2): 135~141.
    [96]陈继华,隋允康,杜家政.基于满应力准则的膜结构截面优化[J].北京工业大学学报, 2005, 31(2): 117~121.
    [97]许河川.基于形状优化的多级优化设计的研究[D].南京:南京航空航天大学,2004.
    [98] Michell A G. The limits of economy of materials in frame structures[J].Philosophical Magazine, 1904, 8(47): 589~597.
    [99]顾元宪.计算机辅助设计及其软件设计方法[M].北京:科学普及出版社,1992.
    [100] Sadek E A. Minimum weight design of structure under frequency and frequencyconstraints[J]. Computers and Structures, 1996, 60(1): 73~77.
    [101] Tong H W, Liu R G. An optimization procedure for truss structure with discretedesign vairables and dynamic constraints[J]. Computers and Structures, 2001,79(2): 155~162.
    [102] Sedaghati R, Suleman A, Tabarrok B. Structural optimization with frequencyconstraints using the finite element force method[J]. AIAA Journal, 2002, 40(2):382~388.
    [103] Tada Y. Optimum shape design of contact surface with finite element method[J].Advances in Engineering Software, 1993, (18): 75~85.
    [104] Imam M H. Three-dimensional shape optimization[J]. International Journal forNumerical Methods in Engineering, 1982, 18: 661~673.
    [105] Botkin M E. Shape optimization of plate and shell structures[J]. AIAA Journal,1982, 20: 268~273.
    [106] Bendsoe M P, Kikuchi N. Generating optimal topologies in structure design usinga homogenization method[J]. Computer Methods in Applied Mechanics andEngineering, 1988, 71(1): 197~224.
    [107] Rong J H, Xie Y M, Yang X Y, et al. Topology optimization of structures underdynamic response constraints[J]. Journal of Sound and Vibration, 2000, 234(2):177~189.
    [108] Vellaichamy S, Prakash B G, Brun S. Optimum design of cutouts in laminatedcomposite structures[J]. Computers and Structures, 1990, 37(3): 241~246.
    [109] Han C S, Wang B P. Optimum design of rectangular panels with a hole[J].Advances in Engineering Software, 1993, 16(2): 127~134.
    [110] Jungsun P, Anderson W J. Geometric optimization in presence of contactsingularities[J]. AIAA Journal, 1995, 33(8): 1503~1509.
    [111] Fancello E A, Gaslinger J. Numerical comparison between two cost functions incontact shape optimization[J]. Structural Optimization, 1995, (9): 57~68.
    [112]王备,隋允康.三维连续体结构形状优化设计[J].应用力学学报, 1999, 16(2):127~132.
    [113]崔海涛,马海全,温卫东.弹性接触问题的形状优化设计方法[J].应用力学学报, 2004, 21(2): 83~86.
    [114]隋允康,李善坡.改进的响应面方法在二维连续体形状优化中的应用[J].工程力学, 2006, 23(10): 1~6.
    [115]宋锋,温卫东,崔海涛.基于改进蚁群算法的结构形状优化[J].航空学报,2007, 28(5): 1110~1115.
    [116]戴磊.基于CAD/CAE集成技术的开放式参数化结构形状优化设计平台[D].大连:大连理工大学, 2008.
    [117] Zienkiewicz O C, Campbell J S. Shape optimization and sequential linearprogramming[A]. In Optimum Structure Design[C]. London: John Wiley andSons, 1973.
    [118] Braibant V, Fleury C. Shape optimal design using B-splines[J]. ComputerMethods in Apllied Mechanics and Engineering, 1984, 44(2): 247~267.
    [119] Ding Y. Shape optimization of structures: a literature survey[J]. Computers andStructures, 1986, 24(6): 985~1064.
    [120] Rajan S D, Budiman J, Belegundu A D. An integrated system for shape optimaldesign[J]. Computers and Structures, 1988, 30(2): 337~346.
    [121] Yang R J. A three-dimensional shape optimization system-shop3D[J]. Computersand Structures, 1989, 31(6): 881~890.
    [122] Kodiyalam S, Vanderplaats G N, Miura H. Structural shape optimization withMSC/Nastran[J]. Computers and Structures, 1991, 40(4): 821~829.
    [123] Gutkowski W, Dems K. Shape optimization of a 2D body subjected to severalloading conditions[J]. Engineering Optimization, 1997, 29: 293~311.
    [124] Annicchiarico W, Cerrolaza M. Finite elements, genetic algorithms and B-splines:a combined technique for shape optimization[J]. Finite Elements in Analysis andDesign, 1999, 33(2): 125~141.
    [125]龚曙光,谢桂兰.基于形状优化的机械零件设计[J].机械设计与研究, 2002,18(5): 41~43.
    [126] Belegundu A D, Rajan S D. A shape optimization approach based on naturaldesign variables and shape functions[J]. Computer Methods in Apllied Mechanicsand Engineering, 1988, 66(1): 87~106.
    [127] Rajan S D, Belegundu A D. Shape optimization design using fictitious loads[J].AIAA Journal, 1989, 27(1): 102~107.
    [128] Rajeev S, Krishnamoorthy C S. Discrete optimization of structures using geneticalgorithms[J]. Journal of Structural Engeering, 1992, 118(15): 1233~1250.
    [129] Wu S J, Chow P T. Integrated discrete and configuration optimization of trussesusing genetic algorithms[J]. Computers and Structures, 1995, 55(4): 695~702.
    [130] Rajeev S, Krishnamoorthy C S. Genetic algorithms-based methodologies fordesign optimization of trusses[J]. Journal of Structural Engeering, 1997, 123(3):350~358.
    [131] Lu J G, Ding Y L, Wu B, et al. An improved strategy for GAs in structuraloptimization[J]. Computers and Structures, 1996, 61(6): 1185~1191.
    [132]罗志凡,荣见华,杜海珍.基于遗传算法和梯度算法的桁架结构动力学形状优化[J].振动与冲击, 2003, 22(2): 40~43.
    [133]罗志凡,荣见华,卢耀祖.基于遗传算法的桁架结构动力学形状优化[J].机械设计与制造2004, (4): 68~70.
    [134]唐文艳,袁清珂.改进的遗传算法求解桁架的形状优化[J].力学学报, 2006,38(6): 843~849.
    [135]张明辉,王尚锦.改进的遗传算法用于离心叶轮优化设计[J].西安交通大学学报, 2001, 35(9): 914~917.
    [136]张明辉,王尚锦.具有自适应交叉算子的遗传算法及其应用[J].机械工程学报, 2002, 38(1): 51~54.
    [137]张明辉,黄田,王尚锦.混合生物生长自适应搜索遗传算法在形状优化中的应用[J].航空学报, 2004, 25(5): 525~528.
    [138] Bendsoe M P. Optimization of Structural Topology,Shape and Material[M].Berlin: Springer, 1997.
    [139] Bendsoe M P, Sigmund O. Topology optimization: theory, methods andapplications[M]. New York: Springer, 2003.
    [140] Rossow M P, Talylor J E. A finite element method for the optimal design ofvariable thickness sheets[J]. AIAA Journal, 1973, (11): 1566~1569.
    [141] Lions L J. Some methods in the mathematical analysis of system and theircontrol[M]. Beijing: Science Press, 1981.
    [142] Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based onthe homogenization method with adaptive finite element method[J]. ComputerMethods in Applied Mechanics and Engineering, 1990, 83(2): 143~198.
    [143] Suzhki K, Kikuchi N. A homogenization method for shape and topologyoptimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991,93(3): 291~331.
    [144] Tenek L H, Hagiwara I. Static and vibrational shape and topology optimizationusing homogenization and mathematical programming[J]. Computer Methods inApplied Mechanics and Engineering, 1993, 109(1): 143~154.
    [145] Hassani B, Hinton E. Homogenization and Structural Topology Optimization[M].London: Springer, 1999.
    [146] Xie Y M, Steven G P. A simple evolutionary procedure for structuraloptimization[J]. Computers and Structures, 1993, 49(5): 885~896.
    [147] Xie Y M, Steven G P. Evolutionary structural optimization for dynamicproblems[J]. Computers and Structures, 1996, 58(6): 1067~1073.
    [148] Xie Y M, Steven G P. Evolutionary structural optimization[M]. Berlin: Springer,1997.
    [149] Li Q, Steven G P, Xie Y M. Displacement minimization of thermoelasticstructures by evolutionary thickness[J]. Computer Methods in Applied Mechanicsand Engineering, 1999, 179(3): 361~378.
    [150] Li Q, Steven G P, Xie Y M. Evolutionary structural optimization for stressminimization problems by discrete thickness design[J]. Computers and Structures,2000, 78: 769~780.
    [151] Steven G P, Li Q, Xie Y M. Multicritera optimization that minmize maximumstress and maximize stiffness[J]. Computers and Structures, 2002, 80: 2443~2448.
    [152] Li Q, Steven G P, Xie Y M. On equivalence between stress criterion and stiffnesscriterion in evolutionary structural optimization[J]. Structural Optimization, 1999,18: 67~73.
    [153] Li Q, Steven G P, Xie Y M. A simple checkerboard suppression algorithm forevolutionary structural optimization[J]. Structural Multidisciplinary Optimization,2001, 37: 1323~1350.
    [154]荣见华,姜节胜,徐飞鸿.一种基于应力的双方向结构拓扑优化算法[J].计算力学学报, 2004, 21(3): 322~328.
    [155]荣见华,唐国金,杨振兴.一种三维结构拓扑优化方法[J].固体力学学报,2005, 26(3): 289~297.
    [156]荣见华,姜节胜,胡德文.基予应力及箕灵敏度的结构拓扑渐进优化方法[J].力学学报, 2003, 33(5): 584~591.
    [157]荣见华,姜节胜,颜东煌.多约束的桥梁结构拓扑优化[J].工程力学, 2002,19(4): 160~165.
    [158]杜海珍,荣见华,傅建林,等.基予应变能的双方向结构渐进优化方法[J].机械强度, 2005, 27(1): 72~77.
    [159] Falzon B G, Steven G P, Xie Y M. Shape optimization of interior cutouts incomposite panels[J]. Structural Optimization, 1996, 11(1): 43~49.
    [160] Falzon B G, Steven G P, Xie Y M. Multiple cutout optimization in compositepanels using evolutionary structural optimization[J]. Structural Engineering andMechanics, 1997, 5(5): 609~624.
    [161] Kim H, Garcia M J, Querin O M. Introduction of fixed grid in evolutionarystructural optimization[J]. Engineering Computations, 2000, 17(4): 427~439.
    [162] Kim H, Querin O M, Steven G P. Improving efficiency of evolutionary structuraloptimization by implementing fixed grid mesh[J]. Structural and MultidisciplinaryOptimization, 2003, 24(6): 441~448.
    [163]刘毅,金峰.用无梯度仿生技术对叠层复合材料方板开孔形状优化[J].清华大学学报(自然科学版), 2004, 44(12): 1630~1633.
    [164]刘毅,金峰.叠层复合材料方板多孔形状优化[J].工程力学, 2006, 23(5):113~118.
    [165]隋允康,任旭春,龙连春.基于ICM方法的刚架拓扑优化[J].计算力学学报,2003, 20(6): 286~289.
    [166]隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报, 2005, 37(2):190~198.
    [167]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法[J].计算力学学报, 2000, 17(1): 28~33.
    [168]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报, 2000, 32(2): 171~179.
    [169]杜平安.有限元网格划分的基本原则[J].机械设计与制造, 2000, (1): 34~36.
    [170]韩小云.固体推进剂燃烧断裂研究和固体火箭发动机结构完整性分析[D].长沙:国防科技大学, 1999.
    [171]颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究[J].航空计算技术, 2005, 35(1): 1~6.
    [172]谢祚水.结构优化设计概论[M].北京:国防工业出版社, 1997.
    [173]徐培德,邱涤珊.非线性最优化方法及应用[M].长沙:国防科技大学出版社,2008.
    [174]梁醒培,王辉.基于有限元方法的结构优化设计:原理与工程应用[M].北京:清华大学出版社, 2010.
    [175]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999.
    [176]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社, 2002.
    [177]肖茜.改进遗传算法及其在机械优化设计中应用的研究[D].上海:同济大学,2003.