多铁材料BiMn_2O_5及有机磁体(EDT-TSF)_2FeCl_4等物性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,磁性材料与铁电材料的发展应用已经渗透于现代科技的各个领域中。譬如:电子信息产品一般会利用铁磁体来存储信息。相应地,传感器工业则强烈地依赖于一类被称为铁电体的材料,这类材料具有自发电极化,而且它的电极化方向可以随着外加电场的方向的变化而改变。多铁材料是一类有趣的兼具电、磁和结构序参的化合物,因此导致在同一个相中它可能同时存在铁电、铁磁和铁弹性。随着大规模集成电路的发展,器件小型化成了必然的发展趋势,而这种趋势促使人们开始寻找集铁电性和铁磁性于一身的多功能材料。
     本文采用了基于密度泛函理论(DFT)的第一性原理计算方法,研究了有机磁体[M(N3)2(HCOO)][(CH3)2NH2] (M=Fe and Co)的电子结构,电荷转移及磁性相互作用,发现该材料的基态呈现反铁磁性,而铁磁态为亚稳态,其铁磁相互作用主要是通过叠氮基进行传递的。计算的能带结构表明现其在铁磁态呈现半导体性质,而在反铁磁态呈现金属性。对于闪锌矿结构的ZnO,研究了Co和Cu掺杂后的电子结构和磁性质。计算的能带结构表明Co掺杂的ZnO显示半导体性质,而Cu掺杂的ZnO显示有趣的半金属性。
     对LiNbO3类型的ZnSnO3,采用密度泛函微扰理论(DFPT)研究了它的铁电和非线性光学性质,结果表明ZnSnO3是一个直接带隙的半导体材料,有着较大的自发极化。大的介电常数和非线性光学系数显示了它是一个高竞争力的介电及非线性光学材料。此外,计算的非线性光学系数和电光张量显示虽然LiNbO3类型的ZnSnO3和LiNbO3晶体属于同样的3m点群,但是二者的对称性是不同的。对于单相多铁材料BiMn2O5,通过DFT和Berry phase方法,分别计算了其电子结构和自发极化,计算结果显示该材料的基态为反铁磁态,自发极化主要来自于Bi 6s孤对电子诱发的结构扭曲和非共线磁序两个因素。
At present, the development of magnetic and ferroelectric materials has penetrated in all areas of modern science and technology. For example, electronic information products usually use the ferromagnets to store information. Accordingly, the sensor industry is strongly dependent on a class known as ferroelectric materials, which have a spontaneous polarization, and the direction of its polarization with the electric field can be changed. Multiferroics are an interesting group of compounds that have electric, magnetic and structural order parameters that result in simultaneous ferroelectrics, ferromagnetism and ferroelasticity in the same phase. With the development of large scale integrated circuits, device miniaturization has become an inevitable trend, and this trend promotes people to look for multi-functional magnetoelectric materials.
     In this paper, we have studied the electronic structure, charge transfer and magnetic coupling of the two chains compounds of [M(N3)2 (HCOO)][(CH3)2NH2] (M= Fe and Co) by employing the first-principles method based on density functional theory (DFT). The results reveal that AFM state is the ground state and FM state is the metastable one for the two compounds, and the ferromagnetic interaction is mainly transmitted by end-on azido. The two compounds exhibit semiconductor character with small gap in the FM state, while metallic in the AFM state. Using the same method, we have studied the electronic structure of Co and Cu doped zinc-blende ZnO, band structure calculations show that the Co-doped ZnO is semiconductor, while the Cu-doped ZnO shows an interesting half-metallic character.
     For LN-type ZnSnO3, we have investigated the ferroelectric and nonlinear optical properties by using DFPT method. The results show that the LN-type ZnSnO3 is a direct-band-gap semiconductor and has a large spontaneous polarization. The large dielectric constants and NLO susceptibilities indicate that the LN-type ZnSnO3 would be a candidate for high-performance dielectric and nonlinear optical material. In addition, by comparing the NLO susceptibilities and EO coefficients of LN-type ZnSnO3 with that of LiNbO3, although the two compounds belong to the same point group (3m), it is found that the symmetry of them is different. For mutiferroic BiMn2O5, we have calculated its electronic structure and spontaneous polarization. The results reveal that antiferromagnetic state is the ground state. The ferroelectricity of BiMn2O5 arises from two factors:the role of Bi lone pair electrons and the noncollinear magnetic ordering.
引文
[1]钟维烈。《铁电物理学》北京:科学出版社,1998。
    [2]Landau L D, Lifshitz. Statistical Physics,3rd ed. Part 1, Pergamon Press, Oxford (1980).
    [3]Muller H. Properties of Rochelle Salt. Phys. Rev.1940,57:829-839.
    [4]Ginzburg V L. Zh. Eskp. Teor. Fiz.1945,15:739.
    [5]Muller H. Properties of Rochelle Salt. III. Phys. Rev.1940,58:565-573.
    [6]Slater J C. Theory of the transition in KH2PO4. J. Chem. Phys.1941,9:16-33.
    [7]Slater J C. The Lorentz Correction in Barium Titanate. Phys. Rev.1950,78:748-761.
    [8]Cochran W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett.1959,3: 412-414.
    [9]Cochran W. Adv. Phys.1960,9:367-372.
    [10]Anderson P W. Fizika Dielektrikov, ed. By G I. Skanavi, Akad. Nauk. SSSR. Moscow (1960).
    [11]Resta R, Posternak, Baldereschi A. Towards a quantum theory of polarization in ferroelectrics:The case of KNbO3. Phys. Rev. Lett.1993,70:1010-1013.
    [12]King-Smith R D, Vanderbilt D. First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B.1994,49:5828-5844.
    [13]Uchino K, Sadanaga E, Hirose T. Dependence of the Crystal Structure on Particle Size in Barium Titanate. J. Am. Ceram. Soc.1989,72:1555-1558.
    [14]Mannhart J and D. G Schlom. Oxide Interfaces—An Opportunity for Electronics. Science.2010,327:1607-1611.
    [15]Takagi H, et al. An Emergent Change of Phase for Electronics. Science.2010 327: 1601-1602.
    [16]Garcia V, Bibes M, Bocher L, et al. Ferroelectric Control of Spin Polarization. Science.2010,327:1106-1110.
    [17]Zeches R J, Rossell M D, Zhang J X, et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science.2009 326:977-980.
    [18]Maksymovych P, Jesse S, et al. Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science.2009,324:1421-1425.
    [19]Scott J F. Applications of Modern Ferroelectrics. Science.2007,315:954-959.
    [20]Hemberger J, et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature.2005,434:364-367.
    [21]Eerensteinl W, Mathurl N D, Scott J F. Multiferroic and magnetoelectric materials. Nature.2006,442:759-765.
    [22]Nicola A. Hill. Why Are There so Few Magnetic Ferroelectrics. J. Phys. Chem. B. 2000,104:6694-6709.
    [23]Nan C W, Liu L, Cai N, Dong L J. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett.2002,81: 3831-3833.
    [24]Fiebig M. Revival of the magnetoelectric effect. J. Phys. D:Appl. Phys.2005,38: R123-R152.
    [25]Fiebig M, Lottermoser T, Frohlich D, Goltsev A V. Observation of coupled magnetic and electric domains. Nature.2002,418:818-820.
    [26]Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature.2003,426:55-58.
    [27]Lottermoser T, Lonkai T, Hohlwein U A, Ihringer J, Fiebig M. Magnetic phase control by an electric field. Nature.2004,430:541-544.
    [28]Tokunaga Y, Lottermoser T. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nature.2006,5:937-941.
    [29]Takano M, Nasu S, Abe T, Yamamoto K, Endo S. Pressure-induced high-spin to low-spin transition in CaFeO3. Phys. Rev. Lett.1991,67:3267-3270.
    [30]Ishiwata S, Azuma M, Takano M. Structure and Physical Properties of Perovskite Bi0.8Pb0.2NiO3 in Unusual Valence State A4+B2+O3. Solid State Ionics.2004,172: 569-571.
    [31]Belik A A, Iikubo S, Kodama K, Igawa N, Shamoto S. BiScO3:Centrosymmetric BiMnO3-type Oxide. J. Am. Chem. Soc.2006,128:706-707.
    [32]Feng J W, Yu K C, Ye C. La NMR probe of intra-and interlayer spin correlations in La1.2Sr1.6Ca0.2Mn2O7 above TC. Phys. Rev. B.2001,63,180401-180404.
    [33]Kim D H, Lee H N, Varela M, Christen H M. Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl. Phys. Lett.2006,89:162904-1-3.
    [34]Niitakaa S, Azuma M, Takanob M, Nishiboric E, Takatad M, Sakata M. Polycrystalline samples of BiCrO3 were prepared by a solid state reaction under high pressure. Solid State Ionics.2004,172:557-559.
    [35]Wang J, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science. 2003,299,1719-1722.
    [36]Montanari E, Calestani G, Migliori A. High-Temperature Polymorphism in Metastable BiMnO3. Chem. Mater.2005,17:6457-6467.
    [37]Day P. Acc Chem Res.1979,14:236-243.
    [38]Kahn O. Angew Chem.1985,97:837-853.
    [39]Tamaki H, et al. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc.1992,114:974-978.
    [40]McConnel H M. Proc Robert A Welch Found Conf Chem Res.1967,11:144
    [41]McConnel H M. Pi-electron magnetism:from molecules to magnetic material. J Chem Phys.1963,39:1910.
    [42]Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B.2003,67:180401-1-4.
    [43]Belik A A, Iikubo S, Yokosawa T. Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3. J. Am. Chem. Soc.2007,129:971-977.
    [44]Mizokawa T, Khomskii D I, Sawatzky G A. Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B.2000,61:11263-11266.
    [45]Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J, Kazakov S M. Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett.2002,88: 126402-1-4.
    [46]Takano M, Nasu S, et al. Pressure-induced high-spin to low-spin transition in CaFeO3. Phys. Rev. Lett.1991,67:3267-3270.
    [47]Ishiwata S, Azuma M, Takano M. Crystal structure and dielectric and magnetic properties of BiCrO3. Solid State Ionics.2004,172:569-571.
    [48]Saitoa T, Azumaa M, Nishiborib E, Takatab M. Distortion in the Insulating Phase of PrNiO3. Physica B.2003,329:866-867.
    [49]谢希德,陆栋。《固体能带理论》。上海:复旦大学出版社,1998。
    [50]李正中。《固体理论》。北京:高等教育出版社,2002。
    [51]Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford:Oxford University Press,1954.
    [52]Lowdin P-O, Wave and Reaction Operators in the Quantum Theory of Many-Particle Systems. Rev. Mod. Phys.1963,35:702.
    [53]Hartree D R. The wave mechanics of an atom with a non-coulomb central field. Ⅰ. Theory and methods. Proc.Cam. Phil. Soc.1928,24:89.
    [54]Zhukov V P, Usuda M, Chulkov E V, et al. Dielectric functions and quasi-particle lifetimes in Ag:full-potential LMTO and LAPW GW approaches Journal of Electron Spectroscopy and Related Phenomena.2003,129:127.
    [55]Cohen R E. Periodic slab LAPW computations for ferroelectric BaTiO3. J. Phys. Chem. Solids.1996,57:1393.
    [56]Miller J S, Epstein A J. Metal-organic frameworks. Coordin. Chem. Rev.206-207 (2000)651-660.
    [57]Kahn O. Molecular engineering of coupled polynuclear systems:Orbital mechanism of the interaction between metallic centers. Inorg. Chim. Acta.1982,62:
    [58]Yakhmi J V, Chavan S A. Design of molecular ferromagnets. Proc. Indian Acad. Sci. 1996,108:521-532.
    [59]Duan Y F, Yao K L. Theoretical model of an organic ferrimagnetic state for a bipartite lozenge chain.2001,63:134434-1-4.
    [60]Wang W Z, Liu Z L, Yao K L. Interchain coupling model for quasi-one-dimensional π-conjugated organic ferromagnets. Phys. Rev. B.1997,55:12989-12994.
    [61]Wang W Z. et al. Charge Density Wave Transition and Instability in Interchain Coupled Organic Ferromagnets with Next-Nearest-Neighbor Hopping Interaction. J. Chem. Phys.1998,108:2867-2872.
    [62]Wang W Z, Yao K L, Lin H Q. A Theoretical Model for Interchain Coupled Organic Ferromagnets. Chem. Phys. Lett.1997,274:221-225.
    [63]Yao K L, Luo S J, Liu Z L. The electronic structure and the ferromagnetic properties of the organic radical MOTMP. Phys. B.2003,325:380-384.
    [64]Liu T, Zhang Y J, Wang Z M, Gao S. Two Chain Compounds of [M(N3)2(HCOO)][(CH3)2NH2] (M=Fe and Co) with a Mixed Azido/Formato Bridge Displaying Metamagnetic Behavior. Inorg. Chem.2006,45:2783-2784.
    [65]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett.77 (1996) 3865-3868.
    [66]Hosseini S M, Mo vlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3 Phys. B 391 (2007) 316-321.
    [67]De Groot R.A, et al. New class of materials:half-metallic ferromagnets. Phys. Rev. Lett.1983,50:2024-2027.
    [68]Jedema F J, Filip A T, Wees B Van, et al. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature.2001,410:345-348.
    [69]Luo S J, Yao K L. Electronic structure of the organic half-metallic magnet 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-lH-imidazol-1-oxyl 3-N-oxide. Phys. Rev. B.2003,67:214429-1-4.
    [70]Yao K L, Zhang J, Liu Z L, Gao G Y, Wang X C, Li Y Li, Phys. B 398 (2007) 40-45.
    [71]Liu B G. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B. 2000,67:172411-1-4.
    [72]Ferraris J, Cowan D O, Walatka V, Perlstein J H, Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc.95 (1973) 948-949.
    [73]Coleman L B, Cohen M J, Sandman D J, Yamagishi F G, Garito A F, Heeger A J. Creep of niobium at low temperatures Fluage du niobium a basse temperatureDas kriechen von niob bei tiefen temperaturen. Solid State Commun.1973,12:1125-1132.
    [74]Wudl F, et al, bis-1,3-Dithiolium chloride:an unusually stable organic radical cation, J. Chem. Soc., Chem. Commun. (1970) 1453-1454.
    [75]Endo H, Kawamoto T, Mori T, Terasaki I, Kakiuchi T, Sawa H, Kodani M, Takimiya K, Otsubo T. Current-Induced Metallic State in an Organic (EDT-TSF)2GaCl4 Conductor. J. Am. Chem. Soc.2006,128:9006-9007.
    [76]Ohno Y, Young D K, Beschoten B, Matsukura F, Ohono H, Awschalom D D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402 (1999) 790-792 (London).
    [77]Furdyna J K, Kossut J. DMSs Semiconductor and Semimetals, vol.25, Academic Press, New York,1988.
    [78]Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Lye Y. (Ga, Mn)As:A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett.69 (1996) 363-374.
    [79]Choi S, Cha G B, Hong S C, Cho S, Kim Y, Ketterson J B, Jeong S Y, Yi G C. Room-temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals. Solid State Comm.122 (2002) 165-167
    [80]Schwartz D A, Kittilstved K R, Gamelin D R. Colloidal Diluted Magnetic Semiconductor Quantum Dots. Appl. Phys. Lett.2004,85:1395-1397.
    [81]Li X L, et al. Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO film. J. Appl. Phys.2009,105:103914-1-6.
    [82]Matsumoto Y, et al., Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science.2001,291:854-856.
    [83]Hu S J, Yan S S, Zhao M W, Mei L M. First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys. Rev. B.2006,73:245205-1-7.
    [84]Luo S J, Yao K L, Liu Z L, On the magnetic phase transition in FexMn1-xSi. J. Magn. Magn. Mater.2003,265:167-171.
    [85]Mcwhan D B, Jayaraman A, Remeika J P, Rice T M. Metal-Insulator Transition in (V1-xCrx)2 O3. Phys. Rev. Lett.1975,34:547-550.
    [86]Halasyamani P S, and Poeppelmeier K R. Noncentrosymmetric Oxides. Chem. Mater., 1998,10,2753-2769.
    [87]Halasyamani P s. Asymmetric Cation Coordination in Oxide Materials:Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals. Chem. Mater.,2004,16,3586-3592.
    [88]Chang H Y, Kim S H, Halasyamani P S, and Ok K M. Alignment of Lone-Pairs in a New Polar Material:Li2Ti(IO3)6-Synthesis, Characterization, and Functional Properties. J. Am. Chem. Soc.,2009,131,2426-2431.
    [89]Frau A, Kim J H, and Halasyamani P S. Na3Ga3Te2O12:Synthesis, single crystal structure and characterization. Solid State Sci.,2008,10,1263-1268.
    [90]Kim J H, and Halasyamani P S. A Rare Multi-Coordinate Tellurite, NH4ATe409 2H2O (A= Rb or Cs):The Occurence of TeO3, TeO4, and TeO5 polyhedra in the same material. J. Solid State Chem.,2008,181,2108.
    [91]Kovacheva D, Petrov K. Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics.,1998,109,327-332.
    [92]Inaguma, Yoshida M, and Katsumata T. A Polar Oxide ZnSnO3 with a LiNbO3-Type Structure. J. AM. CHEM. SOC.,2008,130,6704-6705.
    [93]Son J Y, Lee G, Jo M-H, Kim H, Jang H M, and Shin Y-H. Heteroepitaxial Ferroelectric ZnSnO3 Thin Film. J. AM. CHEM. SOC.,2009,131,8386-8387.
    [94]Veithen M and Ghosez Ph. First-principles study of the dielectric and dynamical properties of lithium niobate. Phys. Rev. B.,2002,65,214302-1-12.
    [95]Wang H, Huang H, and Wang B. First-principles study of structural, electronic, and optical properties of ZnSnO3. Solid State Communication.,2009,149,1849-1852.
    [96]Lee Kwan-Woo and Pickett W E. Born effective charges and infrared response of LiBC. Phys. Rev. B.,2003,68,085308-1-5.
    [97]Geneste G, Kiat Jean-Michel, Malibert C, and Chaigneau J. Experimental and first-principles study of the structure and dielectric response of the high-temperature quantum paraelectric La1/2Na1/2TiO3. Phys. Rev. B.,2007,75,174107-1-14.
    [98]Waghmare U, Marcel H. F. Sluiter, Kimura T, Goto T, and Kawazoe Y. A lead-free high-Tc ferroelectric BaTi2O5. Appl. Phys. Lett.,2004,84,4917-4919.
    [99]Li Z, Yang J, Hou J G, and Zhu Q. First-principles lattice dynamics of NaCoO2. Phys. Rev. B.,2004,70,144518-1-6.
    [100]Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature.,1992,358, 136-138.
    [101]Lines M E and Glass A M. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford,2001).
    [102]Stokes H T, Hatch D M, and Campbell B J. ISOTROPY, http://stokes.byu.edu/isotropy.html (2007).
    [103]Physics of Ferroelectrics:A Modern Perspective, edited by Rabe K M, Ahn C H, and Triscone J-M. Springer-Verlag Berlin Heidelberg,2007.
    [104]Waghmare U V, Rabe K M:Dielectric properties of simple and complex oxides from first principles, in Demkov A A, Navrotsky A (Eds.):Materials Fundamentals of Gate Dielectrics (Springer, New York 2005)
    [105]Juretschke H J, Crystal Physics (Macroscopic Physics of Anisotropic Solids), W.A. Benjamin, Reading, Mass.,1974.
    [106]Nye J F, Physical properties of crystals:their representation by tensors and matrices, Oxford:Clarendon,1957,1979 printing, p.310-312.
    [107]Veithen M, PhD thesis:First principles study of the nonlinear responses of insulators to electric field:applications to ferroelectric oxides,2005.
    [108]Johnston W D, Jr., Nonlinear Optical Coefficients and the Raman Scattering Efficiency of LO and TO Phonons in Acentric Insulating Crystals. Phys. Rev. B.,1970,1: 3494-3503.
    [109]Fiebig M, Lottermoser T, Frohlich D, Goltsev A V, Observation of coupled magnetic and electric domains. Nature.2002,419:818-820.
    [110]Tokunaga Y, Lottermoser T, Nature Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites.2006,5:937-941.
    [111]Nan C W, Liu G, and Lin Y H. Magnetic-Field-Induced Electric Polarization in Multiferroic Nanostructures. Phys. Rev. Lett.2005,94:197203-1-4.
    [112]Spaldin N A and Fiebig M. The Renaissance of Magnetoelectric Multiferroics. Science.2005,309:391-392.
    [113]Kim D H, Lee H N, Varela M, and Christen H M. Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl. Phys. Lett.2006,89:162904-1-3.
    [114]A. A. Belik, S. Iikubo, T. Yokosawa, Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3. J. Am. Chem. Soc.2007,129:971-977.
    [115]Lorenz B, Litvinchuk A P, Gospodinov M M, and Chu C W. Field-Induced Reentrant Novel Phase and a Ferroelectric-Magnetic Order Coupling in HoMn03. Phys. Rev. Lett. 2004,92:087204-1-4.
    [116]J. Wang,et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructur. Science. 2003,299:1719-1722.
    [117]Wood V E, Austin A E, in:Freeman A J, Schmid H (Eds.), Magnetoelectric Interaction Phenomena in Crystals, Gordon and Breach, London,1975.
    [118]Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y. Magnetic control of ferroelectric polarization. Nature.2003,426:55-58.
    [119]Kimura T, et al. Cupric oxide as an induced-multiferroic with high-TC. Nature.2008, 7:291-194.
    [120]Lottermoserl T, et al. Magnetic phase control by an electric field. Nature.2004,430: 541-544.
    [121]Alonso J A, et al. A structural study from neutron diffraction data and magnetic properties of RMn2O5 (R= La, rare earth). J. Phys.:Condens. Matter.1997,9:8515-8526.
    [122]Munoz A, et al. Magnetic structure and properties of BiMn2O5:A neutron diffraction study oxide:A neutron diffraction study. Phys. Rev. B.2002,65:144423-1-14.
    [123]Granado E, et al. Magnetoelastic and thermal effects in the BiMn2O5 lattice:A high-resolution x-ray diffraction study. Phys. Rev. B.2008,77:134101-1-8.
    [124]Hur N, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature.2004,429:392-395.
    [125]Kagomiya I, Kohn K, and Uchiyama T. Structure and ferroelectricity of RMn2O5. Ferroelectrics 2002,280:131-143.
    [126]Kobayashi S, Osawa T, et al. Ferroelectricity Induced by Incommensurate-Commensurate Magnetic Phase Transition in Multiferroic HoMn2O5. J. Phys. Soc. Jpn.2004,73:1031-1034.
    [127]Chapon L C, et al. Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn2O5. Phys. Rev. Lett.2004,93:177402-1-4.
    [128]Wang C J, Guo G C, and He L X. First-principles study of the lattice and electronic structure of TbMn2O5. Phys. Rev. B.2008,77:134113-1-11.
    [129]Stoner E C, Proc.R. Soc. London, Ser. A.165 (1938) 372.
    [130]Sahu R K and Manoharan S S. Double-exchange enhanced magnetoresistance in SrRuo.5Mn0.5O3. J. Appl. Phys.2002,92:4831-4833.
    [131]Batista C D, Eroles J, Avignon M, and Alascio B. Ferromagnetic polarons in manganites. Phys. Rev. B.2000,62:15047-15055.
    [132]Goodenough, J. B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. Phys. Rev.1955,100:564-573.