基于密度泛函微扰理论的砷化镓电光张量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍了密度泛函理论和基于2n+1定理的密度泛函微扰理论,陈述了研究材料电光张量的意义及其在密度泛函微扰理论中的分解表达式(根据玻恩—奥本海默近似,电光张量由电子和离子两部分的贡献构成)。为了分析电光材料巨电光系数的来源,我们选择了结构相同且同为III-V族化合物但有着迥然不同电光特性的砷化镓(GaAs)和立方氮化硼(c-BN)进行对比分析。我们使用基于第一原理密度泛函微扰理论的方法对GaAs和c-BN的电光张量进行了分析计算,并分别得到了电子和离子对其电光系数的贡献。通过比较可以看出,作为电光材料的GaAs有比c-BN高得多的电光张量绝对值。通过对电光张量中电子、离子分解的分析可以看出这种效应主要来自于电子的贡献,而且计算的结果与材料结构点群的电光系数具有的对称性一致。在电光张量的计算过程中我们得到了物质的平衡特性、压电系数、格点动力学特性—声子色散曲线和Born有效电荷等结果,并进行了相应的分析。
In this paper, we introduce the density-functional theory (DFT) and the density-functional perturbation theory (DFPT) based on the 2n+1 theorem. The significance of the research on the electro-optic tensors of materials is proposed, and the decomposed expressions based on the DFPT of the electro-optic tensors are presented (according to the Born-oppenheimer approximation, the electro-optic tensor can be decomposed by the contribution of the ion and electron, respectively). To analyze the large electro-optic coefficients of the electro-optic materials, we select GaAs and c-BN that come from the III-V group. They have the same structure, but completely different electro-optic coefficients. The electro-optic tensors of GaAs and c-BN are calculated through the first-principles DFT. The absolute values of the electro-optic coefficients of GaAs are much higher than that of c-BN. By analyzing the composition of the electro-optic tensor, we find out that the contribution from electronics is the dominant factor. The results also indicate that the electro-optic tensor is according with the symmetry of the dot group. In addition, other relative features, such as the ground-state properties, piezoelectricity, lattice dynamics properties—phonon dispersion relation and Born effective charge are also obtained and analyzed.
引文
[1] 刘思敏 郭儒 许京中。光折变非线性光学及其应用。北京:科学出版社,2004
    [2] Levine, Bond-charge calculation of nonlinear optical Susceptibilities for various crystal structures,Phys. Rev. B 7, 2600-2626(1973).
    [3] R. W. Nunes and Xavier Gonze, Berry-phase treatment of the homogeneous electric field perturbation in insulators, Phys. Rev. B 63, 155107 (2001).
    [4] Marek Veithen, Xavier Gonze, and Philippe Ghosez, First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides, Phys. Rev. Lett. 93, 187401 (2004).
    [5] M. Veithen, X. Gonze, and Ph. Ghosez. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory Phys. Rev. B 71, 125107 (2005).
    [6] Xavier Gonze, Adiabatic density-functional perturbation theory, Phys. Rev. A 52, 1096–1114 (1995)
    [7] Xavier Gonze , Perturbation expansion of variational principles at arbitrary order, Phys. Rev. A 52, 1086–1095 (1995)
    [8] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).
    [9] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133–A1138 (1965).
    [10] M D Segall, Philip J D Lindan, M J Probert, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Cond. Matt. 14, 2717-2745(2002).
    [11] M. C. Payne, M. P. Teter, D. C. Allan, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045-1079 (1992).
    [12] D. R. Hartree, Proc. R. Soc. London A113, 621 (1928).
    [13] J. C. Slater, A Simplification of the Hartree-Fock Method, Phys. Rev. 81, 385-390 (1951).
    [14] R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects Rev. Mod. Phys. 61, 689(1989).
    [15] John P. Perdew, Yue Wang , Pair-distribution function and its coupling-constant average for the spin-polarized electron gas, Phys. Rev. B 46, 12947–12954 (1992).
    [16] M. C. Payne , M. P. Teter and D. C. Allan, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048–5079 (1981).
    [17] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized Gradient Approximation Made Simple ,Phys. Rev. Lett. 77, 3865–3868 (1996).
    [18] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865–3868 (1996).
    [19] John P. Perdew, Kieron Burke, and Matthias Ernzerhof , Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78, 1396 (1997).
    [20]方俊鑫,陆栋,固体物理学,上海,上海科技出版社,1980:200-210。
    [21] M. D. Segall, Applications of ab initio atomistic simulations to biology J. Phys.: Condens. Matter 14, 2957 (2002).
    [22] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14, 2745 (2002).
    [23] D. R. Bowler, T. Miyazaki and M. J. Gillan, Recent progress in linear scaling ab initio electronic structure techniques,J. Phys.: Condens. Matter 14, 2781 (2002).
    [24] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085 (1999).
    [25] James C. Phillips, Energy-band Interpolation scheme based on a pseudopotential Phys. Rev. 112, 685 (1958).
    [26] J. C. Phillips and L. Kleinman, New Method for Calculating Wave Functions in Crystals and Molecules, Phys. Rev. 116, 287 (1959).
    [27] Cohen and V. Heine, Solid State Physics 24, 37 (1970).
    [28] R. M. Sternheimer, Electronic polarizabilities of Ions from the Hartree-Fock Wave Functions, Phys. Rev. 96, 951 (1954).
    [29] R. M. Sternheimer, On Nuclear quadrupole moments, Phys. Rev. 84, 244-253 (1951).
    [30] R. M. Sternheimer and H. M. Foley, Nuclear Quadrupole Coupling in the Li2 Molecule, Phys. Rev. 92, 1460-1468(1953).
    [31] R. P. Feynman, Forces in Molecules,Phys. Rev. 56, 340–343 (1939).
    [32] King–Smith and David Vanderbilt ,Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651–1654 (1993).
    [33] S. Baroni, S. D. Gironcoli, and A. D. Corso, Phonons and related crystal properties from density-functional perturbation theory , Rev. Mod. Phys. 73, 515–562 (2001).
    [34]钱士雄,王恭明,非线性光学,上海,复旦大学出版社,2001 年。
    [35] X. Gonze, J.-M. Beuken, R. Caracas, First-principles computation of material properties: the ABINIT software project , Comput. Mater. Sci. 25, 478 (2002).
    [36] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).
    [37] W. D. Johnston, Nonlinear Optical Coefficients and the Raman Scattering Efficiency of LO and TO Phonons in Acentric Insulating Crystals, Phys. Rev. B 1, 3494 (1970).
    [38]许振嘉, 近代半导体材料的表面科学基础,北京,北京大学出版社,2002 年。
    [39] 陈骏,许晓伟,袁勃艳等,立方氮化硼的热膨胀性,金属学报 39(2003):952-954。
    [40] 冯贞健,邢光建,陈光华等射频溅射两步法制备立方氮化硼(c-BN)薄膜,功能材料与器件学报,10(2004):14-18.
    [41] Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).
    [42] 钟维烈,铁电体物理学,北京,科学出版社,2000:639。
    [43] 许振嘉,近代半导体材料的表面科学基础,北京,北京大学出版社,2002:46-47.
    [44] 周里群,c-BN涂层及其在刀具上的应用,工具技术(核心期刊)2003年第1期,17-19.
    [45] Ronald E. Cohn, First-Principles study of Piezoelectricity in PbTiO3, Phys. Rev. Lett. 80, 4321(1998).
    [46] Richard M. Martin, Piezoelectricity, Phys. Rev. B 5, 1607(1972).
    [47] 钟维烈,铁电体物理学,北京,科学出版社,2000:99。
    [48] 马慧莲,杨建义,江晓清,MMI 型 GaAs 1×N 和 N×N 集成光学开关的研制,半导体光电,6(2000):384-388