基于表面等离子体的电化学技术在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振(SPR)技术,以非标记、实时、高灵敏的特点广泛应用于生物分析领域。近年来,SPR与多种分析手段联用的技术不断涌现,体现出SPR技术强大的生命力。本文以SPR-电化学联用技术为切入点,重点基于SPR信号与电化学信号之间的定量关系,分别针对法拉第及非法拉第过程,探讨电位信号调控SPR响应规律,以及在生物分析领域的优势及潜在应用。
     基于SPR-电化学联用技术中SPR响应与法拉第过程电化学电流的关系,特别针对电势扫描技术中不可逆与准可逆电极过程,进行了理论数值计算以及实验验证,对原有理论及可逆过程的分析进行了有益的补充。SPR响应与参与法拉第过程的氧化-还原物质转变过程相关,直接反映了物质浓度随电势扫描速度和电极过程的可逆程度的关系。
     针对电化学中非法拉第过程,将SPR与交流阻抗技术结合。研究了不同频率交流电位信号调控下的SPR信号响应规律,并根据等效电路模型进行了理论验证及影响因素讨论。结果表明,通过SPR信号的交流部分可以获取界面的阻抗信息,即以光学信号得到电化学阻抗信息;而SPR信号的直流部分为常规SPR信号。对于生物分子相互作用体系,对比了表面等离子体电化学阻抗信号与常规SPR信号的不同特点。表面等离子体电化学阻抗能够避免溶液体相折射率变化与非特异性吸附的干扰,只对生物分子特异性结合产生响应。
     此项技术在阻抗成像领域有特别的优势,由SPR图像可直接计算得到界面阻抗图像,其时间、空间分辨率都得到极大的提高。基于此,利用表面等离子体阻抗显微成像技术研究了活细胞内源性G蛋白偶联受体激活过程,同时得到细胞光学和电化学阻抗的成像图像,具有毫秒级、亚细胞尺度的分辨率。实验结果表明,HeLa细胞组胺受体激活后,会引发下游各级细胞通路响应,导致细胞成像信号一系列特征性的改变。实验中还特别发现了不同细胞之间第二信使分子响应时间的异质性和亚细胞尺度上细胞粘附性改变的空间分布特性。阻抗成像也能够给出组胺受体激活后细胞内钙离子流动的动态过程信息。实验结果为理解组胺引发机体发炎过程提供了单细胞层次上的信息,为相关疾病治疗和药物研发提供了有益的参考。
Surface plasmon resonance (SPR) biosensor is a label-free, real-time, highlysensitive technique, which was widely used in the bioanalysis. The combination of SPRwith complementary analytical techniques has become increasingly popular recently.Here, we focus on the plasmonic based electrochemical technique. Based on thequantitative relationship between SPR and electrochemical signals, we studied thepotential modulated SPR response during faradaic and nonfaradaic process, anddiscussed the advantages of plasmonic based electrochemical technique in thebioanalysis as well as its potential applications.
     Firstly, we studied SPR responses during the faradaic process, especially for theirreversible and quasi-reversible electrode processes of potential sweep methods. Wediscussed numerical solutions and used model systems to prove the theories. The resultsdemonstrated that SPR response is closely related to the concentration changes ofred-ox substance at different potential scan rates and reversibility of the reactions.
     For the relationship between SPR response and non-faradaic current, we studiedplasmonic based electrochemical impedance spectroscopy. SPR signals were acmodulated by applying ac potential to the SPR chip surface. The ac component of SPRsignals gives the electrochemical impedance, and the dc component is the conventionalSPR. Over a range of frequency, the plasmonic based impedance was in quantitativeagreement with the conventional electrochemical impedance. The results demonstratethe possibility that optical means can measure the impedance signals. We compared theperformances of plasmonic based impedance and conventional SPR signals of thebiomolecular interaction. We found that plasmonic based impedance is sensitive tospecific molecular binding on the chip surface and less sensitive to bulk refractive indexchanges or nonspecific binding.
     Plasmonic based impedance has more advantages when it works in imaging mode.We can directly obtain the impedance information of the interface from SPR imageswith high temporal and spatial resolutions, comparing to other traditionalelectrochemical imaging techniques. We used plasmonic based impedance microscopyto study the endogenous G protein-coupled receptor (GPCR) stimulations of live cellswith subcellular and millisecond spatial-temporal resolutions. We used histamine to trigger GPCR activations of HeLa cells. The obtained images revealed theheterogeneous cell initial responses to histamine stimulation, and visualized thedistribution and strength of cell adhesion modulation by histamine triggered GPCRactivations. The impedance images also indicated the calcium flux after GPCRactivations. The imaging and mapping results offered visualized information ofpermeability modulation during allergic inflammatory process of intact epithelia cells.The findings will also promote the development of novel inflammation therapeutics andantihistamine drugs in the future.
引文
[1] Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature,1993,361:186-187.
    [2] Jonsson U, Fagerstam L, Lofas S, et al. Introducing a biosensor based technologyfor real-time biospecific interaction analysis. Ann. Biol. Clin.,1993,51:19-26.
    [3] Bondeson K, Frostell-Karlsson A, Fagerstam L, et al. Lactose repressor-operatorDNA interactions: kinetic analysis by a surface plasmon resonance biosensor.Anal. Biochem.,1993,214:245-251.
    [4] Fagerstam L G, Frostell A, Karlsson R, et al. Detection of antigen-antibodyinteractions by surface plasmon resonance. Application to epitope mapping. J.Mol. Recognit.,1990,3:208-214.
    [5] Ohlson S, Strandh M, Nilshans H. Detection and characterization of weak affinityantibody antigen recognition with biomolecular interaction analysis. J. Mol.Recognit.,1997,10:135-138.
    [6] Crouch R J, Wakasa M, Haruki M. Detection of nucleic acid interactions usingsurface plasmon resonance. Methods Mol. Biol.,1999,118:143-160.
    [7] Stahelin R V. Surface plasmon resonance: a useful technique for cell biologists tocharacterize biomolecular interactions. Mol. Biol. Cell,2013,24:883-886.
    [8] Daniel C, Melaine F, Roupioz Y, et al. Real time monitoring of thrombininteractions with its aptamers: insights into the sandwich complex formation.Biosens. Bioelectron.,2013,40:186-192.
    [9] Facompre M, Carrasco C, Colson P, et al. DNA binding and topoisomerase Ipoisoning activities of novel disaccharide indolocarbazoles. Mol. Pharmacol.,2002,62:1215-1227.
    [10] Carrasco C, Facompre M, Chisholm J D, et al. DNA sequence recognition by theindolocarbazole antitumor antibiotic AT2433-B1and its diastereoisomer. NucleicAcids Res,2002,30:1774-1781.
    [11] Thurmond R L, Wadsworth S A, Schafer P H, et al. Kinetics of small moleculeinhibitor binding to p38kinase. Eur. J. Biochem.,2001,268:5747-5754.
    [12] Carrasco C, Vezin H, Wilson W D, et al. DNA binding properties of theindolocarbazole antitumor drug NB-506. Anti-cancer Drug Des.,2001,16:99-107.
    [13] Lin L P, Huang L S, Lin C W, et al. Determination of binding constant ofDNA-binding drug to target DNA by surface plasmon resonance biosensortechnology. Curr. Drug Targets Immune Endocr. Metabol. Disord.,2005,5:61-72.
    [14] Wang R, Lajevardi-Khosh A, Choi S, et al. Regenerative Surface PlasmonResonance (SPR) biosensor: real-time measurement of fibrinogen in undilutedhuman serum using the competitive adsorption of proteins. Biosens. Bioelectron.,2011,28:304-307.
    [15] Wang Q, Shah N, Zhao J, et al. Structural, morphological, and kinetic studies ofbeta-amyloid peptide aggregation on self-assembled monolayers. Phys. Chem.Chem. Phys.,2011,13:15200-15210.
    [16] Deinum J, Gustavsson L, Gyzander E, et al. A thermodynamic characterization ofthe binding of thrombin inhibitors to human thrombin, combining biosensortechnology, stopped-flow spectrophotometry, and microcalorimetry. Anal.Biochem.,2002,300:152-162.
    [17] Forzani E S, Zhang H, Chen W, et al. Detection of heavy metal ions in drinkingwater using a high-resolution differential surface plasmon resonance sensor.Environ. Sci. Technol.,2005,39:1257-1262.
    [18] Kang T, Hong S R, Moon J, et al. Fabrication of reusable sensor for detection ofCu2+in an aqueous solution using a self-assembled monolayer with surfaceplasmon resonance spectroscopy. Chem. Commun.,2005,3721-3723.
    [19] Forzani E S, Foley K, Westerhoff P, et al. Detection of arsenic in groundwaterusing a surface plasmon resonance sensor. Sensor. Actuat. B-Chem.,2007,123:82-88.
    [20] Hong S, Kang T, Oh S, et al. Label-free sensitive optical detection ofpolychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmonresonance measurements. Sensor. Actuat. B-Chem.,2008,134:300-306.
    [21] Wu C M, Lin L Y. Immobilization of metallothionein as a sensitive biosensor chipfor the detection of metal ions by surface plasmon resonance. Biosens.Bioelectron.,2004,20:864-871.
    [22] Shimomura M, Nomura Y, Zhang W, et al. Simple and rapid detection methodusing surface plasmon resonance for dioxins, polychlorinated biphenylx andatrazine. Anal. Chim. Acta.,2001,434:223-230.
    [23] Soh N, Tokuda T, Watanabe T, et al. A surface plasmon resonance immunosensorfor detecting a dioxin precursor using a gold binding polypeptide. Talanta,2003,60:733-745.
    [24] Abbas A, Linman M J, Cheng Q. New trends in instrumental design for surfaceplasmon resonance-based biosensors. Biosens. Bioelectron.,2011,26:1815-1824.
    [25] Phillips K S, Cheng Q. Recent advances in surface plasmon resonance basedtechniques for bioanalysis. Anal. Bioanal. Chem.,2007,387:1831-1840.
    [26] Wood R W. On a remarkable case of uneven distribution of light in a diffractiongrating spectrum. Philos. Mag.,1902,4:396-402.
    [27] Fano U. The theory of anomalous diffraction gratings and of quasi-stationarywaves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am.,1941,31:213-222.
    [28] Ritchie R H, Arakawa E T, Cowan J J, et al. Surface-plasmon resonance effect ingrating diffraction. Phys. Rev. Lett.,1968,21:1530-1533.
    [29] Ritchie R H. Plasma losses by last electrons in thin films. Phys. Rev.,1957,106:874-881.
    [30] Raether H. Surface plasmons on smooth and rough surfaces and on gratings.Springer. Tr. Mod. Phys.,1988,111:1-133.
    [31] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review.Sensor. Actuat. B-Chem.,1999,54:3-15.
    [32] E. K. Determination of the optical constants of metals by excitation of surfaceplasmons. Z. Phys. Chem.,1971,241:313-324.
    [33] Otto A. Excitation of surface plasma waves in silver by the method of frustratedtotal reflection. Z. Phys. Chem.,1968,216:398-410.
    [34] Cullen D C, Brown R G W, Lowe C R. Detection of immuno-complex formationvia surface plasmon resonance on gold-coated diffraction gratings. Biosensors,1987,3:211-225.
    [35] Cullen D C, Lowe C R. A direct surface plasmon-polariton immunosensor:preliminary investigation of the non-specific adsorption of serum components tothe sensor interface. Sensor. Actuat. B-Chem.,1990,1:576-579.
    [36] Jory M J, Vukusic P S, Sambles J R. Development of a prototype gas sensor usingsurface plasmon resonance on gratings. Sensor. Actuat. B-Chem.,1994,17:203-209.
    [37] Vukusic P S, Bryanbrown G P, Sambles J R. Surface plasmon resonance ongrating as novel means for gas sensing. Sensor. Actuat. B-Chem.,1992,8:155-160.
    [38] Mouvet C, Harris R D, Maciag C, et al. Determination of simazine in watersamples by waveguide surface plasmon resonance. Anal. Chim. Acta.,1997,338:109-117.
    [39] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmonresonance. Sensor. Actuat. B-Chem.,1993,12:213-220.
    [40] Lambeck P V. Integrated opto-chemical sensors. Sensor. Actuat. B-Chem.,1992,8:103-116.
    [41] Lavers C R, Wilkinson J S. A waveguide-coupled surface-plasmon sensor for anaqueous environment. Sensor. Actuat. B-Chem.,1994,22:75-81.
    [42] Matsubara K, Kawata S, Minami S. A compact surface plasmon resonance sensorfor water in process. Appl. Spectrosc.,1988,42:1375-1379.
    [43] Beusink J B, Lokate A M C, Besselink G A J, et al. Angle-scanning SPR imagingfor detection of biomolecular interactions on microarrays. Biosens. Bioelectron.,2008,23:839-844.
    [44] Campbell C T, Kim G. SPR microscopy and its applications to high-throughputanalyses of biomolecular binding events and their kinetics. Biomaterials,2007,28:2380-2392.
    [45] Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a highnumerical aperture microscope objective. Anal. Chem.,2007,79:2979-2983.
    [46] Inoue Y, Mori T, Yamanouchi G, et al. Surface plasmon resonance imagingmeasurements of caspase reactions on peptide microarrays. Anal. Biochem.,2008,375:147-149.
    [47] Karamanska R, Clarke J, Blixt O, et al. Surface plasmon resonance imaging forreal-time, label-free analysis of protein interactions with carbohydrate microarrays.Glycoconjugate J.,2008,25:69-74.
    [48] Ray S, Mehta G, Srivastava S. Label-free detection techniques for proteinmicroarrays: Prospects, merits and challenges. Proteomics,2010,10:731-748.
    [49] Raz S R, Bremer M, Giesbers M, et al. Development of a biosensor microarraytowards food screening, using imaging surface plasmon resonance. Biosens.Bioelectron.,2008,24:552-557.
    [50] Scarano S, Mascini M, Turner A P F, et al. Surface plasmon resonance imagingfor affinity-based biosensors. Biosens. Bioelectron.,2010,25:957-966.
    [51] Suraniti E, Sollier E, Calemczuk R, et al. Real-time detection of lymphocytesbinding on an antibody chip using SPR imaging. Lab on a Chip,2007,7:1206-1208.
    [52] Cooper M A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov.,2002,1:515-528.
    [53] Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gasdetection and biosensing. Sensor. Actuat.,1983,4:299-304.
    [54] Jonsson U, Fagerstam L, Ivarsson B, et al. Real-time biospecific interactionanalysis using surface plasmon resonance and a sensor chip technology.Biotechniques,1991,11:620-627.
    [55] Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature,1993,361:186-187.
    [56] Kooyman R P H, Debruijn H E, Eenink R G, et al. Surface plasmon resonance asa bioanalytical tool. J. Mol. Struct.,1990,218:345-350.
    [57] Ince R, Narayanaswamy R. Analysis of the performance of interferometry, surfaceplasmon resonance and luminescence as biosensors and chemosensors. Anal.Chim. Acta.,2006,569:1-20.
    [58] Nikitin P I, Beloglazov A A, Kochergin V E, et al. Surface plasmon resonanceinterferometry for biological and chemical sensing. Sensor. Actuat. B-Chem.,1999,54:43-50.
    [59] Rich R L, Myszka D G. Survey of the year2006commercial optical biosensorliterature. J. Mol. Recognit.,2007,20:300-366.
    [60] Rich R L, Myszka D G. Survey of the year2007commercial optical biosensorliterature. J. Mol. Recognit.,2008,21:355-400.
    [61] Rich R L, Myszka D G. Survey of the2009commercial optical biosensorliterature. J. Mol. Recognit.,2011,24:892-914.
    [62] Wang R, Tombelli S, Minunni M, et al. Immobilisation of DNA probes for thedevelopment of SPR-based sensing. Biosens. Bioelectron.,2004,20:967-974.
    [63] Kobori A, Horie S, Suda H, et al. The SPR sensor detecting cytosine-cytosinemismatches. J. Am. Chem. Soc.,2004,126:557-562.
    [64] Yamaguchi S, Mannen T, Zako T, et al. Measuring adsorption of a hydrophobicprobe with a surface plasmon resonance sensor to monitor conformationalchanges in immobilized proteins. Biotechnol. Prog.,2003,19:1348-1354.
    [65] de Mol N J. Surface plasmon resonance for proteomics. Methods Mol. Biol.,2012,800:33-53.
    [66] Kodoyianni V. Label-free analysis of biomolecular interactions using SPRimaging. Biotechniques,2011,50:32-40.
    [67] Deckert F, Legay F. Development and validation of an immunoreceptor assay forsimulect based on surface plasmon resonance. Anal. Biochem.,1999,274:81-89.
    [68] Homola J, Dostalek J, Chen S, et al. Spectral surface plasmon resonance biosensorfor detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol.,2002,75:61-69.
    [69] Rasooly A. Surface plasmon resonance analysis of staphylococcal enterotoxin Bin food. J. Food Prot.,2001,64:37-43.
    [70] Nedelkov D, Rasooly A, Nelson R W. Multitoxin biosensor-mass spectrometryanalysis: a new approach for rapid, real-time, sensitive analysis of staphylococcaltoxins in food. Int. J. Food Microbiol.,2000,60:1-13.
    [71] Bjurling P, Baxter G A, Caselunghe M, et al. Biosensor assay of sulfadiazine andsulfamethazine residues in pork. Analyst,2000,125:1771-1774.
    [72] Silin V V, Weetall H, Vanderah D J. SPR studies of the nonspecific adsorptionkinetics of human IgG and BSA on gold surfaces modified by self-assembledmonolayers (SAMs). J. Colloid Interface Sci.,1997,185:94-103.
    [73] Caruso F, Furlong D N, Kingshott P. Characterization of ferritin adsorption ontogold. J. Colloid Interface Sci.,1997,186:129-140.
    [74] Zenhausern F, Adrian M, Descouts P. Solution structure and direct imaging offibronectin adsorption to solid surfaces by scanning force microscopy andcryo-electron microscopy. J. Electron. Microsc.,1993,42:378-388.
    [75] Besselink G A, Kooyman R P, van Os P J, et al. Signal amplification on planarand gel-type sensor surfaces in surface plasmon resonance-based detection ofprostate-specific antigen. Anal. Biochem.,2004,333:165-173.
    [76] Yang C Y, Brooks E, Li Y, et al. Detection of picomolar levels of interleukin-8inhuman saliva by SPR. Lab on a Chip,2005,5:1017-1023.
    [77] Gobi K V, Iwasaka H, Miura N. Self-assembled PEG monolayer based SPRimmunosensor for label-free detection of insulin. Biosens. Bioelectron.,2007,22:1382-1389.
    [78] Vaisocherova H, Mrkvova K, Piliarik M, et al. Surface plasmon resonancebiosensor for direct detection of antibody against Epstein-Barr virus. Biosens.Bioelectron.,2007,22:1020-1026.
    [79] Miyashita M, Shimada T, Miyagawa H, et al. Surface plasmon resonance-basedimmunoassay for17beta-estradiol and its application to the measurement ofestrogen receptor-binding activity. Anal. Bioanal. Chem.,2005,381:667-673.
    [80] Rich R L, Day Y S, Morton T A, et al. High-resolution and high-throughputprotocols for measuring drug/human serum albumin interactions using BIACORE.Anal. Biochem.,2001,296:197-207.
    [81] Rich R L, Hoth L R, Geoghegan K F, et al. Kinetic analysis of estrogenreceptor/ligand interactions. Proc. Natl. Acad. Sci. U. S. A.,2002,99:8562-8567.
    [82] Abdiche Y N, Myszka D G. Probing the mechanism of drug/lipid membraneinteractions using Biacore. Anal. Biochem.,2004,328:233-243.
    [83] Bombera R, Leroy L, Livache T, et al. DNA-directed capture of primary cellsfrom a complex mixture and controlled orthogonal release monitored by SPRimaging. Biosens. Bioelectron.,2012,33:10-16.
    [84] Horii M, Shinohara H, Iribe Y, et al. Living cell-based allergen sensing using ahigh resolution two-dimensional surface plasmon resonance imager. Analyst,2011,136:2706-2711.
    [85] Yanase Y, Hiragun T, Kaneko S, et al. Detection of refractive index changes inindividual living cells by means of surface plasmon resonance imaging. Biosens.Bioelectron.,2010,26:674-681.
    [86] Gautrot J E, Trappmann B, Oceguera-Yanez F, et al. Exploiting the superiorprotein resistance of polymer brushes to control single cell adhesion andpolarisation at the micron scale. Biomaterials,2010,31:5030-5041.
    [87] Yakes B J, Papafragkou E, Conrad S M, et al. Surface plasmon resonancebiosensor for detection of feline calicivirus, a surrogate for norovirus. Int. J. FoodMicrobiol.,2013,162:152-158.
    [88] Manin C, Naville S, Gueugnon M, et al. Method for the simultaneous assay of thedifferent poliovirus types using surface plasmon resonance technology. Vaccine,2013,31:1034-1039.
    [89] Bai H, Wang R, Hargis B, et al. A SPR aptasensor for detection of avian influenzavirus H5N1. Sensors,2012,12:12506-12518.
    [90] Lei Y, Chen H, Dai H, et al. Electroless-plated gold films for sensitive surfaceplasmon resonance detection of white spot syndrome virus. Biosens. Bioelectron.,2008,23:1200-1207.
    [91] Linman M J, Taylor J D, Yu H, et al. Surface plasmon resonance study ofprotein-carbohydrate interactions using biotinylated sialosides. Anal. Chem.,2008,80:4007-4013.
    [92] Gestwicki J E, Hsieh H V, Pitner J B. Using receptor conformational change todetect low molecular weight analytes by surface plasmon resonance. Anal. Chem.,2001,73:5732-5737.
    [93] Lee H J, Wark A W, Corn R M. Microarray methods for protein biomarkerdetection. Analyst,2008,133:975-983.
    [94] Krishnamoorthy G, Carlen E T, van den Berg A, et al. Surface plasmon resonanceimaging based multiplex biosensor: Integration of biomolecular screening,detection and kinetics estimation. Sensor. Actuat. B-Chem.,2010,148:511-521.
    [95] Li Y, Lee H J, Corn R M. Fabrication and characterization of RNA aptamermicroarrays for the study of protein-aptamer interactions with SPR imaging.Nucleic Acids Res,2006,34:6416-6424.
    [96] Yao X, Li X, Toledo F, et al. Sub-attomole oligonucleotide and p53cDNAdeterminations via a high-resolution surface plasmon resonance combined witholigonucleotide-capped gold nanoparticle signal amplification. Anal. Biochem.,2006,354:220-228.
    [97] Li Y, Lee H J, Corn R M. Detection of protein biomarkers using RNA aptamermicroarrays and enzymatically amplified surface plasmon resonance imaging.Anal. Chem.,2007,79:1082-1088.
    [98] Wang J, Munir A, Zhou H S. Au NPs-aptamer conjugates as a powerfulcompetitive reagent for ultrasensitive detection of small molecules by surfaceplasmon resonance spectroscopy. Talanta,2009,79:72-76.
    [99] Ashwell G J, Roberts M P S. Highly selective surface plasmon resonance sensorfor NO2. Electron. Lett.,1996,32:2089-2091.
    [100] Abdelghani A, Chovelon J M, JaffrezicRenault N, et al. Surface plasmonresonance fibre-optic sensor for gas detection. Sensor. Actuat. B-Chem.,1997,39:407-410.
    [101] Podgorsek R P, Sterkenburgh T, Wolters J, et al. Optical gas sensing byevaluating ATR leaky mode spectra. Sensor. Actuat. B-Chem.,1997,39:349-352.
    [102] Miwa S, Arakawa T. Selective gas detection by means of surface plasmonresonance sensors. Thin Solid Films,1996,281-282:466-468.
    [103] Ock K, Jang G, Roh Y, et al. Optical detection of Cu2+ion using a SQ-dyecontaining polymeric thin-film on Au surface. Microchem. J.,2001,70:301-305.
    [104] Giebel K, Bechinger C, Herminghaus S, et al. Imaging of cell/substrate contactsof living cells with surface plasmon resonance microscopy. Biophys. J.,1999,76:509-516.
    [105] Maltais J S, Denault J B, Gendron L, et al. Label-free monitoring of apoptosis bysurface plasmon resonance detection of morphological changes. Apoptosis,2012,17:916-925.
    [106] Peterson A W, Halter M, Tona A, et al. Using surface plasmon resonance imagingto probe dynamic interactions between cells and extracellular matrix. CytometryPart A,2010,77A:895-903.
    [107] Yashunsky V, Lirtsman V, Golosovsky M, et al. Real-time monitoring ofepithelial cell-cell and cell-substrate interactions by infrared surface plasmonspectroscopy. Biophys. J.,2010,99:4028-4036.
    [108] Xie X S, Yu J, Yang W Y. Living cells as test tubes. Science,2006,312:228-230.
    [109] De Clerck L S, Bridts C H, Mertens A M, et al. Use of fluorescent dyes in thedetermination of adherence of human leucocytes to endothelial cells and the effectof fluorochromes on cellular function. J. Immunol. Methods,1994,172:115-124.
    [110] Haab B B. Methods and applications of antibody microarrays in cancer research.Proteomics,2003,3:2116-2122.
    [111] Myszka D G. Improving biosensor analysis. J. Mol. Recognit.,1999,12:279-284.
    [112] Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescencespectroscopy. Colloid. Surface. A,2000,171:115-130.
    [113] Arwin H, Poksinski M, Johansen K. Total internal reflection ellipsometry:principles and applications. Appl. Optics,2004,43:3028-3036.
    [114] Nelson R W, Krone J R, Jansson O. Surface plasmon resonance biomolecularinteraction analysis mass spectrometry.1. Chip-based analysis. Anal. Chem.,1997,69:4363-4368.
    [115] Visser N F, Scholten A, van den Heuvel R H, et al.Surface-plasmon-resonance-based chemical proteomics: efficient specificextraction and semiquantitative identification of cyclic nucleotide-bindingproteins from cellular lysates by using a combination of surface plasmonresonance, sequential elution and liquid chromatography-tandem massspectrometry. Chembiochem,2007,8:298-305.
    [116] Du M, Zhou F. Postcolumn renewal of sensor surfaces for high-performanceliquid chromatography-surface plasmon resonance detection. Anal. Chem.,2008,80:4225-4230.
    [117] Davies J, Roberts C J, Dawkes A C, et al. Use of scanning probe microscopy andsurface plasmon resonance as analytical tools in the study of antibody-coatedmicrotiter wells. Langmuir,1994,10:2654-2661.
    [118] Shakesheff K M, Chen X Y, Davies M C, et al. Relating the phase morphology ofa biodegradable polymer blend to erosion kinetics using simultaneous in situatomic force microscopy and surface plasmon resonance analysis. Langmuir,1995,11:3921-3927.
    [119] Chinowsky T M, Saban S B, Yee S S. Experimental data from a trace metalsensor combining surface plasmon resonance with anodic stripping voltammetry.Sensor. Actuat. B-Chem.,1996,35:37-43.
    [120] Jung C C, Saban S B, Yee S S, et al. Chemical electrode surface plasmonresonance sensor. Sensor. Actuat. B-Chem.,1996,32:143-147.
    [121] Mirkhalaf F, Schiffrin D J. Metal-ion sensing by surface plasmon resonance onfilm electrodes. J. Electroanal. Chem.,2000,484:182-188.
    [122] Wang S, Forzani E S, Tao N. Detection of heavy metal ions in water byhigh-resolution surface plasmon resonance spectroscopy combined with anodicstripping voltammetry. Anal. Chem.,2007,79:4427-4432.
    [123] Huang X, Wang S, Shan X, et al. Flow-through electrochemical surface plasmonresonance: detection of intermediate reaction products. J. Electroanal. Chem.,2010,649:37-41.
    [124] Kang X F, Jin Y D, Cheng G J, et al. In situ analysis of electropolymerization ofaniline by combined electrochemistry and surface plasmon resonance. Langmuir,2002,18:1713-1718.
    [125] Baba A, Onishi K, Knoll W, et al. Investigating work function tunablehole-injection/transport layers of electrodeposited polycarbazole network thinfilms. J. Phys. Chem. B,2004,108:18949-18955.
    [126] Ehler T T, Walker J W, Jurchen J, et al. In situ surface plasmon study of theelectropolymerization of Fe(vbpy)32+onto a gold surface. J. Electroanal. Chem.,2000,480:94-100.
    [127] Wang Y J, Knoll W. In situ electrochemical and surface plasmon resonance (SPR)studies of aniline-carboxylated aniline copolymers. Anal. Chim. Acta.,2006,558:150-157.
    [128] Xia C J, Advincula R C, Baba A, et al. In situ investigations of theelectrodeposition and electrochromic properties of poly(3,4-ethylenedioxythiophene) ultrathin films by electrochemical-surface plasmonspectroscopy. Langmuir,2002,18:3555-3560.
    [129] Yao X, Yang M, Wang Y, et al. Study of the ferrocenylalkanethiol self-assembledmonolayers by electrochemical surface plasmon resonance. Sensor. Actuat.B-Chem.,2007,122:351-356.
    [130] Wain A J, Do H N L, Mandal H S, et al. Influence of molecular dipole moment onthe redox-induced reorganization of alpha-helical peptide self-assembledmonolayers: An electrochemical SPR investigation. J. Phys. Chem. C,2008,112:14513-14519.
    [131] Wang J, Wang F, Chen H, et al. Electrochemical surface plasmon resonancedetection of enzymatic reaction in bilayer lipid. Talanta,2008,75:666-670.
    [132] Iwasaki Y, Horiuchi T, Niwa O. Detection of electrochemical enzymatic reactionsby surface plasmon resonance measurement. Anal. Chem.,2001,73:1595-1598.
    [133] Schlereth D D. Characterization of protein monolayers by surface plasmonresonance combined with cyclic voltammetry 'in situ'. J. Electroanal. Chem.,1999,464:198-207.
    [134] Manesse M, Stambouli V, Boukherroub R, et al. Electrochemical impedancespectroscopy and surface plasmon resonance studies of DNA hybridization ongold/SiOxinterfaces. Analyst,2008,133:1097-1103.
    [135] Foley K, Shan X, Tao N. Surface impedance imaging technique. Anal. Chem.,2008,80:5146-5151.
    [136] Wang S, Huang X, Shan X, et al. Electrochemical surface plasmon resonance:basic formalism and experimental validation. Anal. Chem.,2010,82:935-941.
    [137] Shan X, Wang S, Wang W, et al. Plasmonic-based imaging of local square wavevoltammetry. Anal. Chem.,2011,83:7394-7399.
    [138] Wang W, Foley K, Shan X, et al. Single cells and intracellular processes studiedby a plasmonic-based electrochemical impedance microscopy. Nat. Chem.,2011,3:249-255.
    [139] Shan X, Patel U, Wang S, et al. Imaging local electrochemical current via surfaceplasmon resonance. Science,2010,327:1363-1366.
    [140] Bard A J, Faulkner L R, Electrochemical methods: fundamentals and applications.2nd ed.; John Wiley: New York; Chichester England,2001.
    [141] Nicholson R S, Shain I. Theory of stationary electrode polarography. Single scanand cyclic methods applied to reversible, irreversible, and kinetic systems. Anal.Chem.,1964,36:706-723.
    [142] Imbeaux J C, Saveant J M. Convolutive potential sweep voltammetry: I.Introduction. J. Electroanal. Chem.,1973,44:169-187.
    [143] Nadjo L, Saveant J M, Tessier D. Convolution potential sweep voltammetry: III.Effect of sweep rate cyclic voltammetry. J. Electroanal. Chem.,1974,52:403-412.
    [144] Nicholson R S. Theory and application of cyclic voltammetry for measurement ofelectrode reaction kinetics. Anal. Chem.,1965,37:1351-1355.
    [145] Balkenhohl T, Lisdat F. Screen-printed electrodes as impedimetricimmunosensors for the detection of anti-transglutaminase antibodies in humansera. Anal. Chim. Acta,2007,597:50-57.
    [146] Diniz F B, Ueta R R, Pedrosa A M D, et al. Impedimetric evaluation for diagnosisof Chagas' disease: antigen-antibody interactions on metallic eletrodes. Biosens.Bioelectron.,2003,19:79-84.
    [147] Patolsky F, Filanovsky B, Katz E, et al. Photoswitchable antigen-antibodyinteractions studied by impedance spectroscopy. J. Phys. Chem. B,1998,102:10359-10367.
    [148] Pei R J, Cheng Z L, Wang E K, et al. Amplification of antigen-antibodyinteractions based on biotin labeled protein-streptavidin network complex usingimpedance spectroscopy. Biosens. Bioelectron.,2001,16:355-361.
    [149] Wu C C, Lin C H, Wang W S. Development of an enrofloxacin immunosensorbased on label-free electrochemical impedance spectroscopy. Talanta,2009,79:62-67.
    [150] Bogomolova A, Komarova E, Reber K, et al. Challenges of electrochemicalimpedance spectroscopy in protein biosensing. Anal. Chem.,2009,81:3944-3949.
    [151] Cai H, Lee T M H, Hsing I M. Label-free protein recognition using anaptamer-based impedance measurement assay. Sensor. Actuat. B-Chem.,2006,114:433-437.
    [152] Chang H, Li J. Electrochemical impedance probing of transcriptional TATAbinding protein based on TATA box site-specific binding. Electrochem. Commun.,2009,11:2101-2104.
    [153] Baur J, Gondran C, Holzinger M, et al. Label-free femtomolar detection of targetDNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid)film. Anal. Chem.,2010,82:1066-1072.
    [154] Cai W, Peck J R, van der Weide D W, et al. Direct electrical detection ofhybridization at DNA-modified silicon surfaces. Biosens. Bioelectron.,2004,19:1013-1019.
    [155] Gooding J J. Electrochemical DNA hyhridization biosensors. Electroanal.,2002,14:1149-1156.
    [156] Wang Y, Li C J, Li X H, et al. Unlabeled hairpin-DNA probe for the detection ofsingle-nucleotide mismatches by electrochemical impedance spectroscopy. Anal.Chem.,2008,80:2255-2260.
    [157] Xu D K, Xu D W, Yu X B, et al. Label-free electrochemical detection foraptamer-based array electrodes. Anal. Chem.,2005,77:5107-5113.
    [158] Guo M L, Chen J H, Yun X B, et al. Monitoring of cell growth and assessment ofcytotoxicity using electrochemical impedance spectroscopy. BBA-Gen. Subjects,2006,1760:432-439.
    [159] Ribaut C, Reybier K, Reynes O, et al. Electrochemical impedance spectroscopy tostudy physiological changes affecting the red blood cell after invasion by malariaparasites. Biosens. Bioelectron.,2009,24:2721-2725.
    [160] Wang R M, Di J, Ma J, et al. Highly sensitive detection of cancer cells byelectrochemical impedance spectroscopy. Electrochim. Acta,2012,61:179-184.
    [161] Rahman A R A, Lo C M, Bhansali S. A detailed model for high-frequencyimpedance characterization of ovarian cancer epithelial cell layer using ECISelectrodes. IEEE T. Bio. Med. Eng.,2009,56:485-492.
    [162] Hong J L, Lan K C, Jang L S. Electrical characteristics analysis of various cancercells using a microfluidic device based on single-cell impedance measurement.Sensor. Actuat. B-Chem.,2012,173:927-934.
    [163] Jiang X F, Tan L A, Zhang B L, et al. Detection of adherent cells usingelectrochemical impedance spectroscopy based on molecular recognition ofintegrin beta1. Sensor. Actuat. B-Chem.,2010,149:87-93.
    [164] Green R J, Frazier R A, Shakesheff K M, et al. Surface plasmon resonanceanalysis of dynamic biological interactions with biomaterials. Biomaterials,2000,21:1823-1835.
    [165] Karlsson R. SPR for molecular interaction analysis: a review of emergingapplication areas. J. Mol. Recognit.,2004,17:151-161.
    [166] Hoa X D, Kirk A G, Tabrizian M. Towards integrated and sensitive surfaceplasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron.,2007,23:151-160.
    [167] Homola J. Surface plasmon resonance sensors for detection of chemical andbiological species. Chem. Rev.,2008,108:462-493.
    [168] Harvey A H, Kaplan S G, Burnett J H. Effect of dissolved air on the density andrefractive index of water. Int. J. Thermophys.,2005,26:1495-1514.
    [169] Morton T A, Myszka D G, Chaiken I M. Interpreting complex binding kineticsfrom optical biosensors: a comparison of analysis by linearization, the integratedrate equation, and numerical integration. Anal. Biochem.,1995,227:176-185.
    [170] Neubig R R, Siderovski D P. Regulators of G-protein signalling as new centralnervous system drug targets. Nat. Rev. Drug Discov.,2002,1:187-197.
    [171] Pierce K L, Premont R T, Lefkowitz R J. Seven-transmembrane receptors. NatureReviews: Molecular Cell Biology,2002,3:639-650.
    [172] Rockman H A, Koch W J, Lefkowitz R J. Seven-transmembrane-spanningreceptors and heart function. Nature,2002,415:206-212.
    [173] Hopkins A L, Groom C R. The druggable genome. Nat. Rev. Drug Discov.,2002,1:727-730.
    [174] Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there?Nat. Rev. Drug Discov.,2006,5:993-996.
    [175] Zambrowicz B P, Sands A T. Knockouts model the100best-selling drugs--willthey model the next100? Nat. Rev. Drug Discov.,2003,2:38-51.
    [176] Hill S J, Williams C, May L T. Insights into GPCR pharmacology from themeasurement of changes in intracellular cyclic AMP; advantages and pitfalls ofdiffering methodologies. Brit. J. Pharmacol.,2010,161:1266-1275.
    [177] Hill S J, Ganellin C R, Timmerman H, et al. International union of pharmacology.XIII. Classification of histamine receptors. Pharmacol. Rev.,1997,49:253-278.
    [178] Lohse M J, Nikolaev V O, Hein P, et al. Optical techniques to analyze real-timeactivation and signaling of G protein-coupled receptors. Trends. Pharmacol. Sci.,2008,29:159-165.
    [179] Malmqvist M. BIACORE: an affinity biosensor system for characterization ofbiomolecular interactions. Biochem. Soc. T.,1999,27:335-340.
    [180] Xi B, Yu N, Wang X, et al. The application of cell-based label-free technology indrug discovery. Biotechnol. J.,2008,3:484-495.
    [181] Fang Y, Ferrie A M, Fontaine N H, et al. Resonant waveguide grating biosensorfor living cell sensing. Biophys. J.,2006,91:1925-1940.
    [182] McGuinness R P, Proctor J M, Gallant D L, et al. Enhanced selectivity screeningof GPCR ligands using a label-free cell based assay technology. Comb. Chem.High Throughput Screen.,2009,12:812-823.
    [183] Spiller D G, Wood C D, Rand D A, et al. Measurement of single-cell dynamics.Nature,2010,465:736-745.
    [184] Rubin H. The significance of biological heterogeneity. Cancer Metastasis Rev.,1990,9:1-20.
    [185] Singh D K, Ku C J, Wichaidit C, et al. Patterns of basal signaling heterogeneitycan distinguish cellular populations with different drug sensitivities. Mol. Syst.Biol.,2010,6:369.
    [186] Thurmond R L, Gelfand E W, Dunford P J. The role of histamine H1and H4receptors in allergic inflammation: the search for new antihistamines. Nat. Rev.Drug Discov.,2008,7:41-53.
    [187] Kumar P, Shen Q, Pivetti C D, et al. Molecular mechanisms of endothelialhyperpermeability: implications in inflammation. Expert Rev. Mol. Med.,2009,11: e19.
    [188] Pober J S, Sessa W C. Evolving functions of endothelial cells in inflammation.Nat. Rev. Immunol.,2007,7:803-815.
    [189] Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a highnumerical aperture microscope objective. Anal. Chem.,2007,79:2979-2983.
    [190] Bristow D R, Arias-Montano J A, Young J M. Histamine-induced inositolphosphate accumulation in HeLa cells: lithium sensitivity. Brit. J. Pharmacol.,1991,104:677-684.
    [191] Bristow D R, Zamani M R. Desensitization of histamine H1receptor-mediatedinositol phosphate production in HeLa cells. Brit. J. Pharmacol.,1993,109:353-359.
    [192] Wang W, Wang S, Liu Q, et al. Mapping single-cell-substrate interactions bysurface plasmon resonance microscopy. Langmuir,2012,28:13373-13379.
    [193] Smit M J, Bloemers S M, Leurs R, et al. Short-term desensitization of thehistamine H1receptor in human HeLa cells: involvement of protein kinase Cdependent and independent pathways. Br. J. Pharmacol.,1992,107:448-455.
    [194] Muallem S, Wilkie T M. G protein-dependent Ca2+signaling complexes inpolarized cells. Cell Calcium,1999,26:173-180.
    [195] Guo M, Breslin J W, Wu M H, et al. VE-cadherin and beta-catenin bindingdynamics during histamine-induced endothelial hyperpermeability. Am. J. Physiol.Cell Physiol.,2008,294: C977-984.
    [196] Zabner J, Winter M, Excoffon K J, et al. Histamine alters E-cadherin cell adhesionto increase human airway epithelial permeability. J. Appl. Physiol.,2003,95:394-401.
    [197] Tiruppathi C, Minshall R D, Paria B C, et al. Role of Ca2+signaling in theregulation of endothelial permeability. Vascul. Pharmacol.,2002,39:173-185.
    [198] Mehta D, Malik A B. Signaling mechanisms regulating endothelial permeability.Physiol. Rev.,2006,86:279-367.
    [199] Fitzsimons C P, Monczor F, Fernandez N, et al. Mepyramine, a histamine H1receptor inverse agonist, binds preferentially to a G protein-coupled form of thereceptor and sequesters G protein. J. Biol. Chem.,2004,279:34431-34439.
    [200] Grant S K, Bansal A, Mitra A, et al. Delay of intracellular calcium transientsusing a calcium chelator: application to high-throughput screening of thecapsaicin receptor ion channel and G protein-coupled receptors. Anal. Biochem.,2001,294:27-35.
    [201] Sipma H, van der Zee L, van den Akker J, et al. The effect of the PKC inhibitorGF109203X on the release of Ca2+from internal stores and Ca2+entry in DDT1MF-2cells. Br. J. Pharmacol.,1996,119:730-736.
    [202] Bishara N B, Murphy T V, Hill M A. Capacitative Ca2+entry in vascularendothelial cells is mediated via pathways sensitive to2aminoethoxydiphenylborate and xestospongin C. Brit. J. Pharmacol.,2002,135:119-128.
    [203] Fang Y, Frutos A G, Verklereen R. Label-free cell-based assays for GPCRscreening. Comb. Chem. High T. Scr.,2008,11:357-369.
    [204] Bendall S C, Nolan G P. From single cells to deep phenotypes in cancer. Nat.Biotechnol.,2012,30:639-647.
    [205] Huang T Y, Chu T F, Chen H I, et al. Heterogeneity of [Ca2+]isignaling in intactrat aortic endothelium. FASEB Journal,2000,14:797-804.
    [206] Sengupta P, Jovanovic-Talisman T, Skoko D, et al. Probing protein heterogeneityin the plasma membrane using PALM and pair correlation analysis. Nat. Methods,2011,8:969-975.
    [207] Clapham D E. Calcium signaling. Cell,2007,131:1047-1058.
    [208] Corbett E F, Michalak M. Calcium, a signaling molecule in the endoplasmicreticulum? Trends. Biochem. Sci.,2000,25:307-311.
    [209] Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+store: a view from thelumen. Trends. Biochem. Sci.,1998,23:10-14.
    [210] Krebs J, Michalak M, Calcium: a matter of life or death. Elsevier: Amsterdam,Boston,2007.
    [211] Moy A B, Winter M, Kamath A, et al. Histamine alters endothelial barrierfunction at cell-cell and cell-matrix sites. Am. J. Physiol. Lung C.,2000,278:L888-898.
    [212] Ciambrone G J, Liu V F, Lin D C, et al. Cellular dielectric spectroscopy: apowerful new approach to label-free cellular analysis. J. Biomol. Screen.,2004,9:467-480.