电化学方法制备纳米晶磁性薄膜及其相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备兼具较低高频损耗值P、较大饱和磁感应强度Bs及耐磨、耐蚀等优良综合性能的磁性材料,成为未来集高频化、微型化和节能化等特征于一体的微电子工业的重要组成部分。迄今为止,在诸多的材料制备方法中,电化学技术由于其能够较好的通过控制电化学工艺参数及电解液成分调节薄膜材料的组成、织构及性能,业已成为磁性材料制备、结构分析及性能研究等方面最具发展前景的技术之一。
     本论文可分为三部分,第一部分(第二章、第三章)在通过电化学循环伏安技术(CV)制备了CoNiFe软磁薄膜的基础上,进一步以经化学修饰处理的Si3N4纳米颗粒为前驱体,获得了整体纳米结构的CoNiFe-Si3N4复合薄膜。随后,采用循环伏安法(CV)、电化学阻抗(EIS)等电化学方法结合扫描电镜(SEM)、X射线衍射(XRD)及磁滞回线(VSM)等测试手段,较为系统的研究了CoNiFe与CoNiFe-Si3N4薄膜电沉积的主要参数(如:电解液中金属离子浓度、外加电位区间、pH值等)、材料结构及性能的变化规律,得到如下结论:
     (1)通过CV技术制备的CoNiFe软磁薄膜呈整体纳米结构,且具有较好的软磁性能(饱和磁感强度高达2.03T,矫顽力为851.2A/m)。
     (2)经化学修饰处理的Si3N4纳米颗粒对CoNiFe-Si3N4复合薄膜具有较好的诱导作用,该粒子的掺杂使得CoNiFe-Si3N4复合薄膜的综合磁性能保持较高水平的同时(Bs=1.82T,Hc=716.2A/m),整体硬度及耐蚀性能均有较大幅度的提高。
     论文的第二部分(第四章及第五章)通过CV、EIS、电化学噪声(EN)等电化学技术结合SEM、XRD等测试方法研究了CoNiFe与CoNiFe-Si3N4薄膜在电沉积反应机理及其在中性3.5wt.%NaCl中的腐蚀机理并得出如下结论:
     (1)在CoNiFe及CoNiFe-Si3N4薄膜的电沉积体系中,两者的EIS特征在开路电位时均由一高频容抗弧和一低频感抗弧组成;外加负偏压的施加导致低频感抗弧消失并由一低频容抗弧取代。在此过程中,后者的反应电阻Rt及双电层电容相较前者均呈增大趋势。
     (2)在CoNiF薄膜中掺杂纳米Si3N4颗粒前驱体后,其沉积电位发生明显正移且纳米Si3N4颗粒在阴极表面的竞争吸附使得CoNiFe与Si3N4共沉积阴极还原反应的电荷转移电阻Rt增大。说明还原反应的阴极极化提高了晶体成核速度以及空间位阻阻碍铁系金属晶粒长大的协同作用有利于整体薄膜材料的晶粒细化。同时,CoNiFe与CoNiFe-Si3N4薄膜在异质金属上的电沉积过程均遵循3D瞬时形核/长大机制。
     (3)CoNiFe-Si3N4复合薄膜较CoNiFe薄膜的耐蚀能力大大提高。同时,在对后者的EN研究结果表明,因次分析法获得的两个分别对应腐蚀过程中快速信息(电化学控制下的点蚀等)及慢速信息(扩散控制下的腐蚀产物膜生成、聚集及脱落)的参数SE和SG与CoNiFe-Si3N4薄膜在腐蚀过程中的反应机理及规律有较好的对应关系。
     论文的第三部分(第六章)对NdFeB稀土永磁薄膜的电沉积工艺及机理进行了探索。研究结果表明:甘氨酸(C2+2H5NO2)可以作为Fe的良好配体以及Nd3+的还原诱导基参与NdFeB薄膜的共沉积反应。同时,Nd3+在水溶液体系中表现出极高的活性且还原反应过程极其剧烈,而沉积液中过高的Nd3+浓度可能是NdFeB薄膜的晶体生长速度过快而导致晶粒难以细化的原因之一。
Magnetic materials with low high-frequency loss, high saturationmagnetization intensity, excellent corrosion resistance and resistance arepotential candidates in MEMS applications. Among various methodsemployed to prepare magnetic films, the electrodeposition method is one ofthe most promising technologies. That is because it is easy to control thecomposition, structure and property of the film through the adjustment oftechnical parameters and electrodeposition bath.
     This dissertation consists of three parts. In the first part (chapter2andchapter3), nanocrystalline CoNiFe soft magnetic film and CoNiFe-Si3N4composite films have been successfully prepared through cyclic voltammetry(CV) method. In addition, the effects of technical parameters such asterminate potential, Si3N4concentration, pH and agitation speed on the filmstructure have been studied. Then the surface morphologies, magneticproperties, constituent phases and hardness of the CoNiFe and CoNiFe-Si3N4films have been characterized by x-ray diffraction (XRD), scanning electronmicroscopy (SEM) and vibrating sample magnetometer (VSM). The optimalcondition has therefore been determined. The conclusions are follows:
     (1) The CoNiFe soft magnetic thin film with nano-structure has beenelectrodeposited through CV method. It possesses a high magnetization Bsof 2.03T and a low coercivity Hcof851.2A/m.
     (2) The electrodeposited CoNiFe-Si3N4composite film possesses highermicro-hardness and smaller nanocrystalline particles than the CoNiFe film.Meanwhile, its magnetic properties (Bs=1.82T, Hc=716.2A/m) is comparableto that of the CoNiFe film.
     In the second part(chapter4-5), the electrodeposition mechanism andkinetics process of nanocrystalline CoNiFe and CoNiFe-Si3N4thin filmshave been studied by using CV, electrochemical impedance spectroscopy(EIS) and chronoamperometry (CHR). In addition, the corrosion evolutionand corrosion resistance of the CoNiFe and CoNiFe-Si3N4thin films in3.5%NaCl solution have been investigated by using Tafel, EIS, EN combinedwith XRD and SEM. The conclusions are as follows:
     (1) In the electrodeposition bath of CoNiFe and CoNiFe-Si3N4thin films,both EISs consist of a capacitive arc at high frequency and an inductive arcat low frequency, respectively. As negative bias is applied and increased, theinductive component at low frequency is replaced by another capacitive arc.Meanwhile, the charge transfer resistance Rtand CPE of the theCoNiFe-Si3N4sysytem is higher than those of the CoNiFe system.
     (2) The addition of nano-sized Si3N4particles into the CoNiFeelectrodeposition bath makes the electrodeposition potential shift in apositive direction. Furthermore, the adsorption of the nano-sized Si3N4particles to the cathode leads to an increase in charge transfer resistanceduring the cathodic reduction process of CoNiFe-Si3N4codeposition, andtherefore increases the cathodic polarization. Finally, the synergetic functionof higher cathodic polarization and grain growth obstruction caused by sterichindrance of absorbed nano-sized Si3N4particles results in the grain refinement and surface densification of the CoNiFe-Si3N4film.
     (3) The electrodeposition of CoNiFe and CoNiFe-Si3N4thin films belongto anomalous co-deposition. Meanwhile, their nucleation-growth procedurefollows the style of3D transient nucleation/growth mechanism.
     (4) The CoNiFe-Si3N4film possesses higher corrosion resistance than theCoNiFe film. During the corrosion process of the CoNiFe-Si3N4thin films,two corrosion parameters SEand SGobtained by dimensional analysis methodthrough EN parameters can well describe the fast reaction (such as pittingunder electro-chemical control) and slow reaction (such as corrosion productformation under diffusion control).
     In the third part(chapter6), the electrodeposition of NdFeB rare earthpermanent magnetic film through CV method has been preliminarily explored.The complexing agent (C2H5NO2and NH4Cl) as additive during NdFeBelectrodeposition has been discussed. Then the effects of NdCl3concentrationand terminate potential on the morphologies of NdFeB thin films have beeninvestigated. It has been shown that the rare permanent magnetic NdFeB filmcould be obtained by electrodepositionin aqueous solution as the codepositionof Nd3+could be induced by Fe2+. Meanwhile, high Nd3+content acceleratesthe growth rate of NdFeB and results in grain coarsening. In addition, due tohigh activity of Nd3+in aqueous solution, the electrodeposition reaction of theNdFeB film is radical. This factor lead to crack in the NdFeB filmelectrodeposited in the bath with higher Nd3+concentration.
引文
[1].奥汉德利著,周永洽等译.磁性材料.现代磁性材料原理和应用[M].北京:化学工业出版社,2002.
    [2].Richard B. Soft magnetic materials: fundamentals, alloys, properties, products,applications[M]. U.S. Heyden,1979.
    [3].Shokrollahi H., Janghorban K. Soft magnetic composite materials[J]. Journal ofMaterials processing Technology,2007,189(1-3):1-12.
    [4].都有为.磁性材料进展[J].物理,2000,29(06):323-331.
    [5].Romankiw L. T. Electroforming of electronic devices[J]. Plating and Surface Finishing,1997,84(1):10–16.
    [6].Liao S. H. High moment CoFe thin films by electrodeposition[J]. IEEE Trans. Magn,1987,23(5):2981–2983.
    [7].葛副鼎,朱静.纳米晶复合交换耦合软磁和硬磁材料的研究进展[J].材料导报,1997,11(3):10-13.
    [8].Herzer G. Nanocrystalline soft magnetic materials[J]. Journal of magnetism andmagnetic materials,1992,112(1):258-262.
    [9].Fish G. E. Soft magnetic materials[J]. Proceedings of the IEEE,1990,78(6):947-972.
    [10].赵义恒,张药西.软磁材料的技术进展及选择[J].电子元器件应用,2009,11(3):73-76.
    [11].文凡.金属系软磁材料[J].金属功能材料,2000,02:21-23.
    [12].Asami K., Hashimoto K., Masumoto T., et al. ESCA study of the passive film on anextremely corrosion-resistant amorphous iron alloy[J]. Corrosion Science,1976,16(12):909-914.
    [13].Schwarz R. B., Johnson W. L. Formation of an amorphous alloy by solid-statereaction of the pure polycrystalline metals[J]. Physical review letters,1983,51(5):415.
    [14].王会宗.磁性材料及其应用[M].北京:国防工业出版社,1989.
    [15].田民波.磁性材料/新材料及在高技术中的应用丛书[M].北京:清华大学出版社,2001.
    [16].张甫飞,纪朝廉,张洛,等.铁基纳米晶合金粉末及磁粉芯研究[J].磁性材料及器件,2000,31(5):1-5.
    [17].Stoppels D. Developments in soft magnetic power ferrites[J]. Journal of magnetismand magnetic materials,1996,160:323-328.
    [18].Cheng Y., Zheng Y. H., Wang Y. S., et al. Synthesis and magnetic properties of nickelferrite nano-octahedra[J]. Journal of Solid State Chemistry,2005,178(7):2394-2397.
    [19].Konstantin L. M., Konstantin Y. G. Stability of magnetic vortex in soft magneticnano-sized circular cylinder[J]. Journal of Magnetism and Magnetic Materials,2002,242-245:1015-1017.
    [20].Schrefl T., Kronmuller H., Fidler J. Exchange hardening in nano-structured two-phasepermanent magnets[J]. Journal of Magnetism and Magnetic Materials,1993,127(2):273-277.
    [21].Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based soft magnetic alloys composedof ultrafine grain structure[J]. Journal of Apply Physics,1988,64:6044-6052.
    [22].Willard M. A., Laughlin D. E., McHenry M. E., et al. Structure and magneticproperties of (Fe0.5Co0.5)88Zr7B4Cu nanocrystalline alloys[J]. Journal of Apply Physics,1998,84:6773-6781.
    [23].Wang S. X., Sun N. X., Yamaguchi M., et al. Sandwich films: Properties of a new softmagnetic material[J]. Nature,2000,407(6801):150-151.
    [24].Willard M. A., Daniil M., Kniping K. E. Nanocrystalline soft magnetic materials athigh temperatures:Aperspective[J]. Scripta Materialia,2012,67(6):554-559.
    [25].Shokrollahi H., Jamghorban K. Soft magnetic composite materials(SMCs)[J]. Journalof Materials Processing Technology,2007,189(1-3):1-12.
    [26].Matsushita M., Sano M., Hayakawa Y., et al. Fractal structures of zinc metal leavesgrown by electrodeposition[J]. Physical review letters,1984,53(3):286.
    [27].Ricq L., Lallemand F., P Gigandet M., et al. Influence of sodium saccharin on theelectrodeposition and characterization of CoFe magnetic film[J]. Surface andCoatings Technology,2001,138(2):278-283.
    [28].Karnbach F., Uhlemann M., Gebert A., et al. Magnetic field templated patterning ofthe soft mannetic alloy CoFe[J]. Electrochimica Acta,2014,123:477-484.
    [29].Chyan O., Arunagiri T. N. Ponnuswamy T. Electrodeposition of copper thin film onruthenium a potential diffusion barrier for Cu interconnects[J]. Journal of theElectrochemical Society,2003,150(5):347-350.
    [30].Pang S. C., Anderson M. A., Chapman T. W. Novel Electrode Materials for thin filmultracapacitors: Comparison of electrochemical properties of Sol-Gel derived andelectrodeposited manganese dioxide[J]. Journal of the Electrochemical Society,2000,147(2):444-450.
    [31].Koch C. C. The synthesis and structure of nanocrystalline materials produced bymechanical attrition: a review[J]. Nanostructured materials,1993,2(2):109-129.
    [32].李莉,魏子栋,李兰兰.电沉积纳米材料研究现状[J].电镀与精饰,2004,26(3):9-14.
    [33].Anderson N. C., Chesnutt R. B. Electrodepositing CoNiFe alloys for thin film heads:US4661216(A)[P].1987.
    [34].Ohashi K., Yasue Y., Saito M., et al. Newly developed inductive write head withelectroplated CoNiFe film[J]. Magnetics, IEEE Transactions on,1998,34(4):1462-1464.
    [35].赵国刚,邓福铭,雷仁贵,等.电镀高饱和磁感应CoNiFe软磁薄膜研究[J].功能材料,2005,36(5):359-361.
    [36].Takai M., Hayashi K., Aoyagi M., et al. Electrochemical preparation of soft magneticCoNiFeS film with high saturation magnetic flux density and high resistivity[J].Journal of the Electrochemical Society,1997,144(7):203-204.
    [37].Osaka T., Takai M., Hayashi K., et al. A soft magnetic CoNiFe film with highsaturation magnetic flux density and low coercivity[J]. Nature,1998,392(6678):796-798.
    [38].Kim Y. K., Son H. Y., Choi Y. S., et al. Magnetically soft and electrically resistiveCoNiFeS alloy films prepared by electrodeposition[J]. Journal of Applied Physics,2000,87(9):5413-5415.
    [39].Mishra A. C. Microstructure magnetic and magnetoimpedance properties inelectrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in platingbath[J]. Physica B,2012,407(6):923-934.
    [40].Kim D., Park D. Y., Yoo B. Y., et al. Magnetic properties of nanocrystalline iron groupthin film alloys electrodeposited from sulfate and chloride baths[J]. ElectrochimicaActa,2003,48(7):819-830.
    [41].Tabakovic I., Inturi V., Riemer S. Composition, structure, stress, and coercivity ofelectrodeposited soft magnetic CoNiFe films: thickness and substrate dependence[J].Journal of the Electrochemical Society,2002,149(1):18-22.
    [42].Nakamura A., Takai M., Hayashi K., et al. Preparation and magnetic properties ofCoNiFe thin film by electrodeposition[J]. Journal of the Surface Finishing Society ofJapan,1996,47(11):934-938.
    [43].Atalay F. E., Kaya H., Atalay S. Unusual grain growth in electrodeposited CoNiFe/Cuwires and their magnetoimpedance properties[J]. Materials Science and Engineering:B,2006,131(1):242-247.
    [44].Davis D. M., Moldovan M., Young D. P., et al. Magnetoresistance in ElectrodepositedCoNiFe∕Cu Multilayered Nanotubes[J]. Electrochemical and solid-state letters,2006,9(9):153-155.
    [45].Nakanishi T., Ozaki M., Nam H. S., et al. Pulsed electrodeposition of nanocrystallineCoNiFe soft magnetic thin film[J]. Journal of the Electrochemical Society,2001,148(9):627-631.
    [46].Chen Y., Wang Q. P., Cai C., et al. Electrodeposition and characterization ofnanocrystalline CoNiFe films[J]. Thin Solid Films,2012,520(9):3553-3557.
    [47].Melikyan H., Sargsyan T., Babajanyan A., et al. Hard disk magnetic domainnano-spatial resolution imaging by using a near-field scanning microwave microscopewith an AFM probe tip[J]. Journal of Magnetism and Magnetic Materials,2009,321(16):2483-2487.
    [48].Buschow K. H. New developments in hard magnetic materials[J]. Reports onProgress in Physics,1991,54(9):1123-1145.
    [49].Coey J. M. Perspectives in permanent magnetism[J]. Magnetism and MagneticMaterials,1995,140(2):1041-1044.
    [50].Ohandley R. C. Modern magnetic materials: principles and applications[M]. NewYork: Wiley,2000.
    [51].Vial F., Joly F., Nevalainen E., et al. Improvement of coercivity of sintered NdFeBpermanent magnets by heat treatment[J]. Journal of magnetism and magneticmaterials,2002,242:1329-1334.
    [52].Brown D., Ma B. M., Chen Z. Developments in the processing and properties ofNdFeB-type permanent magnets[J]. Journal of magnetism and magnetic materials,2002,248(3):432-440.
    [53].李春梅,张宗华,高立坤.稀土永磁材料NdFeB的现状及发展趋势[J].云南冶金,2003,32(3):41-44.
    [54].Schultz L., Wecker J., Hellstern E. Formation and properties of NdFeB prepared bymechanical alloying and solid‐state reaction[J]. Journal of applied physics,1987,61(8):3583-3585.
    [55].Castaldi L., Gibbs M. R., Davies H. A. Deposition of hard magnetic rare earth FeBthin films by magnetron sputtering[J]. Journal of applied physics,2003,93(11):9165-9169.
    [56]. Serrona L. K., Sugimura A., Fujisaki R., et al. Magnetic and structural properties ofNdFeB thin film prepared by step annealing[J]. Materials Science and Engineering: B,2003,97(1):59-63.
    [57].Serrona L. K., Fujisaki R., Sugimura A., et al. Enhanced magnetic properties ofNd-Fe-B thin films crystallized by heat treatment[J]. Magnetism and MagneticMaterials,2003,(260):406-414.
    [58].Kojima A., Makino A., Inoue A. Rapid-annealing effect on the microstructure andmagnetic properties of the Fe-rich nanocomposite magnets[J]. Applied Physics,2000,87(9):6576-6578.
    [59].Aylesworth K. D., Zhao Z. R., Sellmyer D. J., et al. Magnetic and structural propertiesof Nd2Fe14B permanent-magnet films and multilayers with Fe and Ag[J]. AppliedPhysics,1988,64(10):5742-5744.
    [60].Aylesworth K. D., Jaswal S. S., Engelhardt M. A., et al. Electronic structure andproperties of sputtered TaCu films[J]. Physical Review B,1988,37(5):2426.
    [61].Kim Y. B., Chos S. H., Kim H. T., et al. Effects of buffer layer temperature onmagnetic properties of Nd-Fe-B thin film magnets[J]. Magnetism and Magnetic Materials,2004,(5):1917-1919.
    [62].Melsheimer A., Seeger M. Influence of Co substitution in exchange coupled NdFeBnanocrystalline permanent magnets[J]. Magnetism and Magnetic Materials,1999,(202):458-464.
    [63].Liu X. H., Yan G., Cui L. Y., et al. Influence of FeCo-interlayer thickness onremanence and coercivity in SmCo/FeCo/SmCo triple layer films[J]. Magnetics, IEEETransacti ons on,1999,35(5):3331-3333.
    [64].Liu W., Li X.Z., Liu J. P., et al. Enhanced coercivity in thermally processed(Nd,Dy)(Fe,Co,Nb,B)5.5/α-Fe nanoscale multilayer magnets[J]. Applied Physics,2005,97(10):63-66.
    [65].Li J. L., Zhang L. J., Wang Y. X., et al. Effect and mechanism of ion bombardment oncoercive force of NdFeB magnet[J]. Materials Letters,2013,98(1):102-104.
    [66].万红,斯永敏,谢海涛,等. NdFeB薄膜制备及对TbFe薄膜磁致伸缩性能的影响[J].金属功能材料,2001,3(8):13-16.
    [67].Zhu C. Q., Wang X. H., Leng X. M. Transient analysis for magnetic circuit of a novelsynchronous motor basing on controllable flux[J]. Journal of iron and steel research,2006,13(1):450-455.
    [68].张勤勇,蒋洪川,张万里.热处理温度对NdFeB稀土永磁薄膜磁性能的影响[J].磁性材料及器件,2004,35(4):18-20.
    [69].Arendt R H. The molten salt synthesis of single magnetic domain BaFe12O19andSrFe12O19crystals[J]. Journal of Solid State Chemistry,1973,8(4):339-347.
    [70].Gau W. J., Sun I. W. Electrochemical and spectrospic studies of ytterbium in thealuminum chloride-1-methy-1-3-ethylimidozolium choride room temperature moltensalt[J]. Journal of the Electrochemical Society,1996,143(4):2258-2262.
    [71].王建朝,徐常威,童叶翔,等.乙酞胺-尿素-NaBr熔体中Tb-Ni薄膜合金的制备[J].中山大学学报(自然科学版),2002,41(1):119-122.
    [72].Yang Q. Q., Qiu K. R., Ke S., et al. Electrodeposition of TiNi alloy in uera-NaBr/KBrmelt[J]. Transaction of Nonferrous Metals Society of China,1998,8(1):138-141.
    [73].刘莉治,刘鹏,童叶翔,等.尿素-NaBr低温熔盐体系中Er-Co合金的电沉积[J].中山大学学报(自然科学版),1999,38(3):119-120.
    [74].Liu P, Yang Q. Q., Liu G. K. Electroreduction of Zn and Ni and in urea-chloirdesmelt[J]. Transaction of Nonferrous Metals Society of China,1996,6(2):41-52.
    [75].Audrieth L. F., Jukkola E. E., Meints R. E., et al. Observations on the rare earth:electrolytic preparation of rare earth amalgams preparation of amalgams of lanthanumand neodymium[J]. Journal of the American Chemical Society,1931,53(5):1805-1809.
    [76].Usuzaka N., Yamaguchi H., Watanabe T. Preparation and magnetic properties ofCo-Gd amorphous alloy films by the electroplating method[J]. Materials Science andEngineering,1988,99(1):105-108.
    [77].Li G. R., Tong Y. X., Liu G. K. Electrodeposition of LuCoBi thin films in organicbath[J]. Journal of the the Electrochemistry Society,2004,151(6):412-417.
    [78].童叶翔,刘冠昆,何山,等.二甲基亚砜溶剂中Y-Ni合金膜的制备[J].中国有色金属学报,2000,10(3):448-450.
    [79].Lokhande C. D., Madhale R. D., Pawar S. H. Electrodeposition of Lanthanum fromaqueous baths[J]. Metal Finishing,1988,(11):53-55.
    [80].Jundale S. B., Lokhande C. D. Studies on electrosynthesis of Sm-Se films[J].Materials chemistry and physics,1994,38(4):325-331.
    [81].Pawar S. H., Pendse M. H. Electrodeposition of DyBaCu alloyed films from aqueousbath[J]. Materials Research bulletin,1991,26(7):641-648.
    [82].Li M., Wang Z. W., Reddy R. G. Cobalt electrodeposition using urea and choline[J].Electrochimica Acta,2014,123:325-331.
    [83].Cojocaru P., Magagnin M., Gomez E., et al. Using deep eutectic solvents toelectrodeposit CoSm films and nanowires[J]. Materials Letters,2011,65(23-24):3597-3600.
    [84].Hitomi Kondo, Masahiko Matsumiya, Katsuhiko Tsunashima, et al. Attempts to theelectrodeposition of Nd from ionic liquids at elevated temperatures[J]. ElectrochimicaActa,2012,66:313-319.
    [85].Yoo B. Y., Schwartz M., Nobe K. Aqueous electrodeposition of iron group vanadiumbinary alloys[J]. Electrochimica Acta,2005,50(22):4335-4343.
    [86].Bauer J., Seeger M., Zern A., et al. Nanocrystalline FeNdB permanent magnets withenhanced remanence[J]. Journal of applied physics,1996,80(3):1667-1673.
    [87].沈王争,吴俊,黄清安,等.水溶液中Ni-Ce-P合金电沉积行为的研究[J].材料保护,2000,33(8):18-19.
    [88].陈阵,张英杰. ZnFeLa三元合金电沉积工艺研究[J].材料保护,2008,42(12):34-37.
    [89].姜吉琼,刘小华. NdNiFe-SiC复合电沉积工艺的研究[J].材料保护,2009,29(4):18-21.
    [90].Mclaughlin R. A study of the differential scheme for composite materials[J].International Journal of Engineering Science,1977,15(4):237-244.
    [91].Apachitei I., Duszezyk J., Katgerman L., et al. Electroless Ni-P composite coatings:the effect of heat treatment on the microhardness of substrate and coating[J]. ScriptaMaterial,1998,38(3):1347-1353.
    [92].Park S. H., Lee D. N. A study on the microstructure and phase transformation ofelectroless niekel deposits[J]. Journal of Material Science,1988,(23):1643-1654.
    [93].户室康二,伊滕繁则,齐腾哲男.微粒子强化复合めっき皮膜の形成にする研究[J].镀金の世界,2001,(10):54-60.
    [94].Rolison D. R. Catalytic nanoarchitectures: The importance of nothing and theunimportance of periodicity[J]. Science,2003,299:1698-1701.
    [95].Wu Z., Shen B., Liu L. Effect of α-Al2O3coatings on the interface of Ni/SiCcomposites prepared by electrodeposition[J]. Surface and Coatings Technology,2012,206(14):3173-3178.
    [96].Bonastre A. M., Bartlett P. N. Electrodeposition of PANi films on platinum needletype microelectrodes: Application to the oxidation of ascorbate in human plasma[J].Analytica Chimica Acta,2010,676(1-2):1-8.
    [97].Jiang C., Markutsya S., Pikus Y., et al. Freely suspended nanocomposite membrancesas highly sensitive sensors[J]. Nature Material,2004,3:721-728.
    [98].Melendez N. M., McDonald A. G. Development of WC-based metal matrix compositecoating using low pressure cold gas dynamic spraying[J]. Surface and CoatingsTechnology,2013,214:101-109.
    [99].Podlaha E. J. Selective electrodeposition of nanoparticulates into metal matrices[J].Nano Letters,2001,1(8):413-416.
    [101].Agrios A. G., Cesar I., Comte P., et al. Nanostructured composite films fordye-sensitized solar cells by electrostatic layer-by-layer deposition[J]. Chemistry ofmaterials,2006,18(23):5395-5397.
    [102].Kotov N. A, Dekany I., Fendler J. H. Layer by layer self-assembly ofpolyelectrolyte-semiconductor nanoparticle composite films[J]. The Journal ofPhysical Chemistry,1995,99(35):13065-13069.
    [103].元新华,彭峰,王红娟.纳米复合电镀研究进展[J].电镀与涂饰.2005,24(11):51-55.
    [104].Tjong S. C., Chen H. Nanocrystalline materials and coatings[J]. Materials Scienceand Engineering R,2004,45:1-88.
    [105].De Tacconi N. R., Carmona J., Rajeshwar K. Chemically modified Ni/TiO2nanocomposite films: Charge transfer from photoexcited TiO2particles tohexacyanoferrate redox centers within the film and unusual photoelectrochemicalbehavior[J]. The Journal of Physical Chemistry B,1997,101(49):10151-10154.
    [106].Nap oszek B. I., Budniok A., osiewicz B., et al. Electrodeposition of compositeNi-based coatings with the addition of Ti or/and Al particles[J]. Thin solid films,2005,474(1):146-153.
    [107].谭澄宇,郑子樵,陈准. Ni-Al2O3纳米复合电镀工艺的初步研究[J].材料保护,2003,36(4):43-45.
    [108].何代华,傅正义,王皓,等.试述永磁材料及软磁材料的研究进展[J].陶瓷工程,2001,(8):30-34.
    [109].Li X., Li Z. Nano-sized Si3N4reinforced NiFe nanocomposites by electroplating[J].Materials Science and Engineering: A,2003,358(1):107-113.
    [110].Ebrahimi N., Momeni M., Kosari A. A comparative study of critical pittingtemperature (CPT) of stainless steels by electrochemical impedance spectroscopy(EIS), potentiodynamic and potentiostatic[J]. Corrosion Science,2012,59:96-102.
    [111].Huttunen S. E., Yudin V. E., Myagkova L. A. Corrosion protection of galvanizedsteel by polyimide coatings: EIS and SEM investigations [J]. Progress in OrganicCoatings,2011,72(3):269-278.
    [112].曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:123-165.
    [113].Lin C. H., Duh J. G. Electrochemical impedance spectroscopy study oncorrosion performance of CrAlSiN coated steels in3.5wt.%NaCl solution[J]. Surfaceand Coatings Technology,2009,204(6-7):784-787.
    [114].Bastos A. C., Sim es A. M. Corrosion inhibition by chromate and phosphate extractsfor iron substrates studied by EIS and SVET[J]. Corrosion Science,2006,48(6):1500-1512.
    [115].Huang Y. L., Hong S., Huang H. C., et.al. Evaluation of the corrosion resistance ofanodized aluminum6061using EIS[J]. Corrosion Science,2008,50(12):3569-3575.
    [116].Nishikata A., Ichihara Y., Tsuru T. An application of electrochemical impedancespectroscopy to atmospheric corrosion study[J]. Corrosion Science,1995,37(6):897-911.
    [117].Nishikata A., Ichihara Y., Hayashi Y., et al. Influence of electrolyte layer thicknessand pH on the initial stage of the atmospheric corrosion of iron[J]. Journal of theElectrochemical Society,1997,144(4):1244-1252.
    [118].Chung K. W., Kim K. B. Astudy of the effect of concentration build-up of electrolyteon the atmospheric corrosion of carbon steel during drying[J]. Corrosion Science,2000,42(3):517-531.
    [119].Vera Cruz R. P., Nishikata A., Tsuru T. AC impedance Monitoring of pittingcorrosion of stainless steel under a wet-dry cylic condition in chloride-containingenvironment[J]. Corrosion Science,1996,38(8):1397-1406.
    [120].Li C. L., Ma Y. T., Li Y. EIS monitoring study of atmospheric corrosion undervariable relative humidity[J]. Corrosion Science,2010,52(11):3677-3686.
    [121].Cui Z. Y., Li X. G., Xiao K. Atmospheric corrosion of fixed-exposed AZ31magnesium in a tropical marine environment[J]. Corrosion Scince,2013,76:243-256.
    [122].Maker G. L., Kruger J. Corrosion studies of rapidly solidified mmagnesium alloys[J].Journal of the Electrochemical Society,1990,137(2):414-421.
    [123].Muster T. H.,Sulivan H.,Lau D. A combinatorial matric of rare earth chloridemixtures as corrosion inhibitors of AA2024-T3: Optimisation using potentiodynamicpolarisatiion and EIS[J]. Electrochimica Acta,2012,67:95-103.
    [124].Cai C., Zhang Z., Wei Z. L., et.al. Electrochemical and corrosion behaviors of pureMg in neutral1.0%NaCl solution[J]. Transactions of nonferrous metals society ofChina,2012,22(4):970-976.
    [125].Zhang S., Cao F. H., Chang L. R., et al. Electrodeposition of high corrosionresistance Cu/NiP coating on AZ91D magnesium[J]. Applied Surface Science,2011,257(21):9213-9220.
    [126].Martyakn M., Seefeldt R. Comparison of nickel methanemlfonate and nickelsulfamate electrolytes[J]. Plating and Surface Finishing,2004,91(12):32-37.
    [127].Hasannejad H., Shahrabi T., Jafarian M., et al. EIS study of nanocrystallineNi-cerium oxide coating electrodeposition mechanism[J]. Journal of Alloys andCompouunds,2011,509(5):1924-1930.
    [128].Pasquale M. A., Gassa L. M., Arvia A. J. Copper electrodeposition from an acidicplating bath containing accelerating and inhibiting organic additives[J].Electrochimica Acta,2008,53(20):5891-5904.
    [129].杨新红,蒋雄,江琳才.弱酸性KCl溶液中Zn2+在铜电极上沉积机理的探讨[J].华南师范大学学报(自然科学版),1993,(2):61-68.
    [130].武刚,李宁,周德瑞.氨基磺酸体系CoNi合金电化学共沉积行为及动力学机理[J].高校化学工程学报,2005,19(1):48-53.
    [131].马成炳. NdFeB永磁体表面电沉积NiP合金工艺及相关理论研究[D].硕士学位论文,浙江大学,2006.
    [132].谭澄字,刘宇,胡炜,等. Ni-SiC电结晶沉积层的阻抗谱及SiC颗粒对Ni沉积的影响[J].材料保护,2009,42(5):11-16.
    [133].Zhu X. B., Cai C., Zheng G. Q., et al. Electrodeposition and corrosion behavior ofnanostructured Ni-TiN composite films[J]. Transactions of Nonferrous Metals Societyof China,2011,21(10):2216-2224.
    [134].林海潮,曹楚南.孔蚀过程的电化学噪声研究[J].中国腐蚀与防护学报,1986,6(2):141-148.
    [135].Iverson W. P. Transient voltage changes produced in corroding metals and alloys[J].Journal of Electrochemical Society,1968,6:617-618.
    [136].Benzaid A., Gabrielli C., Huet F. Investigation of the electrochemical noise generatedduring the stress corrosion crackong of a42CD4steel electrode[J]. Materials ScienceForum,1992,112:167-176.
    [137].Blanc G., Gabrielli C., Ksouri M., et al. Experimental study of the relationshipsbetween the electrochemical noise and the structure of the electrodeposits of metals[J].Electrochimica Acta,1978,23(4):337-340.
    [138].Gabrielli C., Ksouri M., Wiart R. Electrocrystallization noise: A phenomenologicalmodel[J]. Journal of Electroanalytical Chemistry,1978,86:233-239.
    [139].Lenyel B., Meszaros L., Meszaros G. Electrochemical methods to determine thecorrosion rate of a metal protected by a paint film[J]. Progress in Organic Coatings,1999,36:11-14.
    [140].Danielson M. Modeling of certain electrode parameters on the electrochemical noiseresponse[J]. Corrosion,1997,53(10):770-777.
    [141].Okada T. A theoretical analysis of the electrochemical noise during the inductionperiod of pitting corrosion in passive metals: Part1. The current noise associated withthe adsorption/desorption processes of halide ions on the passive film surface[J].Journal of Electroanalytical Chemistry,1991,297(2):349-359.
    [142].Zhang T., Shao Y. W., Meng G. Z., et al. Electrochemical noise analysis of thecorrosion of AZ91D magnesium alloy in alkaline chloride solution[J]. ElectrochimicaActa,2007,53(2):561-568.
    [143].Cottis R. A. The significance of electrochemical noise measurements on asymmetricelectrodes[J]. Electrochimica Acta,2007,52(27):7585-7589.
    [144].Mansfeld F., Xiao H. Electrochemical noise analysis of iron exposed to NaClsolutions of different corrosivity[J]. Journal of the Electrochemical Society,1993,140(8):2205-2209.
    [145].Gabrielli C., Keddam M. Review of applications of impedance and noise analysis touniform and localized corrosion[J]. Corrosion,1992,48(10):796-811.
    [146].Ramezanzadeh B., Arman S. Y., Mehdipour M., et al. Analysis of electrochemicalnoise data in time and frequency domain for comparison corrosion inhibition of someazole compounds on Cu in1.0M H2SO4solution[J]. Applied Surface Science,2014,289:129-140.
    [147].Burg J. P. The relationship between maximum entropy spectra and maximumlikelihood spectra[J]. Geophysics,1972,37:375-376.
    [148].Okada T. A theoretical analysis of the electrochemical noise during the inductionperiod of pitting corrosion in passive metals: Part2. The current noise associated withhalide nucleus formation in the passive film[J]. Journal of ElectroanalyticalChemistry,1991,297(2):361-375.
    [149].Markhali B. P., Naderi R., Mahdavian. Characterization of corrosion inhibitionperformance of azole compounds through power spectral density of electrochemicalnoise[J]. Journal of Electroanalytical Chemistry,2014,714-715:56-62.
    [150].Hladky K., Dawson J. L. The measurement of localized corrosion usingelectrochemical noise[J]. Corrosion Science,1981,21:317-322.
    [151].Magaino S., Kawaguchi A., Hirata A., et al. Spectrum analysis of corrosion potentialfluctuations for localized corrosion of type304stainless steel[J]. Journal of theElectrochemical Society,1987,134:2993-2997.
    [152].Pistorius P. C. Design aspects of electrochemical noise measurement for uncoatedmetals-electrode siza and sampling rate[J]. Corrosion,1997,53:273-283.
    [153].Li J. F., Zhang Z., Yin J. Y., et al. Electrodeposition behavior of nanocrystallineCoNiFe soft magnetic thin film[J]. Transactions of Nonferrous Metals Society ofChina,2006,16(3):659-665.
    [154].Perez L., Boeck J. D., Celis J. P., et al. Magnetic properties of CoNiFe alloyselectrodeposited under potential and current contral conditions[J]. Journal ofMagnetism and Magnetic Materials,2002,242-245:163-165.
    [155].王秋萍.纳米晶CoNiFe软磁薄膜的电化学制备及其结构、性能的研究[D].硕士学位论文,浙江大学,2010.
    [156].Cai C., Wang Q. P., Yang J. F., et al. Electrodeposition of Nanocrystalline CoNiFeThin Films Prepared by Cyclic Voltammetry[J]. Materials Science Forum,2009,620-622:731-734.
    [157].Li J. M., Zhang Z., Li J. F., et al. Effect of boron/phosphorus-containing additives onelectrodeposited CoNiFe soft magnetic thin films.[J]. Transactions of NonferrousMetals Society of China,2010,205:2160-2166.
    [158].Heidar A., tajmir R., Suger metal ion interaction: Synthesis, spectroscopic andstructural analysis of Zn,Cd,Hg sugar complexes containing L-arabinose[J]. Journalof Inorganic Biochemistry,1986,27(1):65-74.
    [159].Song Z., Tan D. L., Bao X. H., et al. Preparation of novel ranry-Ni catalysts andcharacterization by XRD,SEM and XPS[J]. Applied Catalysis A,2001,214(1):69-76.
    [160].Liu J. G., Yan C. W. Electrochemical characteristics of corrosion behavior of organicdacromet composite systems pretreated with gamma aminopropyltriethoxysilane[J].Surface and Coatings Technology,2006,(200):4976-4986.
    [161].El-Mahdy G. A., Nishikata A, Tsuru T. AC impedance study on corrosion of55%AlZn alloy coated steel under thin electrolyte[J]. Corrosion Science,2000,42:1509-1521.
    [162].Rasmussen F. E., Ravnkilde J. T., Tang P. T., et al. Electroplating andcharacterization of CoNiFe and NiFe for magnetic Microsystems applications[J].Sensors and Autuators A: Physica,2001,92(1-3):242-248.
    [163].Pavithra G. P., Chitharanjan H. A. Magnetic property and corrosion resistance ofelectrodeposited nanocrystalline FeNi alloys[J]. Applied Surface Science,2012,258(18):6884-6890.
    [164].Xu B., Wang H., Dong S., et al. Electrodepositing nickel silica nano-compositescoatings[J]. Electrochemistry Communications,2005,7(6):572-575.
    [165].McCafferty E. Relationship between the isoelectric point and the potential of zerocharge for passive metals[J]. Electrochimica Acta,2010,55(5):1630-1637.
    [166].Murzin D. Y. Thermodynamic analysis of nanoparticle size effect on catalytickinetics[J]. Chemical Engineering Science,2009,64(5):1046-1052.
    [167].Yoo B.Y., Hermandez S.C., Park D. Y., et al. Electrodeposition of FeCoNi thin filmsfor magnetic-MEMS device[J]. Electrochimica Acta,2006,28(5):6346-6352.
    [168].Müller B., Ferkel H. Al2O3-nanoparticle distribution in plated nickel compositefilms[J]. Nano Structructured Materials,1998,18(8):1285-1288.
    [169].Thirsk H. R., Harrison J. A. A guide to the study of electrode kinetics[M]. London:Academic Press,1972.
    [170].牛朝霞.纳米结构Ni-SiC复合薄膜的电化学制备及其相关理论研究[D].硕士学位论文,浙江大学,2006.
    [171].刘英策.铝硅合金上电沉积FeCoNi合金镀层的工艺及性能研究[D].硕士学位论文,广东工业大学,2005.
    [172].Tsay P., HU C. C. Non-anomalous codeposition of iron-nickel alloys usingpulse-reverse electroplating through means of experimental strategies[J]. Journal ofthe Electrochemical Society,2002,149:492-497.
    [173].Dahms H., Croll J. M. The anomalous codeposition of iron nickel alloys[J]. Journalof the Electrochemical Society,1965,112:77l-775.
    [174].[174].Li J. F., Zhang Z., Yin J. Y., et al. Electrodeposition behavior ofnanocrystalline CoNiFe soft magnetic thin film[J]. Transactions of Nonferrous MetalsSociety of China,2006,16:659-665.
    [175].Schauer T., Greisiger H., Dulog L. Details on MEM analysis of electrochemicalnoise data and correlation with impedance measurements for organic coatings onmetals[J]. Electrochimica Acta,1998,43(16-17):2423-2433.
    [176].张昭,张鉴清,李劲风,等.因此分析法在电化学噪声分析中的应用[J].物理化学学报,2001,17(7):651-654.
    [177].Cottis R. A., Al-Awadhi M. A., Mazeedi H., et al. Measures for the detection oflocalized corrosion with electrochemical noise[J]. Electrochimica Acta,2001,46(24-25):3665-3674.
    [178].张鉴清,张昭,王建明,等.电化学噪声的分析与应用—I.电化学噪声的分析原理[J].中国腐蚀与防护学报,2001,21(5):310-320.
    [179].Cai C., Zhang Z., Cao F. H., et al. Analysis of pitting corrosion behavior of pure Alin sodium chloride solution with the wavelet technique[J]. Journal ofElectroanalytical Chemistry,2005,578(1):143-150.
    [180].Constantinescu C., Ion V., Codescu M. et al. Optical morphological and thermalbehavior of NdFeB magnetic thin films grown by radiofrequency plasma-assistedpulsed laser deposition [J]. Current Applied Physics,2013,13(9):2019-2025.
    [181].Xie T. T., Mao S. D., Yu C., et al. Structure, corrosion and hardness properties ofTi/Al multilayer coated on NdFeB by magnetron sputtering[J]. Vacuum,2012,86(10):1583-1588.
    [182].裴玲,张瑞,张岩,等.钕铁硼永磁材料电沉积制备工艺设计[J].滨州学院学报,2011,27(3):78-82.
    [183].Gao D. Q., Fu J. L., Xu Y., et al. Preparation and magnetic prope-rties of Nd5Fe95Bxnanowire arrays[J]. Materials letters,2008,62:3070-3072.
    [184].Schwartz M., Myung N. V., Nobe K. Electrodeposition of iron group-rare earthalloys from aqueous media[J]. Journal of the Electrochemical Society,2004,151(7):468-477.
    [185].Qi Q. Y. Studies on electrodeposition of rare earth metals and their Alloys in MoltenSalts[J]. Electrochemisty,1997,3(2):117-124.