半导体表面化学修饰方法及其光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米电子学、分子电子学的兴起与发展,有机单层膜与半导体共价联接的杂化材料受到广泛的关注。功能分子修饰的半导体表面为研究纳米乃至单分子的光电性能提供了良好的平台,并在光电开关、信息存储、晶体管、传感器及其它智能器件方面具有广泛的应用前景。在本论文中,我们研究了有机功能分子在半导体表面的光电行为,利用有机分子与半导体的杂化表面构建光电功能阵列;利用化学沉积方法制备了掺硼金刚石半导体薄膜,进一步修饰了偶氮苯分子并对该杂化表面的光化学及电化学行为进行了研究。本论文主要内容如下:
     1.合成了含有乙烯基的偶氮苯4-N,N-dimethylamino-4′-ethynyl-azobenzene (DMAEAB),并对其光学性能进行了测试。采用光化学方法将DMAEAB修饰到经过NH4F溶液处理过的硅(111)表面;并从浸润性、红外光谱及光电子能谱方面对DMAEAB单层膜进行了表征。通过紫外-可见光交替照射来改变偶氮苯单层膜的异构状态,检测了DMAEAB处于不同状态时的浸润性、表面形貌及导电性能。并利用HyperChem MM+ force field方法模拟了DMAEAB单层膜在硅(111)表面的形态。该杂化表面在光开关及信息存储领域具有潜在的应用。
     2.制备了掺硼的金刚石半导体薄膜,用拉曼光谱对其进行了表征,利用扫描电子显微镜(SEM)以及原子力显微镜(AFM)对其形态和表面形貌进行了观察,并利用导电探针原子力显微镜(CP-AFM)及四探针半导体分析仪对其导电性做了分析。将含有乙烯基的偶氮苯DOAA化学修饰到等离子体处理过的金刚石表面,并对修饰在金刚石表面的DOAA单层膜的光化学及电化学特性进行了研究,发现DOAA分子呈现不同的异构状态时,其表现出不同的电化学行为。同时,结果进一步证明导电金刚石薄膜是研究具有电化学活性单层膜的良好的电极材料,为研究电化学活性的单分子膜提供了优良的实验平台。该DOAA分子与金刚石构建的杂化材料在电化学存储、智能界面及光子计数器方面具有潜在的应用前景。
     3.合成了含有乙烯基的丁二炔DA-4AS,利用热引发的方法将DA-4AS修饰到硅(111)表面,并从浸润性、红外光谱及光电子能谱方面对该表面进行了表征,同时利用椭圆偏振光谱法计算出DA-4AS单层膜的厚度,结合利用分子模拟软件Material Studio计算出的分子长度,得到DA-4AS单层膜的倾斜角。进一步在DA-4AS-Si(111)表面旋涂DA-4AS,加掩膜光照后得到了直径为5μm,间距为20μm的聚丁二炔阵列,利用AFM观察了其形貌,荧光共聚焦显微镜观察到了与掩膜对应的荧光图案。
With the development of nanoelectronics and molectronics, great attention has been paid to the covalently bonded hybrid of organic monolayer and semiconductor in recent years. Semiconductor plays an important role as the platform for the study of nanoscope and even single molecule in photonics and electronics. The hybrids have extensive applications in switch, information storage, transistor, sensor and etc. Stimulus-responsive molecules modified semiconductor is of great importance in the development of intelligent electronic devices. We have studied silicon and diamond surface which were modified with functional molecules on photonic and electronic behaviors. The main contents are as follows:
     1、Photoresponsive azobenzene molecule 4-N,N-dimethylamino-4’-ethynyl-azobenzene (DMAEAB) was synthesized. DMAEAB molecules were covalently grafted onto hydrogen-terminated Si(111) surface through photochemical reaction with Si-C as linkages. The modified surfaces were characterized by wettability, X-ray photoelectron spectroscopy (XPS) and attenuated total re?ectance Fourier transform infrared (ATR-FTIR) spectroscopy. The reversible photoisomerization effects of the DMAEAB monolayer were studied with contact angle measurements, atomic force microscopy (AFM), and conductive-probe atomic force microscopy (CP-AFM). The two isomers of DMAEAB on Si(111) showed clearly difference in wettability, topography, and conductance. Molecularly controlled modulation of conductance of the DMAEAB modified Si surface was realized by applying special light. The hybrid of DMAEAB monolayer and silicon has potential applications in optical switch, information storage and etc.
     2、Boron-doped diamond (BDD) films have been fabricated through chemical vapor deposition (CVD). The diamond films were characterized by Raman spectroscopy. The morphology was observed with SEM, and topography was monitored with AFM. The conductive performance was analysed with CP-AFM and four-probe digital multimeter. Monolayer of the viny-ended azobenzene DOAA was prepared on BDD film through photochemical reaction between the vinyl and the C-H bond of the plasma-processed BDD surface. The monolayer was characterized by XPS and ATR-IR spectroscopy. DOAA monolayer showed high stability when it was suffered to corrosive solvents. The photoelectrochemical behaviors of DOAA monolayer was analyzed by cyclic voltammetry with BDD film as the working electrode, and the two isomers of DOAA exhibited clearly diffenent electrochemical behavior. In addition, the results also demonstrate that BDD films are excellent platform for study of redoxactive molecular monolayer’s electrochemical behaviors.
     3、Vinyl-terminated diacetylene derivative DA-4AS was synthesized. DA-4AS monolayer was prepared on silicon wafer via photochemical reaction between DA-4AS and hydrogen-terminated Silicon. The monolayer was characterized with XPS, spectroscopic ellipsometry, ATR-IR and contact angle measurement. Most importantly, we developed a method which can be used to fabricate PID( polydiacetylene and its derivative) matrix with the diameter as 5μm and the center-to-ceneter distance 20μm based on the unique photochemical reaction of diacetylene. The matrix was monitored with AFM, and the fluorescence patterning was observed under confocal fluorescence spectroscopy after further heat of the matrix. In short, a new approach was developed for fabrication of PID matrix which laid groundworks for fabrication of PID based chemo/biochips.
引文
[1] Ashkenasy, G.; Cahen, D.; Cohen, R.; Shanzer, A.; Vilan, A., Molecular Engineering of Semiconductor Surfaces and Devices. Acc. Chem. Res. 2002, 35 (2), 121-128.
    [2] Vilan, A.; Shanzer, A.; Cahen, D., Molecular control over Au/GaAs diodes. Nature 2000, 404, 166-168.
    [3] Vilan, A.; Cahen, D., How organic molecules can control electronic devices. Trends Biotechnol. 2002, 20 (1), 22-29.
    [4] The Fermi level is the chemical potential (electrochemical poten-tial, in case of varying electrical potential) of electrons in the solid; at 0 K any energy levels above it are empty and below it are occupied by electrons.
    [5] Hiremath, R. K.; Rabinal, M. K.; Mulimani, B. G.; Khazi, I. M., Molecularly Controlled Metal#Semiconductor Junctions on Silicon Surface: A Dipole Effect. Langmuir 2008, 24 (19), 11300-11306.
    [6] Yong-Jun Liu, H.-Z. Y., Alkyl Monolayer-Passivated Metal-Semiconductor Diodes: Molecular Tunability and Electron Transport. Chemphyschem 2002, 3 (9),799-802.
    [7] Grundner, M.; Jacob, H., Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl. Phys. A-Mater. 1986, 39 (2), 73-82.
    [8] Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J. Am. Chem. Soc. 1995, 117 (11), 3145-3155.
    [9] Hancer, M., The effect of humidity on the stability of octadecyltrichlorosilane for the self-assembled monolayer coating applications. Prog. Org. Coat. 2008, 63 (4), 395-398.
    [10] Hanson, E. L.; Schwartz, J.; Nickel, B.; Koch, N.; Danisman, M. F., Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon. J. Am. Chem. Soc. 2003, 125 (51), 16074-16080.
    [11] Fendler, J., Chemical self-assembly for electronic applications. Chem. Mater. 2001, 13 (10), 3196-3210.
    [12] Lee, J.; Jung, B. J.; Lee, J. I.; Chu, H. Y.; Do, L. M.; Shim, H. K., Modification of an ITO anode with a hole-transporting SAM for improved OLED device characteristics. J. Mater. Chem. 2002, 12 (12), 3494-3498.
    [13] Linford, M. R.; Chidsey, C. E. D., Alkyl monolayers covalently bonded to silicon surfaces. J. Am. Chem. Soc. 1993, 115 (26), 12631-12632.
    [14] A. B. Sieval, R. L. H. Z. E. J. R. S., High-Quality Alkyl Monolayers on Silicon Surfaces. Adv. Mater. 2000, 12 (19), 1457-1460.
    [15] Buriak, J. M., Organometallic Chemistry on Silicon and Germanium Surfaces. Chem. Rev. 2002, 102 (5), 1271-1308.
    [16] Qiao-Yu Sun, L. C. P. M. de Smet, B. van Lagen, A. Wright, H. Zuilhof, E. J. R. Sudh?lter, Covalently Attached Monolayers on Hydrogen-Terminated Si(100):Extremely Mild Attachment by Visible Light. Angew. Chem. Int. Ed. 2004, 43 (11), 1352-1355.
    [17] Zhang, X.; Wen, Y.; Li, Y.; Li, G.; Du, S.; Guo, H.; Yang, L.; Jiang, L.; Gao, H.; Song, Y., Molecularly Controlled Modulation of Conductance on Azobenzene Monolayer-Modified Silicon Surfaces. J. Phys. Chem. C 2008, 112 (22), 8288-8293.
    [18]Stewart, M. P.; Maya, F.; Kosynkin, D. V.; Dirk, S. M.; Stapleton, J. J.; McGuiness, C. L.; Allara, D. L.; Tour, J. M., Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs, and Pd Surfaces from Aryldiazonium Salts. J. Am. Chem. Soc. 2004, 126 (1), 370-378.
    [19] Hurley, P. T.; Nemanick, E. J.; Brunschwig, B. S.; Lewis, N. S., Covalent Attachment of Acetylene and Methylacetylene Functionality to Si(111) Surfaces: Scaffolds for Organic Surface Functionalization while Retaining Si-C Passivation of Si(111) Surface Sites. J. Am. Chem. Soc. 2006, 128 (31), 9990-9991.
    [20] Robins, E. G.; Stewart, M. P.; Buriak, J. M., Anodic and cathodic electrografting of alkynes on porous silicon. Chem. Commun. 1999, 2479-2480.
    [21] Franz Effenberger, G. G. B. B. M. W., Photoactivated Preparation and Patterning of Self-Assembled Monolayers with 1-Alkenes and Aldehydes on Silicon Hydride Surfaces. Angew. Chem. Int. Ed. 1998, 37 (18), 2462-2464.
    [22]Roth, K. M.; Yasseri, A. A.; Liu, Z.; Dabke, R. B.; Malinovskii, V.; Schweikart, K. H.; Yu, L.; Tiznado, H.; Zaera, F.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F., Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices. J. Am. Chem. Soc. 2003, 125 (2), 505-517.
    [23] Zhu, X. Y.; Boiadjiev, V.; Mulder, J. A.; Hsung, R. P.; Major, R. C., Molecular Assemblies on Silicon Surfaces via Si-O Linkages. Langmuir 2000, 16 (17), 6766-6772.
    [24] Guo, D. J.; Xiao, S. J.; Xia, B.; Wei, S.; Pei, J.; Pan, Y.; You, X. Z.; Gu, Z. Z.; Lu,Z., Reaction of Porous Silicon with Both End-Functionalized Organic Compounds Bearingα-Bromo andω-Carboxy Groups for Immobilization of Biomolecules. J. Phys. Chem. B 2005, 109 (43), 20620-20628.
    [25] Li, Y.-H.; Buriak, J. M., Dehydrogenative Silane Coupling on Silicon Surfaces via Early Transition Metal Catalysis. Inorg. Chem. 2006, 45 (3), 1096-1102.
    [26] Zhang, F.; Pei, L.; Bennion, E.; Jiang, G.; Connley, D.; Yang, L.; Lee, M. V.; Davis, R. C.; Smentkowski, V. S.; Strossman, G.; Linford, M. R.; Asplund, M. C., Laser Activation Modification of Semiconductor Surfaces (LAMSS). Langmuir 2006, 22 (26), 10859-10863.
    [27] Leftwich, T. R.; Madachik, M. R.; Teplyakov, A. V., Dehydrative Cyclocondensation Reactions on Hydrogen-Terminated Si(100) and Si(111): An ex Situ Tool for the Modification of Semiconductor Surfaces. J. Am. Chem. Soc. 2008, 130 (48), 16216-16223.
    [28] Xu, F. J.; Kang, E. T.; Neoh, K. G., UV-Induced Coupling of 4-Vinylbenzyl Chloride on Hydrogen-Terminated Si(100) Surfaces for the Preparation of Well-Defined Polymer-Si Hybrids via Surface-Initiated ATRP. Macromolecules 2005, 38 (5), 1573-1580.
    [29] Bocking, T.; Kilian, K. A.; Gaus, K.; Gooding, J. J., Single-Step DNA Immobilization on Antifouling Self-Assembled Monolayers Covalently Bound to Silicon (111). Langmuir 2006, 22 (8), 3494-3496.
    [30] Miller, J. B.; Brown, D. W., Photochemical Modification of Diamond Surfaces. Langmuir 1996, 12 (24), 5809-5817.
    [31] Strother, T.; Knickerbocker, T.; Russell, J. N.; Butler, J. E.; Smith, L. M.; Hamers, R. J., Photochemical Functionalization of Diamond Films. Langmuir 2002, 18 (4), 968-971.
    [32] Kondo, T.; Hoshi, H.; Honda, K.; Einaga, Y.; Fujishima, A.; Kawai, T., Photochemical Modification of a Boron-doped Diamond Electrode Surface withVinylferrocene. J. Phys. Chem. C 2008, 112 (31), 11887-11892.
    [33] Yang, W.; Baker, S. E.; Butler, J. E.; Lee, C. s.; Russell, J. N.; Shang, L.; Sun, B.; Hamers, R. J., Electrically Addressable Biomolecular Functionalization of Conductive Nanocrystalline Diamond Thin Films. Chem. Mater. 2005, 17 (5), 938-940.
    [34]Kuo, T.-C.; McCreery, R. L.; Swainb, G. M., Electrochemical Modification of Boron-Doped Chemical Vapor Deposited Diamond Surfaces with Covalently Bonded Monolayers. Electrochem. Solid ST 1999, 2 (6), 288-290.
    [35] Nakamura, T.; Ohana, T.; Hagiwara, Y.; Tsubota, T., Photochemical modification of diamond powders with elemental sulfur and their surface-attachment behavior on gold surfaces. Phys. Chem. Chem. Phys. 2009, 11 (4), 730-734.
    [36] Nakamura, T.; Suzuki, M.; Ishihara, M.; Ohana, T.; Tanaka, A.; Koga, Y., Photochemical Modification of Diamond Films: Introduction of Perfluorooctyl Functional Groups on Their Surface. Langmuir 2004, 20 (14), 5846-5849.
    [37]Tsubota, T.; Tanii, S.; Ida, S.; Nagata, M.; Matsumoto, Y., Chemical modification of diamond surface with CH3(CH2)nCOOH using benzoyl peroxide. Phys. Chem. Chem. Phys. 2003, 5 (7), 1474-1480.
    [38] Krysinski, P.; Show, Y.; Stotter, J.; Blanchard, G. J., Covalent Adlayer Growth on a Diamond Thin Film Surface. J. Am. Chem. Soc. 2003, 125 (42), 12726-12728.
    [39] Hanson, E. L.; Guo, J.; Koch, N.; Schwartz, J.; Bernasek, S. L., Advanced Surface Modification of Indium Tin Oxide for Improved Charge Injection in Organic Devices. J. Am. Chem. Soc. 2005, 127 (28), 10058-10062.
    [40]Kreutz, T. C.; Gwinn, E. G.; Artzi, R.; Naaman, R.; Pizem, H.; Sukenik, C. N., Modification of ferromagnetism in semiconductors by molecular monolayers. Appl. Phys. Lett. 2003, 83 (20), 4211-4213.
    [41]Arafat, A.; Schroen, K.; de Smet, L. C. P. M.; Sudholter, E. J. R.; Zuilhof, H., Tailor-Made Functionalization of Silicon Nitride Surfaces. J. Am. Chem. Soc. 2004, 126 (28), 8600-8601.
    [42] Shen, J.; Hu, Y.; Qin, C.; Ye, M., Layer-by-Layer Self-Assembly of Multiwalled Carbon Nanotube Polyelectrolytes Prepared by in Situ Radical Polymerization. Langmuir 2008, 24 (8), 3993-3997.
    [43] Eitan, A.; Jiang, K.; Dukes, D.; Andrews, R.; Schadler, L. S., Surface Modification of Multiwalled Carbon Nanotubes:  Toward the Tailoring of the Interface in Polymer Composites. Chem. Mater. 2003, 15 (16), 3198-3201.
    [44] Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F., Photoconductivity Study of Modified Carbon Nanotube/Oxotitanium Phthalocyanine Composites. J. Phys. Chem. B 2002, 106 (35), 8971-8975.
    [45] Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Frechet, J. M. J., A Facile and Patternable Method for the Surface Modification of Carbon Nanotube Forests Using Perfluoroarylazides. J. Am. Chem. Soc. 2008, 130 (13), 4238-4239.
    [46] Geneste, F.; Moinet, C.; Ababou-Girard, S.; Solal, F., Stability of [RuII(tpy)(bpy)(OH2)]2+-Modified Graphite Electrodes during Indirect Electrolyses. Inorg. Chem. 2005, 44 (12), 4366-4371.
    [47] Corgier, B. P.; Marquette, C. A.; Blum, L. J., Diazonium−Protein Adducts for Graphite Electrode Microarrays Modification:  Direct and Addressed Electrochemical Immobilization. J. Am. Chem. Soc. 2005, 127 (51), 18328-18332.
    [48]Devadoss, A.; Chidsey, C. E. D., Azide-Modified Graphitic Surfaces for Covalent Attachment of Alkyne-Terminated Molecules by“Click”Chemistry. J. Am. Chem. Soc. 2007, 129 (17), 5370-5371.
    [49] Shen, J.; Hu, Y.; Li, C.; Qin, C.; Shi, M.; Ye, M., Layer-by-Layer Self-Assembly of Graphene Nanoplatelets. Langmuir 2009.
    [50] Rosso, M.; Arafat, A.; Schroen, K.; Giesbers, M.; Roper, C. S.; Maboudian, R.; Zuilhof, H., Covalent Attachment of Organic Monolayers to Silicon Carbide Surfaces.Langmuir 2008, 24 (8), 4007-4012.
    [51] Iijima, M.; Kamiya, H., Surface Modification of Silicon Carbide Nanoparticles by Azo Radical Initiators. J. Phys. Chem. C 2008, 112 (31), 11786-11790.
    [52] Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P., Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B 2001, 105 (37), 8861-8871.
    [53] Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P., Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chem. Mater. 2002, 14 (5), 2113-2119.
    [54] Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech. 2004, 22 (8), 969-976.
    [55] Zhu, M.; Chang, E.; Sun, J.; Drezek, R., Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 2007, 17 (8), 800-805.
    [56] He, T.; He, J.; Lu, M.; Chen, B.; Pang, H.; Reus, W. F.; Nolte, W. M.; Nackashi, D. P.; Franzon, P. D.; Tour, J. M., Controlled Modulation of Conductance in Silicon Devices by Molecular Monolayers. J. Am. Chem. Soc. 2006, 128 (45), 14537-14541.
    [57] Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F., Molecular Memories That Survive Silicon Device Processing and Real-World Operation. Science 2003, 302 (5650), 1543-1545.
    [58] Gartsman, K.; Cahen, D.; Kadyshevitch, A.; Libman, J.; Moav, T.; Naaman, R.; Shanzer, A.; Umansky, V.; Vilan, A., Molecular control of a GaAs transistor. Chem. Phys. Lett. 1998, 283 (5-6), 301-306.
    [59] Vilan, A.; Ussyshkin, R.; Gartsman, K.; Cahen, D.; Naaman, R.; Shanzer, A.,Real-Time Electronic Monitoring of Adsorption Kinetics: Evidence for Two-Site Adsorption Mechanism of Dicarboxylic Acids on GaAs(100). J. Phys. Chem. B 1998, 102 (18), 3307-3309.
    [60] Deng Guo Wu, G. A., Dmitry Shvarts, Rachel V. Ussyshkin, Ron Naaman, Abraham Shanzer, David Cahen,, Novel NO Biosensor Based on the Surface Derivatization of GaAs by“Hinged”Iron porphyrins. Angew. Chem. Int. Ed. 2000, 39 (24), 4496-4500.
    [61] Yang, W.; Auciello, O.; Butler, J. E.; Cai, W.; Carlisle, J. A.; Gerbi, J. E.; Gruen, D. M.; Knickerbocker, T.; Lasseter, T. L.; Russell, J. N.; Smith, L. M.; Hamers, R. J., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 2002, 1 (4), 253-257.
    [62] Hartl, A.; Schmich, E.; Garrido, J. A.; Hernando, J.; Catharino, S. C. R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmuller, D.; Stutzmann, M., Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 2004, 3 (10), 736-742.
    [63] Patolsky, F.; Lieber, C. M., Nanowire nanosensors. Mater. Today 2005, 8 (4), 20-28.
    [64] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 2001, 293 (5533), 1289-1292.
    [65] Hahm, J.-i.; Lieber, C. M., Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters 2004, 4 (1), 51-54.
    [66] Becker, J., Signal transduction inhibitors[mdash]a work in progress. Nat. Biotech. 2004, 22 (1), 15-18.
    [67] Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. M., Electrical detection of single viruses. Proc. Natl. Acad. Sci. 2004, 101 (39),14017-14022.
    [68] Lin, M. C.; Chu, C. J.; Tsai, L. C.; Lin, H. Y.; Wu, C. S.; Wu, Y. P.; Wu, Y. N.; Shieh, D. B.; Su, Y. W.; Chen, C. D., Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors. Nano Letters 2007, 7 (12), 3656-3661.
    [69] Yamanoi, Y.; Yonezawa, T.; Shirahata, N.; Nishihara, H., Immobilization of Gold Nanoparticles onto Silicon Surfaces by Si-C Covalent Bonds. Langmuir 2004, 20 (4), 1054-1056.
    [1] A. Natan, L. Kronik, H. Haick, R. T. Tung, Electrostatic Properties of Ideal and Non-ideal Polar Organic Monolayers: Implications for Electronic Devices. Adv. Mater. 2007, 19 (23), 4103-4117.
    [2] He, T.; He, J.; Lu, M.; Chen, B.; Pang, H.; Reus, W. F.; Nolte, W. M.; Nackashi, D. P.; Franzon, P. D.; Tour, J. M., Controlled Modulation of Conductance in Silicon Devices by Molecular Monolayers. J. Am. Chem. Soc. 2006, 128 (45), 14537-14541.
    [3] Ratner, M., Pushing electrons around. Nature 2000, 404, 137-138.
    [4] Blum, A. S.; Kushmerick, J. G.; Long, D. P.; Patterson, C. H.; Yang, J. C.; Henderson, J. C.; Yao, Y.; Tour, J. M.; Shashidhar, R.; Ratna, B. R., Molecularly inherent voltage-controlled conductance switching. Nat. Mater. 2005, 4 (2), 167-172.
    [5] Vilan, A.; Cahen, D., How organic molecules can control electronic devices. Trends Biotechnol. 2002, 20 (1), 22-29.
    [6] Ashkenasy, G.; Cahen, D.; Cohen, R.; Shanzer, A.; Vilan, A., Molecular Engineering of Semiconductor Surfaces and Devices. Acc. Chem. Res. 2002, 35 (2), 121-128.
    [7] Vilan, A.; Shanzer, A.; Cahen, D., Molecular control over Au/GaAs diodes. Nature 2000, 404, 166-168.
    [8] Hunger, R.; Jaegermann, W.; Merson, A.; Shapira, Y.; Pettenkofer, C.; Rappich, J., Electronic Structure of Methoxy-, Bromo-, and Nitrobenzene Grafted onto Si(111). J. Phys. Chem. B 2006, 110 (31), 15432-15441.
    [9] Sun, Q.; Selloni, A., Interface and Molecular Electronic Structure vs Tunneling Characteristics of CH3 and CF3-Terminated Thiol Monolayers on Au(111). J. Phys. Chem. B 2006, 110 (40), 11396-11400.
    [10] Campbell, S. A., The Science and Engineering of Microelectronic Fabrication. Oxford: Oxford University Press,1996.
    [11] San Jose, The National Technology Roadmap for Semiconductors. California: Semiconductor Industry Association, 1997.
    [12] Michael J. Sailor, E. J. L., Surface chemistry of Luminescent Silicon Nanocrystallites. Adv. Mater. 1997, 9 (10), 783-793.
    [13] Sze, S. M., The Physics of Semiconductor Devices 2nd; New York: Wiley-Interscience, 1981.
    [14] Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J. Am. Chem. Soc. 1995, 117 (11), 3145-3155.
    [15] Buriak, J. M., Organometallic Chemistry on Silicon and Germanium Surfaces. Chem. Rev. 2002, 102 (5), 1271-1308.
    [16] Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F., Molecular Memories That Survive Silicon Device Processing and Real-World Operation. Science 2003, 302 (5650), 1543-1545.
    [17] Jiang, G.; Niederhauser, T. L.; Davis, S. D.; Lua, Y.-Y.; Cannon, B. R.; Dorff, M. J.; Howell, L. L.; Magleby, S. P.; Linford, M. R., Stability of alkyl monolayers on chemomechanically scribed silicon to air, water, hot acid, and X-rays. Colloids Surf. A 2003, 226 (1-3), 9-16.
    [18] Bollani, M.; Piagge, R.; Narducci, D., Modulation of Si(100) electronic surface density due to supramolecular interactions of gaseous molecules with self-assembled organic monolayers. Mater. Sci. Eng. C 2001, 15 (1-2), 253-255.
    [19] Heath, J. R.; Ratner, M. A., Molecular Electronics. Phys. Today 2003, 56 (5), 43-49.
    [20] Salomon, A.; Boecking, T.; Chan, C. K.; Amy, F.; Girshevitz, O.; Cahen, D.; Kahn, A., How Do Electronic Carriers Cross Si-Bound Alkyl Monolayers? Phys. Rev. Lett. 2005, 95 (26), 266807-4.
    [21] McDonagh, A. M.; Lucas, N. T.; Cifuentes, M. P.; Humphrey, M. G.; Houbrechts, S.; Persoons, A., Organometallic complexes for nonlinear optics: Part 20. Syntheses and molecular quadratic hyperpolarizabilities of alkynyl complexes derived from (E)-4,4'-HC=CC6H4N=NC6H4NO2. J. Organomet. Chem. 2000, 605 (2), 184-192.
    [22] Lavastre, O.; Illitchev, I.; Jegou, G.; Dixneuf, P. H., Discovery of New Fluorescent Materials from Fast Synthesis and Screening of Conjugated Polymers. J. Am. Chem. Soc. 2002, 124 (19), 5278-5279.
    [23] Mohamed Ahmed, M. S.; Mori, A., Sonogashira coupling with aqueous ammonia directed to the synthesis of azotolane derivatives. Tetrahedron 2004, 60 (44), 9977-9982.
    [24] Griffiths, J., Photochemistry of azobenzene and its derivatives. Chem. Soc. Rev. 1972, 1, 481 - 493.
    [25] Schmidt, I.; Jiao, J.; Thamyongkit, P.; Sharada, D. S.; Bocian, D. F.; Lindsey, J. S., Investigation of Stepwise Covalent Synthesis on a Surface Yielding Porphyrin-Based Multicomponent Architectures. J. Org. Chem. 2006, 71 (8), 3033-3050.
    [26] Buriak, J. M.; Stewart, M. P.; Geders, T. W.; Allen, M. J.; Choi, H. C.; Smith, J.; Raftery, D.; Canham, L. T., Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces. J. Am. Chem. Soc. 1999, 121 (49), 11491-11502.
    [27] Linford, M. R.; Chidsey, C. E. D., Surface Functionalization of Alkyl Monolayers by Free-Radical Activation: Gas-Phase Photochlorination with Cl2. Langmuir 2002, 18 (16), 6217-6221.
    [28] Christian Gurtner, A. W. W. M. J. S., Surface Modification of Porous Silicon by Electrochemical Reduction of Organo Halides. Angew. Chem. Int. Ed. 1999, 38 (13-14), 1966-1968.
    [29] Wojtyk, J. T. C.; Tomietto, M.; Boukherroub, R.; Wayner, D. D. M., "Reagentless" Micropatterning of Organics on Silicon Surfaces: Control ofHydrophobic/Hydrophilic Domains. J. Am. Chem. Soc. 2001, 123 (7), 1535-1536.
    [30] Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E., Single-Molecule Optomechanical Cycle. Science 2002, 296 (5570), 1103-1106.
    [31] Wen, Y.; Yi, W.; Meng, L.; Feng, M.; Jiang, G.; Yuan, W.; Zhang, Y.; Gao, H.; Jiang, L.; Song, Y., Photochemical-Controlled Switching Based on Azobenzene Monolayer Modified Silicon (111) Surface. J. Phys. Chem. B 2005, 109 (30), 14465-14468.
    [32] Tamai, N.; Miyasaka, H., Ultrafast Dynamics of Photochromic Systems. Chem. Rev. 2000, 100 (5), 1875-1890.
    [33] Xia, F.; Feng, L.; Wang, S.; Sun, T.; Song, W.; Jiang, W.; Jiang, L., Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv. Mater. 2006, 18 (4), 432-436.
    [34] Hamelmann, F.; Heinzmann, U.; Siemeling, U.; Bretthauer, F.; Vor der Bruggen, J., Light-stimulated switching of azobenzene-containing self-assembled monolayers. Appl. Surf. Sci. 2004, 222 (1-4), 1-5.
    [35] Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M.; Cho, K., Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern. J. Am. Chem. Soc. 2006, 128 (45), 14458-14459.
    [36] S. N. Kumar, G. B., F. Gaillard,, Electronic and structural characterization of electrochemically synthesized conducting polyaniline from XPS studies. Surf. Interface Anal. 1990, 15 (9), 531-536.
    [37] Onoue, M.; Han, M. R.; Ito, E.; Hara, M., Step-wise decomposition process of azobenzene self-assembled monolayers. Surf. Sci. 2006, 600 (18), 3999-4003.
    [38] Wallart, X.; HenrydeVilleneuve, C.; Allongue, P., Truly Quantitative XPS Characterization of Organic Monolayers on Silicon: Study of Alkyl and Alkoxy Monolayers on H-Si(111). J. Am. Chem. Soc. 2005, 127 (21), 7871-7878.
    [39] Fadley, C. S., Angle-resolved x-ray photoelectron spectroscopy. Prog. Surf. Sci.1984, 16 (3), 275-388.
    [40] McCreery, R.; Dieringer, J.; Solak, A. O.; Snyder, B.; Nowak, A. M.; McGovern, W. R.; DuVall, S., Molecular Rectification and Conductance Switching in Carbon-Based Molecular Junctions by Structural Rearrangement Accompanying Electron Injection. J. Am. Chem. Soc. 2003, 125 (35), 10748-10758.
    [41] Wang, Z.; Cook, M. J.; Nygard, A. M.; Russell, D. A., Metal-Ion Chelation and Sensing Using a Self-Assembled Molecular Photoswitch. Langmuir 2003, 19 (9), 3779-3784.
    [42] Ho, J. C.; Yerushalmi, R.; Jacobson, Z. A.; Fan, Z.; Alley, R. L.; Javey, A., Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 2008, 7 (1), 62-67.
    
    [1] Wang, L.; Xia, Y.; Shen, H., J. Phys. D-Appl. Phys. 2003, 3, 2548.
    [2]李熙莹,红外探测系统在反巡航导弹中的应用.激光与红外2003, 1, 8.
    [3] Tenne, R.; Clement, C. L., J. Chem. 1998, 38, 57.
    [4] Martin, H. B.; Argoitia, A.; Landau, U., J. Electrochem. Soc. 1996, 143, L133.
    [5] Sarada, B. V.; Rao, T. N.; Tryk, D. A., 1999. New Diam. Front. Carbon Technol. 9, 365.
    [6] Joachim, C.; Mark A. Ratner, Molecular electronics Special Feature(A serier of letters and articles) 2005,102 (25) Proc. Natl. Acad. Sci. 2005.
    [7] Vilan, A.; Cahen, D., How organic molecules can control electronic devices. Trends Biotechnol. 2002, 20 (1), 22-29.
    [8] He, T.; He, J.; Lu, M.; Chen, B.; Pang, H.; Reus, W. F.; Nolte, W. M.; Nackashi, D. P.; Franzon, P. D.; Tour, J. M., Controlled Modulation of Conductance in Silicon Devices by Molecular Monolayers. J. Am. Chem. Soc. 2006, 128 (45), 14537-14541.
    [9] Roth, K. M.; Yasseri, A. A.; Liu, Z.; Dabke, R. B.; Malinovskii, V.; Schweikart, K. H.; Yu, L.; Tiznado, H.; Zaera, F.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F., Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices. J. Am. Chem. Soc. 2003, 125 (2), 505-517.
    [10] Hartl, A.; Schmich, E.; Garrido, J. A.; Hernando, J.; Catharino, S. C. R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmuller, D.; Stutzmann, M., Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 2004, 3 (10), 736-742.
    [11] Zhou, Y.; Zhi, J., Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem. Commun. 2006, 8 (12), 1811-1816.
    [12] Buriak, J. M., Organometallic Chemistry on Silicon and Germanium Surfaces. Chem. Rev. 2002, 102 (5), 1271-1308.
    [13] Hanson, E. L.; Guo, J.; Koch, N.; Schwartz, J.; Bernasek, S. L., Advanced Surface Modification of Indium Tin Oxide for Improved Charge Injection in Organic Devices. J. Am. Chem. Soc. 2005, 127 (28), 10058-10062.
    [14] Hancer, M., The effect of humidity on the stability of octadecyltrichlorosilane for the self-assembled monolayer coating applications. Prog. Org. Coatings 2008, 63 (4), 395-398.
    [15] Michael P. Stewart, J. M. B., Photopatterned Hydrosilylation on Porous Silicon. Angew. Chem. Int. Ed. 1998, 37 (23), 3257-3260.
    [16] Olivier, J.; Servet, B.; Vergnolle, M.; Mosca, M.; Garry, G., Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum: Measurements by the four-probe method and by Kelvin force microscopy. Synth .Met. 2001, 122 (1), 87-89.
    [17] Lee, S. T.; Gao, Z. Q.; Hung, L. S., Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 1999, 75 (10), 1404-1406.
    [18] Strobel, P.; Riedel, M.; Ristein, J.; Ley, L., Surface transfer doping of diamond. Nature 2004, 430 (6998), 439-441.
    [19] Qi, D.; Chen, W.; Gao, X.; Wang, L.; Chen, S.; Loh, K. P.; Wee, A. T. S., Surface Transfer Doping of Diamond (100) by Tetrafluoro-tetracyanoquinodimethane. J. Am. Chem. Soc. 2007, 129 (26), 8084-8085.
    [20] Stotter, J.; Zak, J.; Behler, Z.; Show, Y.; Swain, G. M., Optical and Electrochemical Properties of Optically Transparent, Boron-Doped Diamond Thin Films Deposited on Quartz. Anal. Chem. 2002, 74 (23), 5924-5930.
    [21] Yang, W.; Auciello, O.; Butler, J. E.; Cai, W.; Carlisle, J. A.; Gerbi, J. E.; Gruen, D. M.; Knickerbocker, T.; Lasseter, T. L.; Russell, J. N.; Smith, L. M.; Hamers, R. J., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 2002, 1 (4), 253-257.
    [22] Fischer, A. E.; Show, Y.; Swain, G. M., Electrochemical Performance of Diamond Thin-Film Electrodes from Different Commercial Sources. Anal. Chem. 2004, 76 (9), 2553-2560.
    [23] Strother, T.; Knickerbocker, T.; Russell, J. N.; Butler, J. E.; Smith, L. M.; Hamers,中国科学院化学研究所博士学位论文95R. J., Photochemical Functionalization of Diamond Films. Langmuir 2002, 18 (4), 968-971.
    [24] Wang, J.; Firestone, M. A.; Auciello, O.; Carlisle, J. A., Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts. Langmuir 2004, 20 (26), 11450-11456.
    [25] Nakamura, T.; Ohana, T.; Hagiwara, Y.; Tsubota, T., Photochemical modification of diamond powders with elemental sulfur and their surface-attachment behavior on gold surfaces. Phys. Chem. Chem. Phys. 2009, 11 (4), 730-734.
    [26] Tsubota, T.; Tanii, S.; Ida, S.; Nagata, M.; Matsumoto, Y., Chemical modification of diamond surface with CH3(CH2)nCOOH using benzoyl peroxide. Phys. Chem. Chem. Phys 2003, 5 (7), 1474-1480.
    [27] Teukam, Z.; Chevallier, J.; Saguy, C.; Kalish, R.; Ballutaud, D.; Barbe, M.; Jomard, F.; Tromson-Carli, A.; Cytermann, C.; Butler, J. E.; Bernard, M.; Baron, C.; Deneuville, A., Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nat. Mater. 2003, 2 (7), 482-486.
    [28] Reichart, P.; Datzmann, G.; Hauptner, A.; Hertenberger, R.; Wild, C.; Dollinger, G., Three-Dimensional Hydrogen Microscopy in Diamond. Science 2004, 306 (5701), 1537-1540.
    [29] Li, Y., He, Y.; Tong, X., Wang, X.; Photoinduced Deformation of Amphiphilic Azo Polymer Colloidal Spheres. J. Am. Chem. Soc. 2005, 127 (8), 2402-2403.
    [30] Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E., Single-Molecule Optomechanical Cycle. Science 2002, 296 (5570), 1103-1106.
    [31] Wang, S.; Swain, G. M., Spatially Heterogeneous Electrical and Electrochemical Properties of Hydrogen-Terminated Boron-Doped Nanocrystalline Diamond Thin Film Deposited from an Argon-Rich CH4/H2/Ar/B2H6 Source Gas Mixture. J. Phys. Chem. C 2007, 111 (10), 3986-3995.
    [32] Solin, S. A.; Ramdas, A. K., Raman Spectrum of Diamond. Phys. Rev. B 1970, 1 (4), 1687.
    [33] Zhou, Y.; Zhi, J.; Zou, Y.; Zhang W.; Lee S. T., Direct Electrochemistry and Electrocatalytic Activity of Cytochrome c Covalently Immobilized on a Boron-Doped Nanocrystalline Diamond Electrode. Anal. Chem. 2008, 80, 4141-4146.
    [34] Miller, J. B.; Brown, D. W., Photochemical Modification of Diamond Surfaces. Langmuir 1996, 12 (24), 5809-5817.
    [35] Ohtani, B.; Kim, Y.-h.; Yano, T.; Hashimoto, K.; Fujishima, A.; Uosaki, K., Surface Functionalization of Doped CVD Diamond via Covalent Bond. An XPS Study on the Formation of Surface-bound Quaternary Pyridinium Salt. Chem. Lett. 1998, 27 (9), 953-954.
    [36] Kondo, T.; Hoshi, H.; Honda, K.; Einaga, Y.; Fujishima, A.; Kawai, T., Photochemical Modification of a Boron-doped Diamond Electrode Surface with Vinylferrocene. J. Phys. Chem. C 2008, 112 (31), 11887-11892.
    [37] Kuo, T.-C.; McCreery, R. L.; Swainb, G. M., Electrochemical Modification of Boron-Doped Chemical Vapor Deposited Diamond Surfaces with Covalently Bonded Monolayers. Electrochem. Solid ST 1999, 2 (6), 288-290.
    [38] sato, T.; Tsuji, K.; Kokuryu, E.; Wadayama, T.; Hatta, A., Azobenzene Free Volume. Mol. Cryst. Liq. Cryst. 2003, 391, 13-39.
    [39] Velez, M.; Mukhopadhyay, S.; Muzikante, I.; Matisova, G.; Vieira, S., Atomic Force Microscopy Studies of Photoisomerization of an Azobenzene Derivative on Langmuir-Blodgett Monolayers. Langmuir 1997, 13 (4), 870-872.
    [40] Wang, Y.; Yu, H.; Mu, T.; Luo, Y.; Zhao, C.; Liu, Z., Photochromic and electrochemical behavior of a crown-ether-derived azobenzene monolayer assembly. J. Electroanal. Chem. 1997, 438 (1-2), 127-131.
    [41] Hamelmann, F.; Heinzmann, U.; Siemeling, U.; Bretthauer, F.; Vor der Bruggen, J., Light-stimulated switching of azobenzene-containing self-assembled monolayers.中国科学院化学研究所博士学位论文97Appl. Surf. Sci. 2004, 222 (1-4), 1-5.
    [42] Zhang, X.; Wen, Y.; Li, Y.; Li, G.; Du, S.; Guo, H.; Yang, L.; Jiang, L.; Gao, H.; Song, Y., Molecularly Controlled Modulation of Conductance on Azobenzene Monolayer-Modified Silicon Surfaces. J. Phys. Chem. C 2008, 112 (22), 8288-8293.
    [43] Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired surfaces with special wettability. Acc. Chem. Res 2005, 38 (8), 644-652.
    [44] Zhu, X. Y.; Boiadjiev, V.; Mulder, J. A.; Hsung, R. P.; Major, R. C., Molecular Assemblies on Silicon Surfaces via Si-O Linkages. Langmuir 2000, 16 (17), 6766-6772.
    [45] Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J. Am. Chem. Soc. 1995, 117 (11), 3145-3155.
    [46] F.Liu, Z.; Hashimoto, K.; Fujishima, A., photoelectrochemical information storage using an azobenzene derivative. Nature 1990, 347, 658-661.
    [1] Weinberger, S. R.; Morris, T. S.; Pawlak, M., Recent trends in protein biochip technology. Pharmacogenomics 2000, 1 (4), 395-416.
    [2] Schena, M., Microarray biochip technology. Eaton Pub., 2000.
    [3] Cheng, J.; Kricka, L., Biochip technology. Taylor & Francis, 2001.
    [4] Mann, J.; Tarantola, D.; Netter, T.; Global, A.; Coalition, P., AIDS in the World. Massachusetts Cambridge: Harvard University Press, 1992.
    [5] Ross, S. A.; Gulve, E. A.; Wang, M., Chemistry and Biochemistry of Type 2 Diabetes.Chem. Rev. 2004, 104 (3), 1255-1282.
    [6] Kleihues, P.; Cavenee, W., Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer Lyon, 1997.
    [7] Thomas, S. W.; Joly, G. D.; Swager, T. M., Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107 (4), 1339-1386.
    [8] Liu, B.; Bazan, G. C., Homogeneous Fluorescence-Based DNA Detection with Water-Soluble Conjugated Polymers. Chem. Mater. 2004, 16 (23), 4467-4476.
    [9] Herland, A.; Inganas, O., Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol. Rapid Commun. 2007, 28 (17).
    [10] Leclerc, M., Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater 1999, 11, 18.
    [11] Rose, A.; Zhu, Z.; Madigan, C.; Swager, T.; Bulovi; cacute, V., Sensitivity gains in chemosensing by lasing action in organic polymers. 2005. 434(7035), 876-879
    [12] Fan, C.; Plaxco, K.; Heeger, A., High-efficiency fluorescence quenching of conjugated polymers by proteins. J. Am. Chem. Soc 2002, 124 (20), 5642-5643.
    [13] Liu, B.; Bazan, G., Optimization of the molecular orbital energies of conjugated polymers for optical amplification of fluorescent sensors. J. Am. Chem. Soc 2006, 128 (4), 1188-1196.
    [14] Kim, I.; Bunz, U., Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J. Am. Chem. Soc 2006, 128 (9), 2818-2819.
    [15] Tan, C.; Atas, E.; Muller, J.; Pinto, M.; Kleiman, V.; Schanze, K., Amplified quenching of a conjugated polyelectrolyte by cyanine dyes. J. Am. Chem. Soc 2004, 126 (42), 13685-13694.
    [16] Pun, C.; Lee, K.; Kim, H.; Kim, J., Signal amplifying conjugated polymer-based solid-state DNA sensors. Macromolecules 2006, 39 (22), 7461-7463.
    [17] Carpick, R.; Sasaki, D.; Marcus, M.; Eriksson, M.; Burns, A., Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. J. Phys. Condens. Matter. 2004, 16, 679-698.
    [18] Mueller, A.; O’Brien, D., Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem. Rev. 2002, 102 (3), 727.
    [19] Jelinek, R.; Kolusheva, S., Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications. Biotechnol. Adv. 2001, 19 (2), 109-118.
    [20] Ringsdorf, H.; Schlarb, B.; Venzmer, J., Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 1988, 27 (1), 113-158.
    [21] Okada, S.; Peng, S.; Spevak, W.; Charych, D., Color and chromism of polydiacetylene vesicles. Acc. Chem. Res 1998, 31 (5), 229-239.
    [22] Sarkar, A.; Okada, S.; Matsuzawa, H.; Matsuda, H.; Nakanishi, H., Novel polydiacetylenes for optical materials: beyond the conventional polydiacetylenes. J. Mater. Chem. 2000, 10 (4), 819-828.
    [23] Zhou, W.; Li, Y.; Zhu, D., Progress in Polydiacetylene Nanowires by Self-Assembly and SelfPolymerization. Chem. Asian J. 2007, 2 (2).
    [24] Jahnke, E.; Millerioux, A.; Severin, N.; Rabe, J.; Frauenrath, H., Functional, hierarchically structured poly (diacetylene) s via supramolecular self-assembly. Macromol. Biosci. 2007, 7 (2).
    [25] Materny, A.; Chen, T.; Vierheilig, A.; Kiefer, W., A review on linear and non-linear resonance Raman spectroscopy of the conjugated system polydiacetylene. J. Raman Spectrosc. 2001, 32 (6-7), 425-445.
    [26] Wegner, G., Solid-state polymerization mechanisms. Pure Appl. Chem. 1977, 49, 443–454.
    [27] Chance, R., Chromism in polydiacetylene solutions and crystals. Macromolecules 1980, 13 (2), 396-398.
    [28] Yoon, J.; Chae, S.; Kim, J., Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007, 129 (11), 3038-3039.
    [29] Bloor, D., Dissolution and Spectroscopic Properties of the Polydiacetylene Poly (10, 12-docosadiyne-1, 12-diol-bisethylurethane). Macromol. Chem. Phys. 2001, 202 (8), 1410-1423.
    [30] Carpick, R. W.; Sasaki, D. Y.; Marcus, M. S.; Eriksson, M. A.; Burns, A. R., Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. J. Phys. Condens. Matter. 2004, 16, 0953-8984.
    [31] Nallicheri, R.; Rubner, M., Investigations of the mechanochromic behavior of poly (urethane-diacetylene) segmented copolymers. Macromolecules 1991, 24 (2), 517-525.
    [32] Tomioka, Y.; Tanaka, N.; Imazeki, S., Surface‐pressure‐induced reversible color change of a polydiacetylene monolayer at a gas–water interface. J. Chem. Phys. 1989, 91, 5694.
    [33] Charych, D.; Nagy, J.; Spevak, W.; Bednarski, M., Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 1993, 261 (5121), 585-588.
    [34] Reichert, A.; Nagy, J.; Spevak, W.; Charych, D., Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J. Am. Chem. Soc 1995, 117 (2), 829-830.
    [35] Pan, J.; Charych, D., Molecular recognition and colorimetric detection of cholera toxin by poly (diacetylene) liposomes incorporating Gm1 ganglioside. Langmuir 1997, 13 (6), 1365-1367.
    [36] Ma, Z.; Li, J.; Liu, M.; Cao, J.; Zou, Z.; Tu, J.; Jiang, L., Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J. Am. Chem. Soc. 1998, 120 (48), 12678-12679.
    [37] Wang, C.; Ma, Z., Colorimetric detection of oligonucleotides using a polydiacetylene vesicle sensor. Anal. Bioanal. Chem. 2005, 382 (7), 1708-1710.
    [38] Cheng, Q.; Stevens, R., Coupling of an induced fit enzyme to polydiacetylene thin films: colorimetric detection of glucose. Adv. Mater. 1997, 9 (6), 481-483.
    [39] Kolusheva, S.; Shahal, T.; Jelinek, R., Cation-selective color sensors composed of ionophore-phospholipid-polydiacetylene mixed vesicles. J. Am. Chem. Soc. 2000, 122 (5), 776-780.
    [40] Okada, S.; Jelinek, R.; Charych, D., Induced color change of conjugated polymeric vesicles by interfacial catalysis of phospholipase A2. Angew. Chem. Int. Ed. 1999, 38 (5).
    [41] Gill, I.; Ballesteros, A., Immunoglobulin-polydiacetylene sol-gel nanocomposites assolid-state chromatic biosensors. Angew. Chem. Int. Ed. 2003, 42 (28).
    [42] Kolusheva, S.; Kafri, R.; Katz, M.; Jelinek, R., Rapid colorimetric detection of antibody-epitope recognition at a biomimetic membrane interface. J. Am. Chem. Soc. 2001, 123 (3), 417-422.
    [43] Lee, S.; Kang, C.; Yang, D.; Lee, J.; Kim, J.; Ahn, D.; Sim, S., The Development of a Generic Bioanalytical Matrix Using Polydiacetylenes We gratefully acknowledge the financial support from Core Environmental Technology Development Project for Next Generation (Ministry of Environment, South Korea). Adv. Funct. Mater. 2007, 17 (13).
    [44] Kim, J.; Lee, J.; Woo, S.; Ahn, D., Unique effects of cyclodextrins on the formation and colorimetric transition of polydiacetylene vesicles. Macromol. Chem. Phys. 2005, 206 (22).
    [45] Cho, J.; Woo, S.; Ahn, D.; Ahn, K.; Lee, H.; Kim, J., Cyclodextrin-induced color changes in polymerized diacetylene Langmuir-Schaefer films. Chem. Lett. 2003, 32 (3), 282-283.
    [46] Kim, J.; Lee, Y.; Yang, D.; Lee, J.; Lee, G.; Ahn, D., A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 2005, 127 (50), 17580-17581.
    [47] Wenfang Yuan, G. J., Yanlin Song, Lei Jiang,, Micropatterning of polydiacetylene based on a photoinduced chromatic transition and mechanism study. J. Appl. Polym. Sci. 2007, 103 (2), 942-946.
    [48] Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F., Molecular Memories That Survive Silicon Device Processing and Real-World Operation. Science 2003, 302 (5650), 1543-1545.
    [49] Buriak, J. M.; Stewart, M. P.; Geders, T. W.; Allen, M. J.; Choi, H. C.; Smith, J.; Raftery, D.; Canham, L. T., Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces. J. Am. Chem. Soc. 1999, 121 (49), 11491-11502.
    [50] Linford, M. R.; Chidsey, C. E. D., Surface Functionalization of Alkyl Monolayers by Free-Radical Activation: Gas-Phase Photochlorination with Cl2. Langmuir 2002, 18 (16), 6217-6221.
    [51] Christian Gurtner, A. W. W. M. J. S., Surface Modification of Porous Silicon by Electrochemical Reduction of Organo Halides. Angew. Chem. Int. Ed. 1999, 38 (13-14),1966-1968.
    [52] Wojtyk, J. T. C.; Tomietto, M.; Boukherroub, R.; Wayner, D. D. M., "Reagentless" Micropatterning of Organics on Silicon Surfaces: Control of Hydrophobic/Hydrophilic Domains. J. Am. Chem. Soc. 2001, 123 (7), 1535-1536.
    [53] Olmsted, J.; Strand, M., Fluorescence of polymerized diacetylene bilayer films. J. Phys. Chem. 1983, 87 (24), 4790-4792.