纳米TiN粉末及多孔状TiN的直流电弧制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是利用直流电弧等离子体方法在10—20 kPa的N2气压条件下,合成纳米级TiN粉末及首次合成多孔状TiN颗粒。主要分析了气压条件及温度场对多孔状TiN孔径形成及纳米粉末颗粒大小的影响,并对纳米级TiN粉末和多孔状TiN进行了X射线、透射电镜、扫描电镜等分析。此外还测量了纳米TiN陶瓷的硬度。
Titanium nitride is an important technological material for applications in various fields because of its good combination of physical and chemical properties, such as high melting point, high hardness, relatively low density, high wear resisitance and high corrosion resistance. And it is a grateful material because of its golden color. TiN belongs to the cubic lattice system and has a compact framework. TiN is a useful material for optimizing cutting tools and semiconductor packaging. Therefore it is very important on practical application to prepare the TiN particles which have high purity, size uniformity and shape integrity features.
     Similarly, nano-sized titanium nitride with special morphologies, which has an excellent and unique performance, is a very promising material. And it has attracted great interest in the nanotechnology field. People have prepared nano-sized titanium nitride with special morphologies by using different materials, different preparation methods and have studied their performances. Despite that the preparation methods have their characteristics, there are still many issues to be resolved. It has a great significance to develop the preparation and to study the applications and performances of these nano-sized titanium nitride with special morphologies.
     In this paper, we take titanium nitride as the research object. Using an effective synthesized method, direct current (DC) arc discharge plasma method, we synthesize porous titanium nitride and titanium nitride nanopowders. We use XRD, SEM and TEM to characterize the porous titanium nitride and titanium nitride nanopowders.
     The diameter of the nanopowders is 10-20 nm. We also make porous titanium nitride in the same method. The diameter of the pores is 0.5-1.5μm. The shape of the pores is quadrilateral or pentagonal. Finally, we expound the law of the pores forming. And we also discuss the influence of temperature field and gas pressure to the pores forming.
引文
[1]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [2]Kubo R.J. Relationship between contact lens base curve and optic zone diameter for alignment fitting[J].Phys. Spc. Jpn, 1971,48(4):311.
    [3]Birringer R,Zirnmer P.Measuring the interface stress of nanocrystalline iron[J].Applied physics letters,2008,92 (8):132.
    [4]Siegel R.Sythesis and characterization of gold nanaparticles with surface ligands derived from a primary phosphine[J]. Journal of Cluster Science,2008,19(3):445-448.
    [5]张立德,牟季羡.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [6]刘阳,曾令可,胡晓丽等.碳化钛的合成及其应用进展[J].中国陶磁,2002,38(5):7-10.
    [7]李奎,潘复生,汤爱涛.TiC.TiN.Ti(C.N)粉末制备技术的现状及发展[J].重庆大学学报,2002,25(6):135-151.
    [8]罗锡山.氢化钛直接反应合成氮化钛的研究[J].粉末冶金工业,1997,7(3):28-30.
    [9]张国军.TiO2碳还原氮化法制备TiN粉末[J].硅酸盐学报,1990,18(3):277-281.
    [10]孙康.TiC、TiN、TiB2的主要性质和合成方法[J].1995,000(005):23-26.
    [11]Munir S.The synthesis of Titanium nitride by self-proparing cobusition synthesis [J]. Height up ,High-pressur,1988,20:19.
    [12]王为民.自蔓延高温合成法制备TiN陶瓷粉末[J].武汉工业大学学报,1995,17(3):16-18.
    [13]刘兵海.微波碳热还原法制备TiN[J].金属学报,1996,32(9):920-925.
    [14]Wexler D.Ti-TiN hard metals prepared by insitu formation of TiN during reaction ball milling of Ti in ammonia [J]. Journal of Alloys and Compounds,2000,309:201-207.
    [15]Zhang F. Formation of Titanium nitrides via wet reaction ball milling[J] Journal of Alloys and Compounds, 2000,307:249-253.
    [16]季顺林,卢翔,朱正厚等.金属基纳米复合材料的制备技术研究[J].南京航天大学学报,2003,035(005):572-578.
    [17]陈振华,严红革.超微粉末的研究[J].功能材料,2000,031(001):36-37.
    [18]尤建国,徐超平,刘淑琴等.等离子体技术在炭黑制备中的应用[J].新型碳材料,2003,018(002):144-150.
    [19]贾东书,童忠良.纳米SiO2粉体的制备与研究[J].化工进展,003,022(007):735-738.
    [20]Wark Michael ,Kessler Henri ,Schwlz Ekoff .Growth and reactivity of zine and cadmium oxide nano-Particles in zeolites[J] .Gaunter Microporous Materials, 1997, 8 (5-6):241-244.
    [21]Bockheim J D.Properties and classification of cold desert soils from Antarctica[J].Soil science Society of American Jounrnal,1997,6(1):224-226.
    [22]Cui Z L.Plastic deformation of nano-TiO2 ceramics prapared by different methods[J]. Journal of Materials Science and Techology,1999,15(1):71-74.
    [23]苗鸿雁,丁常胜,罗宏杰等.水热合成Sb-SnO2纳米粉体制备工艺研究[J].稀有金属材料与工程,2003,032(009):761-764.
    [24]杨华,黄可龙,刘素琴等.水热法制备的Fe3O4磁流体[J].磁性材料及器件,2003,34(2):4-6.
    [25]尹春雷,袁方利,黄淑兰.纳米氧化锌的制备和应用[J].无机盐技术,2003, 000(001):10 -13.
    [26]李人成,周大利,刘恒等.纳米TiO2的制备[J].四川有色金属,2003,0 00(002): 1-8.
    [27]胡坤宏,沃恒洲,韩效钊等.纳米二硫化钼制备现状及发展趋势[J].现代化工,2003,023(008):14-17.
    [28]潘湛吕,王成勇,肖楚民等.电化学法和沉淀法制备的纳米结构Ce02的微观结构比较[J].稀有金属,2003,27(3): 332-334.
    [29]李文翠,郭树才.溶胶一凝胶技术在新型纳米气凝胶合成中的应用[J].化工进展,2001,(2):34-36.
    [30]李革胜,李华基.冷冻十燥制备TiO2超细粉体的研究[J].重庆大学学报(自然科学版),1999,022(001):95-98.
    [31]Matsuo K.Nano-Ag particles for electrodes in a yttria-doped BaCeO3 protonic conductor[J]. Solid state ionics,2007,178(7):575-579.
    [32]五百藏弘曲.电气化学[M].1982,50:99
    [33]Hoffmann M R, Martin S T,Choi W,et al.Environmental application of semiconductor photocatalysis[J],Chem,Rev,1995,95:69-96.
    [34]李新永,李树本.纳米半导体研究进展[J].化学进展,1996,8 (3) :231-238.
    [35]郭景坤.纳米陶瓷及其进展[J].硅酸盐学报,1992, 20(3):286.
    [36]黄幼榕,王晓光,周傲.硅酸盐学报. 1994,22 (1): 276.
    [37]翟洪祥,黄勇,汪长安.不连续细长相增强CMCS的增韧效果[J].高技术通讯, 1997,7 (4): 11.
    [38]Xu YR,Fu XR,Yan D.S. Physics,1988,(150B):276.
    [40]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报,1995,23 (4): 365-370.
    [41]Jun hong zhao,Laura C,Stearns,Martin P,Harmer,Helen M,Chan and Gary A.Miller Mechanial Behavior of Alumina-Silicon Carbide Nanocomposite J .Am.Ceram.Soc.1993,76(2):503-10.
    [42]李廷凯,沈志坚,丁子上.ZrO2-Al2O3系陶瓷复合材料力学性质[J].无机材料学报,1990, 18(1):39-46.
    [43]高瑞平,李晓光.先进陶瓷物理与化学原理及技术[M].北京:科学出版社,2001.
    [44]R.W.卡恩,P.哈森,E.J.克雷默.材料科学与技术丛书[M].北京:科学出版社,1999,17B:75.
    [45]王其平.电器电弧理论[M].北京:机械工业出版社,1982. [46南儵敏夫著,乔兴武译,马廷温校.直流电弧炉的电弧现象[M].北京:冶金工业出版社,1998.
    [47]F. B. Vurzel, L. S. Polak. Plasma Chemical Technology Future of the Chemical Industry[J].Ind Eng Chem., 1970, 62(8):456.
    [48]R. F. Post.Controlled Fusion Research-an Application of the Physics of High Temperature Plasmas[J]. Rev. Mod. Phys., 1956, 28(3):338.
    [49]S.M. Aithal, V. V. Subramaniam, J. Pagan, R. W. Richardson.Numerical model of a transferred plasma arc[J]. JOURNAL OF APPLIED PHYSICS, 1998:84(7), 3506.
    [50]王箴.化工辞典[M].北京:化学工业出版社,1992: 801.
    [51]郭海珠,余森.实用耐火原料手册[M].北京:中国建材工业出版社,2000: 439-476.
    [52]萧世槐.氮化钛粉末生产工艺及其应用新进展[J].矿冶,1997, 6 (2):59-62.
    [53]张作泰,赛音巴特尔,李文超.AlON-TiN复相材料的合成及工艺优化[J].硅酸盐学报,2003, 31 (8):727-731.
    [54]龚红宇,尹衍升等.反应烧结法制备(AlN, TiN)-A1203复合材料的研究[J].复合材料学报,2003, 20 (1):12-15.
    [55]李景国,高镰,郭景坤.原位氮化法制备纳米TiN-A1203[J].复合粉体、无机材料学报,2002, 17 (3):437-440.
    [56]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金,1994, 22 (4):43-49.
    [57]RakZ.S.CzechowskiJ.Manufacture and properities of TiN-Al2O3 particulate composites[J].J Eur Ceram Soc,1998,18(2):373-380.
    [58]顾立德.特种耐火材料(第2版)[M].北京:冶金工业出版社,2000: 160.
    [59]江涛,马敏庄.氮化钛的制备及表征[J].分析测试学报,1999, 18 (4):47.
    [60]Bica I.Nanoparticle production by plasma[J].MatelSci 1999,68:5-9.
    [61]K.stickers,GFT.Fachz Lab,1977,21(12):1049.
    [62]V.N.Vovk.Zh.Prikl.Spektrosk,1973,18(6):979.
    [63]梁洞泉,王文质.单纯性最优化方法及其在分析化学中的应用[J].化学通报,1984(2):32-36.
    [64]K.L.Moshalov,Zh.Prikl.Spektrosk,1974,21(3):395.
    [65]T.Kantor et al.Spectrochim.Acta,1981,35B:401.