运用红外可视脑片膜片钳技术对大鼠前庭内侧核神经元内在膜特性和放电反应特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分红外可视脑片膜片钳术中大鼠脑干脑片的改良制备方法
     目的:改良脑片制备方法,探讨影响脑片活性的实验因素;方法:在国内外报道常用方法的基础上进行改良,制备含有前庭内侧核的大鼠脑干脑片,从肉眼观、镜下观和放电特性三个方面判断脑片活性,观察鼠龄、生理溶液、温度等因素对脑片活性的影响;结果:在不同年龄组动物建立了稳定可靠的脑片制备方法,通过红外微分干涉相差技术可直接观察脑片表层下50-100μm前庭内侧核神经元的立体影像,并可进行长时间稳定的电生理记录;鼠龄越小神经元活性越易恢复,在成年鼠制备脑片时采取低温人工脑脊液心脏灌注、使用高蔗糖溶液、较高温度预孵育等措施可明显提高脑片活性;孵育和记录温度可直接影响神经元的兴奋性,在一定范围内提高温度可提高神经元兴奋性,但会缩短脑片存活时间;结论:改良后的脑片制备方法简单可行,可为电生理研究提供大量具有良好活性的前庭内侧核神经元;根据试验目的选择合适年龄的试验动物,脑片制备方法的选择和温度、外液实验等环境的控制应根据所选用动物的年龄而进行调整。
     第二部分大鼠前庭内侧核神经元的基本膜特性和自发放电活动
     目的:观察大鼠前庭内侧核神经元的基本膜特性及其在静息膜电位下的放电活动,探讨前庭系统生理功能的可能机制。方法:运用红外微分干涉相差技术,可视状态下对前庭内侧核神经元进行全细胞记录,观察电流钳模式下神经元在正常人工脑脊液和低钙高镁脑脊液中的放电活动,按平均动作电位形状对神经元进行分型,比较不同类型神经元基本膜特性和放电活动的差异。结果:在正常人工脑脊液中大鼠前庭内侧核神经元存在规律的放电活动,在低钙高镁人工脑脊液中神经元表现出较不规律的放电活动,放电活性也明显降低;神经元可被分为具有单相后超极化及A样整流特性的A型(n=17,33%),有双相后超极化的B型(n=32,63%),以及同时拥有或不拥有以上特征的其他型(n=2,4%);A、B型神经元的部分主动膜特性存在明显差异。结论:大鼠前庭内侧核神经元的放电为基于其内在膜特性的自发活动,其放电模式受到胞外钙浓度的影响;大部分神经元的放电表现为典型的A型或B型,但仍有少量非典型放电存在。
     第三部分大鼠前庭内侧核神经元对模拟传入信号的放电反应
     目的:观察大鼠前庭内侧核神经元对模拟传入刺激信号的放电反应动力学特征,探讨中枢前庭系统生理功能的可能机制。方法:运用红外微分干涉相差技术,可视状态下对前庭内侧核神经元进行全细胞记录,在电流钳模式下记录神经元的放电活动,向神经元胞内注入短暂超级化脉冲模拟突触后抑制性电流,注入线性去极化电流模拟头部作直线加速运动时外周前庭的传入信号,注入正弦刺激电流以模拟头部作匀速旋转运动时外周前庭的传入信号,观察不同类型神经元对刺激电流的放电反应。结果:前庭内侧核神经元在超级化脉冲后放电的后超级化幅度加深,并表现出抑制后反弹现象;神经元放电频率随去极化电流的增加而增加,在同等强度去极化电流刺激下B型神经元比A型神经元表现出较少的衰减现象和较强的超射现象;A、B型神经元的放电反应都可与输入正弦刺激形成共振并引起相位的移动。结论:头部做直线加速运动和匀速旋转运动时,前庭内侧核A、B型神经元对不同的传入刺激都可产生主动反应,放电反应表现出多样性,A、B型神经元放电反应动力学的差异是它们执行不同生理功能的基础。
Part 1: Modified Preparing Methods of Brainstem Slices for Visual Patch Clamp Techniques
     Objective: To approach a modified method of preparing brainstem slices, and to discuss the factors affecting slices health. Methods: Brainstem slices with medial vestibular nuclei were made on the basis of reported methods, and the quality of slices was judged by naked eye observation, light microscope observation and firing activities recordings. The effects of rats age, physiological fluids and temperature upon slices health were observed. Results: A simple and reliable preparation procedure of brain slices was established. The medial vestibular nucleus neurons were visualized by infrared differential interference contrast technique and readily-patched at a depth of 50-100μm underneath the surface of slices. Brain slices were easy to obtain from juvenile animals, while performing intracardiac perfusion with cold artificial cerebrospinal fluid, using high-sucrose solution and pre-incubating slices at a warmer temperature were useful when prepared slices from adult rats. Within definite temperature rage, the excitability of neurons improved with the increasing of temperature during incubation and recording, while the survival time shortened. Conclusions: Modified preparing methods could supply sufficient healthy medial vestibular nucleus neurons for electrophysiological recordings. The preparation procedures and the controlling of physiological surroundings should be adjusted according to rats age.
     Part 2: Spontaneous Firing Activities and Basic Membrane Properties of Rat Medial Vestibular Nucleus Neurons in Brain Slices
     Objective: To study the basic membrane properties of rat medial vestibular nucleus(MVN) neurons and their firing activities at resting membrane potential, and to discuss how the intrinsic membrane properties contribute to physiological functions in central vestibular system. Methods: By using infrared differential interference contrast technique, whole-cell recordings were made from rat MVN neurons. Firing activities were recorded by current clamp mode in artificial cerebrospinal fluid (ACSF) and low Ca2+-high Mg2+ ACSF. On the basis of their averaged action potential shapes, the MVN neurons were classified. The differences of intrinsic membrane properties and firing mode were observed between two types. Results: Regular discharge activities were recorded in MVN neurons in ACSF. In low Ca2+-high Mg2+ ACSF, Neurons showed more irregular and depressive firing activities. MVN neurons were classified as type A (n=17, 33%) characterized by a single deep after-hyperpolarization (AHP) and A-like rectification, or type B (n=32, 63%) characterized by double AHP, and another two neurons (4%) with all or none of the characters. The passive membrane properties were not significantly different between type A and type B neurons, while part of active membrane properties was significantly different. Conclusions: The discharge activities of MVN neurons were initiated by their intrinsic membrane properties, and calcium mechanism contributed to firing mode. Most MVN neurons were classified as type A and B, while several showed unrepresentative firing properties. The differences of membrane properties between neurons determined their different physiological functions.
     Part 3: Firing Responses of Rat Medial Vestibular Nucleus Neurons to Simulated Input Signals
     Objective: To observe the firing response dynamics of rat medial vestibular nucleu(sMVN) neurons to simulated input signals, and to discuss how the firing dynamics contribute to physiological functions in central vestibular system. Methods: By using infrared differential interference contrast technique, whole-cell recordings were made from rat MVN neurons under direct observation. Firing activities were recorded in current clamp mode. Hyperpolarizing currents were injected into MVN neurons to simulated inhibitory postsynaptic currents (IPSC). Depolarizing currents and sinusoidal currents were injected into neurons to simulate the input signals from peripheric vestibular organs when head in linear accelerated motion and uniform rotation motion. Firing dynamics of MVN neurons to stimulus currents were recorded. Results: After hyperpolarizing currents injected into neurons, the after-hyperpolarization amplitude of action potentials increased and post-inhibitory rebound was recorded. Neurons firing rate increased with the depolarized current. Compared with type A neurons, type B neurons showed the weaker adaptation and the stronger overshot phenomenon to same depolarizing currents. Firing rate of neurons resonantly oscillated with sinusoidal currents, and phase lead was observed. Conclusions: When head made linear accelerated motion and uniform rotation motion, the MVN neurons responded actively to the input signals from peripheric vestibular organs. Differences of firing dynamics between type A and B neurons determined their different physiological functions.
引文
[1] Li CL, Mc IH. Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. The Journal of physiology 1957;139(2):178-190.
    [2] Blanton MG, Lo Turco JJ, Kriegstein AR. Whole-cell re~cording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Meth 1989, 30:203~210.
    [3] Dodt HU, Zieglgansberger W. Visualizing unstained neurons in living brain slices by infrared dic-videomicroscopy. Brain research 1990;537(1-2):333-336.
    [4] Stuart GJ, Dodt HU, Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 1993;423(5-6):511-518.
    [5] Edwards FA, Konnerth A, Sakmann B, et al. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 1989;414(5):600-612.
    [6] Gray R, Johnston D. Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol 1985;54(1):134-142.
    [7] Huang ZG, Griffioen KJ, et al. Nicotinic receptor activation occludes purinergic control of central cardiorespiratory network responses to hypoxia/hypercapnia. J Neurophysiol 2007;98(4):2429-2438.
    [8] Kondo T, Kakegawa W, Yuzaki M. Induction of long-term depression and phosphorylation of the delta2 glutamate receptor by protein kinase c in cerebellar slices. The European journal of neuroscience 2005;22(7):1817-1820.
    [9]刘振伟,李立君,刘传缋.海马脑片盲法膜片钳全细胞记录技术.生理学报, 2001;53(5):405-408.
    [10]涂娅莉,刘应兵,张莉等.大鼠视皮层神经元电生理和形态学特性在发育中的变化.生理学报2003;55(2):206-212.
    [11]雷革胜,万业宏,王玉英等.应用红外可视脑片膜片钳技术研究大鼠海马ca1神经元的电生理特性.第四军医大学学报2004;25(13):1153-1156.
    [12] Gorji A, Scheld HH, Speckmann EJ. Epileptogenic effect of cyclosporine in guinea-pighippocampal slices. Neuroscience 2002;115(4):993-7.
    [13] Nishimura Y, Asahi M, Saitoh K, et al. Ionic mechanisms underlying burst firing of layer III sensorimotor cortical neurons of the cat: an in vitro slice study. J Neurophysiol 2001 Aug;86(2):771-81.
    [14] Ericsson J, Robertson B, Wikstr?m MA. A lamprey striatal brain slice preparation for patch-clamp recordings. J Neurosci Methods 2007;165(2):251-6.
    [15] Simo W, Hapfelmeier G, Kochs E, et al. Isoflurane blacks synaptoc plasticity in the mouse hippocampus.Anesthesiology 2001;94:1058-65. 
    [16] Newlands SD, Kevetter GA, Perachio AA. A quantitative study of the vestibular commissures in the gerbil. Brain research 1989; 487:152-157.
    [17] Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 2003;60(5-6):511-541.
    [18] Perlmutter SI, Iwamoto Y, Baker JF, Peterson BW. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat. Journal of neurophysiology 1998;79(1):270-284.
    [19] Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Experimental brain research Experimentelle Hirnforschung 2000;130(3):277-297.
    [20] Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S. Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 2003;23(15):6392-6398.
    [21] Shimazu H, Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of neurophysiology 1966;29(3):467-492.
    [22] Gershon MD, Schwartz JH, Kandel ER. Morphology of chemical synapses and patterns of interconnection, 2nd ed. New york: Elsevier, 1985:132-147.
    [23] Shepherd GM, Koch C. Introduction to synaptic circuits. In: Shepherd GM, The synaptic organization of the brain. 3rd ed. Oxford University Press,1990,1-31.
    [24] Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science (New York, NY ) 1988;242(4886):1654-1664.
    [25] Goldberg JM, Highstein SM, Moschovakis AK, et al. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibularnuclei of the squirrel monkey. I. An electrophysiological analysis. Journal of neurophysiology 1987;58(4):700-718.
    [26] Precht W, Shimazu H. Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. Journal of neurophysiology 1965;28(6):1014-1028.
    [27] Shimazu H, Precht W. Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. Journal of neurophysiology 1965;28(6):991-1013.
    [28] Highstein SM, Goldberg JM, Moschovakis AK, Fernandez C. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. Journal of neurophysiology 1987;58(4):719-738.
    [29] Chen-Huang C, McCrea RA, Goldberg JM. Contributions of regularly and irregularly discharging vestibular-nerve inputs to the discharge of central vestibular neurons in the alert squirrel monkey. Experimental brain research Experimentelle Hirnforschung 1997;114(3):405-422.
    [30] Gallagher JP, Lewis MR, Gallagher PS. An electrophysiological investigation of the rat medial vestibular nucleus in vitro. Progress in clinical and biological research 1985; 176:293-304.
    [31] Ris L, Hachemaoui M, et al. Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. J Neurophysiol 2001;86(2):703-716.
    [32] Johnston AR, Macleod NK, et al. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurons. J Physiol 1994;481(Pt1):61-77.
    [33] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Experimental brain research Experimentelle Hirnforschung 1991, 84:417-425.
    [34] du Lac S, Lisberger SG. Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. Journal of comparative physiology 1995, 176:641-651.
    [35] Babalian A, Vibert N. Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 1997;81(2):405-26.
    [36] Wilson VJ, Yamagata Y, Yates BJ, et al. Response of vestibular neurons to headrotations in vertical planes. III. Response of vestibulocollic neurons to vestibular and neck stimulation. J Neurophysiol 1990;64:1695–1703.
    [37] Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 1988;60:1753–1764.
    [38] Lisberger SG, Miles FA. Role of primate medial vestibular nucleus in adaptive plasticity of vestibulo-ocular reflex. J Neurophysiol 1980;43:1725–1745.
    [39] Endo K, Thomson DB, Wilson VJ, et al. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 1995;74:428–436.
    [40] Baker J, Goldberg J, Hermann G, et al. Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 1984;294:138–143.
    [1] Li CL, Mc IH. Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. The Journal of physiology 1957;139 (2):178-190.
    [2] Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature1976, 260:779~802
    [3] Blanton MG, Lo Turco JJ, Kriegstein AR. Whole-cell re~cording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Meth 1989, 30:203~210.
    [4] Edwards FA, Konnerth A, Sakmann B, Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 1989;414(5):600-612.
    [5] Murchison D, Griffith WH. High-voltage-activated calcium currents in basal forebrain neurons during aging. J Neurophysiol 1996;76(1):158-174.
    [6] Murchison D, Griffith WH. Low-voltage activated calcium currents increase in basal forebrain neurons from aged rats. J Neurophysiol 1995;74(2):876-887.
    [7] Thibault O, Landfield PW. Increase in single L-type calcium channels in hippocampal neurons during aging. Science 1996;272(5264):1017-1020.
    [8] Gray R, Johnston D. Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol 1985;54(1):134-142.
    [9] Llinas R, Sugimori M. Electrophysiological properties of in vitro purkinje cell somata in mammalian cerebellar slices. The Journal of physiology 1980;305:171-195.
    [10] Takahashi T. Intracellular recording from visually identified motoneurons in rat spinal cord slices. Proceedings of the Royal Society of London Series B, Containing papers ofa Biological character 1978;202(1148):417-421.
    [11] Dodt HU, Zieglgansberger W. Visualizing unstained neurons in living brain slices by infrared dic-videomicroscopy. Brain research 1990;537(1-2):333-336.
    [12] Dodt HU. Infrared-interference videomicroscopy of living brain slices. Adv Exp Med Biol 1993;333:245-249.
    [13] Dodt HU, Hager G, et al. Direct observation of neurotoxicity in brain slices with infrared videomicroscopy. J Neurosci Methods 1993;50(2):165-171.
    [14] Stuart GJ, Dodt HU, Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 1993;423 (5-6):511-518.
    [15] Dodt HU, W Zieglgansberger. Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci 1994;17(11):453-458.
    [16] Dodt HU, W Zieglgansberger. Visualization of neuronal form and function in brain slices by infrared videomicroscopy. Histochem J 1998;30(3):141-152.
    [17] Huang ZG, Griffioen KJ, et al. Nicotinic receptor activation occludes purinergic control of central cardiorespiratory network responses to hypoxia/hypercapnia. J Neurophysiol 2007;98(4):2429-2438.
    [18] Kondo T, Kakegawa W, Yuzaki M. Induction of long-term depression and phosphorylation of the delta2 glutamate receptor by protein kinase c in cerebellar slices. The European journal of neuroscience 2005;22(7):1817-1820.
    [19]刘振伟,李立君,刘传缋.海马脑片盲法膜片钳全细胞记录技术.生理学报, 2001;53(5):405-408.
    [20]涂娅莉,刘应兵,张莉等.大鼠视皮层神经元电生理和形态学特性在发育中的变化.生理学报2003;55(2):206-212
    [21]雷革胜,万业宏,王玉英等.应用红外可视脑片膜片钳技术研究大鼠海马ca1神经元的电生理特性.第四军医大学学报2004;25(13):1153-1156.
    [22] Gorji A, Scheld HH, Speckmann EJ. Epileptogenic effect of cyclosporine in guinea-pig hippocampal slices. Neuroscience 2002;115(4):993-7.
    [23] Gervasi N, Hepp R, Tricoire L,et al. Dynamics of protein kinase: A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. JNeurosci 2007;27(11):2744-50.
    [24] Nishimura Y, Asahi M, Saitoh K, et al. Ionic mechanisms underlying burst firing of layer III sensorimotor cortical neurons of the cat: an in vitro slice study. J Neurophysiol 2001 Aug;86(2):771-81.
    [25] Ericsson J, Robertson B, Wikstr?m MA. A lamprey striatal brain slice preparation for patch-clamp recordings. J Neurosci Methods 2007 Sep 30;165(2):251-6.
    [26] Simo W, Hapfelmeier G, Kochs E, et al. Isoflurane blacks synaptoc plasticity in the mouse hippocampus.Anesthesiology 2001;94:1058-65. 
    [27] Moyer JR, Jr., Brown TH. Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. Journal of neuroscience methods 1998;86(1):35-54.
    [28] Paxinos G, Watson C. The rat brain in stereotaxic coordinates, 5th ed. San Diego: Elsevier Academic Press; 2005:59-65.
    [29] Aitken PG, Breese GR, Dudek FF, et al. Preparative methods for brain slices: A discussion. Journal of neuroscience methods 1995;59(1):139-149.
    [30] Colbert CM. Preparation of cortical brain slices for electrophysiological recording. Methods in molecular biology 2006;337:117-125.
    [31] Sekirnjak C, du Lac S. Physiological and anatomical properties of mouse medial vestibular nucleus neurosn projecting to the oculomotor nucleus. Journal of neurophysiology 2006;95(5):3012-3023
    [32] Feig S, Lipton P. N-methyl-d-aspartate receptor activation and ca2+ account for poor pyramidal cell structure in hippocampal slices. Journal of neurochemistry 1990;55 (2):473-483.
    [33] Aghajanian GK, Rasmussen K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse(New york, NK) 1989;3(4):331-338.
    [34] Edmonds B, Klein M, Dale N, et al. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science 1990, 250:1142-1147.
    [35] Choi DW. Excitotoxic cell death. Journal of neurobiology 1992;23(9):1261-1276.
    [36] Choi DW. Excitotoxic cell death. Journal of neurobiology 1992;23(9):1261-1276.
    [37] McILWain H and Buddle HL. Techniques in tissue metabolism.1. A mechanical chopper. Biochem J,1953;53:412-420
    [38] McILWain H. Techniques in tissue metabolism. 5. Chopping and slicing tissue samples. Biochem J 1961;78:213-218.
    [39] Skrede KK and Westgaard RH. The transverse hippocampus slices. A well-defined cortical structure maintained in vitro. Brain Res 1971;35:589-593.
    [40] Nicoll TA and Alger BE. A simple chamber for recording from submerged brain slices. J Neurosci 1981;4:153-156.
    [41] Sun, MK. Sympathoexcitory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res 1988;438:23-40.
    [42] Gurkiewicz M, Korngreen A.Recording, analysis, and function of dendritic voltage-gated channels. Pflugers Arch 2006 Dec;453(3):283-92.
    [43] Hechler D, Nitsch R, Hendrix S.Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 2006 Aug 30;52(1):160-9.
    [44] Zhou WL, Yan P, Wuskell JP, et al. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Methods 2007 Aug 30;164(2):225-39.
    [45] Kennegh H, et al. Pitfalls in the use of brain slices. Progress in Neurobiology 1988;31:1-18.
    [46] Sajikumar S, Navakkode S, Frey JU. Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol 2005 Oct;15(5):607-13.
    [47] Dunwiddie T, Mueller A, Basile A. The use of brain slices in central nervous system pharmacology. Fed Proc 1983 Sep;42(12):2891-8.
    [48] LinksHuang W, Huang HP, Mu Y, et al.[Real-time measurement of noradrenaline release in central nervous system.]Sheng Li Xue Bao 2007 Dec 25;59(6):865-870. Chinese.
    [49] Hartelt NE, Skorova E, et al. Imaging of respiratory network topology in living brainstem slices. Mol Cell Neurosci 2008;37(3):425-431.
    [1] Newlands SD, Kevetter GA, Perachio AA. A quantitative study of the vestibular commissures in the gerbil. Brain research 1989, 487:152-157.
    [2] Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 2003;60(5-6):511-541.
    [3] Perlmutter SI, Iwamoto Y, Baker JF, Peterson BW. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat. Journal of neurophysiology 1998;79(1):270-284.
    [4] Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Experimental brain research Experimentelle Hirnforschung 2000;130(3):277-297.
    [5] Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S. Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 2003;23(15):6392-6398.
    [6] Shimazu H, Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of neurophysiology 1966;29(3):467-492.
    [7] Gershon MD, Schwartz JH, Kandel ER. Morphology of chemical synapses and patterns of interconnection, 2nd ed. New york: Elsevier, 1985:132-147.
    [8] Shepherd GM, Koch C. Introduction to synaptic circuits. In: Shepherd GM, The synaptic organization of the brain. 3rd ed. Oxford University Press,1990,1-31.
    [9] Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.Prog Neurobiol 2001 Aug;64(6):527-53. Review.
    [10] Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science (New York, NY ) 1988;242(4886):1654-1664.
    [11] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 2nd ed. Harcourt Brace Jovanovich: Academic Press, 1986.
    [12] Aghajanian GK, Rasmussen K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse(New york, NK) 1989;3(4):331-338.
    [13] Feig S, Lipton P. N-methyl-d-aspartate receptor activation and Ca2+ account for poorpyramidal cell structure in hippocampal slices. Journal of neurochemistry 1990;55(2):473-483.
    [14] Edmonds B, Klein M, Dale N, et al. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science 1990; 250:1142-1147.
    [15] Choi DW. Excitotoxic cell death. Journal of neurobiology 1992;23(9):1261-1276.
    [16] Darlington CL, Gallagher JP, Smith PF. In vitro electrophysiological studies of the vestibular nucleus complex. Progress in neurobiology 1995; 45:335-346.
    [17] Hausser M, Raman IM, et al. The beat goes on: spontaneous firing in mammalian neuronal microcircuits. J Neurosci 2004;24(42):9215-9219.
    [18] Ris L and Godaux E, Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 1998;80: 2352-2367.
    [19] Smith PF and Curthoys IS, Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 1988;444: 308-319.
    [20] Lin Y, Carpenter DO. Medial vestibular neurons are endogenous pacemakers whose discharge is modulated by neurotransmitters. Cellular and molecular neurobiology 1993;13(6):601-613.
    [21] Sun MK. Central neural organization and control sympathetic nervous system in mammals. Progress in Neurobiology 1995;47:157-233.
    [22] Halliwell JV. Physiological mechanisms of cholinergic action in the hippocampus. Progress in brain research 1990;84:255-272.
    [23] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Experimental brain research Experimentelle Hirnforschung 1991;84(2):426-433.
    [24] Crill WE. Persistent sodium current in mammalian central neurons. Annual review of physiology 1996;58:349-362.
    [25] Ryu JH, McCabe BF. Neural activity in the vestibular nuclei of the cat. Ann Otol Rhinol Laryngol 1973;82 (Suppl. 9): 3–28.
    [26] Ris L, de Waele C, Serafin M, et al. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol1995;74: 2087–2099.
    [27] Vidal PP, Vibert N, Serafin M, et al. Intrinsic physiological and pharmacological properties of central vestibular neurons. Adv Otorhinolaryngol 1999;55: 26–81.
    [28] de Waele C, Serafin M, Khateb A, et al. Medial vestibular nucleus in the guinea-pig: Apamin-induced rhythmic burst firing--an in vitro and in vivo study. Experimental brain research Experimentelle Hirnforschung 1993;95(2):213-222.
    [29] Serafin M, Khateb A, de Waele C, et al. Low threshold calcium spikes in medial vestibular nuclei neurones in vitro: A role in the generation of the vestibular nystagmus quick phase in vivo? Experimental brain research Experimentelle Hirnforschung 1990;82(1):187-190.
    [30] Gallagher JP, Lewis MR, Gallagher PS. An electrophysiological investigation of the rat medial vestibular nucleus in vitro. Progress in clinical and biological research 1985;176:293-304.
    [31] Ris L, Hachemaoui M, et al. Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. J Neurophysiol 2001;86(2):703-716.
    [32] Johnston AR, Macleod NK, et al. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurons. J Physiol 1994;481(Pt1):61-77.
    [33] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Experimental brain research Experimentelle Hirnforschung 1991; 84:417-425.
    [34] du Lac S, Lisberger SG. Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. Journal of comparative physiology 1995;176:641-651.
    [35] Straka H, Vibert N, Vidal PP, et al. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Progress in neurobiology 2005; 76:349-392.
    [36] Dutia MB, Johnston AR. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones. Experimental brain research Experimentelle Hirnforschung 1998;118:148-154.
    [37] Johnston AR, Dutia MB. Postnatal development of spontaneous tonic activity in mousemedial vestibular nucleus neurons. Neuroscience letters 1996;219:17-20.
    [38] Beraneck M, Hachemaoui M, Idoux E, et al. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. Journal of neurophysiology 2003;90:184-203.
    [39] Beraneck M, Idoux E, Uno A, et al. Unilateral labyrinthectomy modifies the membrane properties of contralesional vestibular neurons. Journal of neurophysiology 2004, 92:1668-1684.
    [40] Him A, Dutia MB. Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res 2001;908:58-66.
    [41] Goldberg JM, Highstein SM, Moschovakis AK, et al. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. Journal of neurophysiology 1987;58(4):700-718.
    [42] Precht W, Shimazu H. Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. Journal of neurophysiology 1965;28(6):1014-1028.
    [43] Shimazu H, Precht W. Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. Journal of neurophysiology 1965;28(6):991-1013.
    [44] Highstein SM, Goldberg JM, Moschovakis AK, Fernandez C. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. Journal of neurophysiology 1987;58(4):719-738.
    [45] Chen-Huang C, McCrea RA, Goldberg JM. Contributions of regularly and irregularly discharging vestibular-nerve inputs to the discharge of central vestibular neurons in the alert squirrel monkey. Experimental brain research Experimentelle Hirnforschung 1997;114(3):405-422.
    [46] Straka H, Dieringer N. Convergence pattern of uncrossed excitatory and inhibitory semicircular canal-specific inputs onto second-order vestibular neurons of frogs. Organization of vestibular side loops. Experimental brain research Experimentelle Hirnforschung 2000;135(4):462-473.
    [47] Kevetter GA, Hoffman RD. Excitatory amino acid immunoreactivity investibule-ocular neurons in gerbils. Brain Res 1991;554:348-351.
    [48] Holstein GR, Martinelli GP, Cohen B. The ultrastructure of GABA- immunoreactivity vestibular commissural neurons related to velocity storage in the monkey. Neuroscience 1999;93:171-181.
    [49] Spencer RF, Wenthold RJ, Baker R. Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. J Neurosci 1989;9:2718-2736.
    [50] Barmack NH, Baughman RW, Echenstein FP, et al. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracts. J Comp Neurol 1992;317:250-270.
    [51] Tomonori T, Yasuhiko S, Keisuke T, et al. Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. J Neurophysiol 2004;92:3106-3120.
    [52] Aaron JC, Robert JC, Alan MB. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. J Neurophysiol 2006;95: 3208-3218.
    [53] Guth PS, et al., The cholinergic pharmacology of the frog saccule. Hear Res 1994; 75(1-2): p. 225-32.
    [54] Kong WJ, Guo CK, et al., The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells. Brain Res 2007; 1129(1): p. 110-5.
    [55] Minor LB, Lasker DM, Backous DD, et al. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. Journal of neurophysiology 1999;82(3):1254-1270.
    [56] Sekirnjak C, Vissel B, Bollinger J, et al. Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 2003;23(15):6392-6398.
    [1] Wilson VJ, Yamagata Y, Yates BJ,et al. Response of vestibular neurons to head rotations in vertical planes. III. Response of vestibulocollic neurons to vestibular and neck stimulation. J Neurophysiol 1990;64:1695–1703.
    [2] Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 1988;60: 1753–1764.
    [3] Lisberger SG, Miles FA. Role of primate medial vestibular nucleus in adaptive plasticity of vestibulo-ocular reflex. J Neurophysiol 1980;43:1725–1745.
    [4] Endo K, Thomson DB, Wilson VJ, et al. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 1995;74:428–436.
    [5] Baker J, Goldberg J, Hermann G, et al. Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 1984;294:138–143.
    [6] Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Experimental brain research Experimentelle Hirnforschung 2000;130(3):277-297.
    [7] Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S. Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 2003;23(15):6392-6398.
    [8] Shimazu H, Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of neurophysiology 1966;29(3):467-492.
    [9] Henderson Z, Jones GA.GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat. Neuroscience 2005;132(3):789-800
    [10] Aaron JC, Robert JC and Alan MB. Inhibitory Synaptic Transmission Differs in Mouse Type A and B Medial Vestibular Nucleus Neurons In Vitro. J Neurophysiol 2006;95: 3208-3218
    [11] Donato R and Nistri A. Relative contribution by GABA or glycine to Cl(–)-mediated synaptic transmission on rat hypoglossal motoneurons in vitro. J Neurophysiol 2000;84: 2715–2724.
    [12] Dutia MB, Johnston AR, and McQueen DS. Tonic activity of rat medial vestibular nucleus neurons in vitro and its inhibition by GABA. Exp Brain Res 88: 466–472, 1992.
    [13] Nouvian R, Beutner D, Parsons TD, Moser T. Structure and function of the hair cell ribbon synapse. J Membr Biol 2006 Feb-Mar;209(2-3):153-65.
    [14] Eatock RA, Rüsch A, Lysakowski A, Saeki M. Hair cells in mammalian utricles. Otolaryngol Head Neck Surg 1998 Sep;119(3):172-81.
    [15] Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol. 2001 Aug;64(6):527-53. Review.
    [16] Minor LB, Lasker DM, Backous DD, et al. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. Journal of neurophysiology 1999;82(3):1254-1270.
    [17] Sekirnjak C, du Lac S. physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 2006;95(5):3012-3023.
    [18] Perlmutter SI, Iwamoto Y, et al. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat. J Neurophysiol 1998;79(1):270-284.
    [19] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 2nd ed. Harcourt Brace Jovanovich: Academic Press, 1986.
    [20] Zhang Y, Partsalis AM, Highstein SM. Properties of superior vestibular nucleus flocculus target neurons in the squirrel monkey. I. General properties in comparison with flocculus projecting neurons. J Neurophysiol 1995;73:2261–2278.
    [21] Stahl JS, Simpson JI. Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. J Neurophysiol 1995;73:1396–1413.
    [22] Sato Y, Kanda K, Kawasaki T. Target neurons of floccular middle zone inhibition in medial vestibular nucleus. Brain Res 1988;446:225–235.
    [23] Kawaguchi Y. Two groups of secondary vestibular neurons mediating horizontal canal signals, probably to the ipsilateral medial rectus muscle, under inhibitory influencesfrom the cerebellar flocculus in rabbits. Neurosci Res 1985;2:434–446.
    [24] Pape HC. Queer current and pacemaker: the hyperpolarization activated cation current in neurons. Annu Rev Physiol 1996;58:299–327.
    [25] Halliwell JV. Physiological mechanisms of cholinergic action in the hippocampus. Progress in brain research 1990;84:255-272.
    [26] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Experimental brain research Experimentelle Hirnforschung 1991;84(2):426-433.
    [27] Crill WE. Persistent sodium current in mammalian central neurons. Annual review of physiology 1996;58:349-362.
    [28] Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science (New York, NY) 1988;242(4886):1654-1664.
    [29] Precht W, Shimazu H. Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. Journal of neurophysiology 1965;28(6):1014-1028.
    [30] Shimazu H, Precht W. Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. Journal of neurophysiology 1965;28(6):991-1013.
    [31] Grüsser-Cornehls U, Niemschynski A, Plassmann W. Vestibular responses of flocculus and vestibular nuclei neurons in mice (B6CBA). Variation of stimulus amplitude and frequency. Exp Brain Res 1995;107(1):17-25.
    [32] Zucca G, Botta L, Milesi V, et al. Sensory adaptation in frog vestibular organs. Hear Res 1993 Aug;68(2):238-42.
    [33] Collewijn H, Tan HS, Van der Steen J. Enhancement of optokinetic and vestibuloocular responses in the rabbit by cholinergic stimulation of the flocculus. Ann N Y Acad Sci 1992 May 22;656:612-29.
    [34] Magnusson M, Pyykk? I. Velocity and asymmetry of optokinetic nystagmus in the evaluation of vestibular lesions. Acta Otolaryngol 1986 Jul-Aug;102(1-2):65-74.
    [35] Boyle R, Büttner U, Markert G. Vestibular nuclei activity and eye movements in the alert monkey during sinusoidal optokinetic stimulation. Exp Brain Res 1985;57 (2):362-9.
    [36] Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. J Neurophysiol 1971;34:676–684.
    [37] Keller EL . Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 1971;24:459–471.
    [38] Louie AW, Kimm J. The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 1976;24:447–457.
    [39] Ezure K, Schor RH, Yoshida K. The response of horizontal semicircular canal afferents to sinusoidal rotation in the cat. Exp Brain Res 1978; 33:27–39.
    [40] Anastasio TJ, Correia MJ, Perachio AA. Spontaneous and driven responses of semicircular canal primary afferents in the unanesthetized pigeon. J Neurophysiol 1985;54:335–347.
    [41] Reisine H, Strassman A, Highstein SM. Eye position and head velocity signals are conveyed to medial rectus motoneurons in the alert cat by the ascending tract of Deiters’. Brain Res 1981;211:153–157
    [42] Reisine H, Highstein SM. The ascending tract of Deiters’conveys a head velocity signal to medial rectus motoneurons. Brain Res 1979;170:172–176.
    [43] Nguyen LT, Spencer RF. Abducens internuclear and ascending tract of Deiters inputs to medial rectus motoneurons in the cat oculomotor nucleus: neurotransmitters. J Comp Neurol 1994;11:73–86.
    [44] Mitsacos A, Reisine H, Highstein SM. The superior vestibular nucleus: an intracellular HRP study in the cat. II. Non-vestibulo-ocular neurons. J Comp Neurol 1983;215:92–107.
    [45] Cheron G, Escudero M, Godaux E. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus. J Neurophysiol 1996;76:1759–1774.
    [46] McCrea RA, Strassman A, May E, et al. Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflex of the squirrel monkey. J Comp Neurol 1987;264:547–570.
    [1] Brodal A , Pompeiano O. The vestibular nuclei in the cat. J A nat 1957, 91: 438-454.
    [2] Johnson JE, Mehler WR, O Yama J. The effects of centrifugation on the morphology of lateral vestibular nucleus in the rat: A light and electron microscopic study. Brain Res 1976, 106: 205-221.
    [3] Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope 1993;103(7):762-73.
    [4] Gstoettner W, Burian M. Vestibular nuclear complex in the guinea pig: A cytoarchitectonic study and map in three planes. J Comp Neurol 1987, 257: 176-188.
    [5] Walberg F. The Vestibular Nuclei and Their Connections with the Eighth Nerve and the Cerebellum. New York:Academic Press,1975.31-52.
    [6] Rubertone JA, Hanes DE. The vestibular complex in a prosimian primate (Galago seneg alensis): Morphological and spinovestibular connections. Brain Behav Evol 1982, 20: 129-155.
    [7] Barmack NH, Fredette BJ, Mugnaini E. Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 1998;392(3):352-72.
    [8] Blazquez P, Partsalis A, Gerrits NM, et al. Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophysiol 2000;83(5):2891-904.
    [9] Frederickson CJ, Trune DR. Cytoarchitecture and saccular innervation of nucleus y in the mouse. J Comp Neurol 1986;252(3):302-22.
    [10] Wentzel PR, Wylie DR, Ruigrok TJ, et al. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci Lett 1995;190(1):45-8.
    [11] Highstein SM, Reishine H. Synaptic and functional organization of vestibule-ocular reflex pathways. Prog Brain Res 1979, 53: 431-442.
    [12] Low JS, Mantle-ST, John LA, et al. Nucleus z in the rat: Spinal afferents from collaterals of dorsal spinocerebellar tract neurons. J Comp Neurol 1986, 243: 510-526.
    [13] Brodal A. The vestibular nuclei in the macaque monkey. J Comp Neurol 1984;227:252-266.
    [14] Naito Y, Newman A, Lee WS, et al. Projections of the individual vestibular end-organs in the brain stem of the squirrel monkey. Hear Res 1995; 87: 141-155.
    [15] Gstoettner W, Burian M, Cartellier IM. Central projections from singular parts of the vestibular labyrinth in the guinea pig. Acta Otolaryngol 1992;112: 486-495.
    [16] Magama M, Isu N, Sasaki M, et al. Axonal projections of utricular afferents to the vestibular nuclei and the abducens nucleus in cats. Neurosci Lett 1995;17: 87-90.
    [17] Dickman JD, Fang Q. Differential central projections of vestibular afferents in pigeons. J Comp Neurol 1996;367 (25):110-131.
    [18] Ono S, Kushiro K, Zakir M, et al. Properties of utricular and saccular nerve-activated vestibulocerebellar neurons in cats. Exp Brain Res 2000;134(1):1-8.
    [19] Kushiro K, Zakir M, Sato H, et al. Saccular and utricular inputs to single vestibular neurons in cats. Exp Brain Res 2000;131(4):406-15.
    [20] Angelaki DE, Dickman JD. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 2000;84(4):2113-32.
    [21] Uchino Y, Sato H, Zakir M, et al. Commissural effects in the otolith system. Exp Brain Res 2001;136:421-430.
    [22] Newlands SD, Kevetter GA, Perachio AA. A quantitative study of the vestibular commissures in the gerbil. Brain research 1989, 487:152-157.
    [23] Goldberg JM. Afferent diversity and the organization of central vestibular pathways.Experimental brain research Experimentelle Hirnforschung 2000;130(3):277-297.
    [24] Shimazu H, Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of neurophysiology 1966;29(3):467-492.
    [25] Carpenter MB, Cowie RJ. Transneuronal transport in the vestibular and auditory systems of the squirrel monkey and the arctic ground squirrel. I. Vestibular system. Brain Res 1985;358(1-2):249-63.
    [26] Bello S, Paige GD, Highstein SM. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll. Exp Brain Res 1991;87(1):57-66.
    [27] Minor LB, Lasker DM, Backous DD, et al. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. Journal of neurophysiology 1999;82(3):1254-1270.
    [28] Sekirnjak C, du Lac S. Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 2006;95(5):3012-3023.
    [29] Perlmutter SI, Iwamoto Y, et al. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat. J Neurophysiol 1998;79(1):270-284.
    [30] Bacskai T, Szekely G, Matesz C. Ascending and descending projections of lateral vestibular nucleus in the rat. Acta Biol 2002;53:7-21.
    [31] Buisseret- Delmas C, Compoint C, Delfini C, et al. Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol 1999;409:153-168.
    [32] Donevan AH, MacDonald JA, Brennan PA, Rose PK. Morphology of single vestibulospinal collaterals in the upper cervical spinal cord of the cat. II. Collaterals originating from axons outside the ventral funiculi. J Comp Neurol 1992;322 (3):343-59.
    [33] Donevan AH, Fleming FL, Rose PK. Morphology of single vestibulospinal collaterals in the upper cervical spinal cord of the cat: I. Collaterals originating from axons in the ventromedial funiculus contralateral to their cells of origin. J Comp Neurol 1992;322(3):325-42.
    [34] Rose PK, Wainwright K, Neuber-Hess M. Connections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol 1992;321(2):312-24.
    [35] Rose PK, MacDonald J, Abrahams VC. Projections of the tectospinal tract to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol 1991;314(1):91-105.
    [36] Kaufmann H, Biaggioni I, Voustianiouk A, et al. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res 2002;143(4):463-9.
    [37] Rossiter CD, Hayden NL, Stocker SD, et al. Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 1996;76(5):3274-84.
    [38] Rossiter CD, Yates BJ. Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 1996;14;211(1):25-8.
    [39] Yates BJ, Grélot L, Kerman IA, et al. Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 1994;267(4 Pt 2):R974-83.
    [40] Barmack NH, Baughman RW, Eckenstein FP, et al. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 1992;317(3):250-70.
    [41] Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 1992;317(3):233-49.
    [42] Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S. Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 2003;23(15):6392-6398.
    [43] Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 2003,60(5-6):511-541.
    [44] Fukuda Y, Loeschcke HH. Effect of H+ on spontaneous neuronal activity in the surface layer of the rat medulla oblongata in vitro. Pflugers Arch 1977;371(1-2):125-34.
    [45] Gallagher JP, Lewis MR, Gallagher PS. An electrophysiological investigation of the ratmedial vestibular nucleus in vitro. Prog Clin Biol Res 1985;176:293-304.
    [46] Kinney GA, Slater NT. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. J Neurophysiol 1993;69(2):585-94.
    [47] Aghajanian GK, Rasmussen K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse(New york, NK) 1989;3(4):331-338.
    [48] Feig S, Lipton P. N-methyl-d-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. Journal of neurochemistry 1990;55(2):473-483.
    [49] Edmonds B, Klein M, Dale N, et al. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science 1990, 250:1142-1147.
    [50] Choi DW. Excitotoxic cell death. Journal of neurobiology 1992;23(9):1261-1276.
    [51] Nakamura J, Sasa M, Takaori S. Ethanol potentiates the effect of gamma-aminobutyric acid on medial vestibular nucleus neurons responding to horizontal rotation. Life Sci 1989;45(11):971-8.
    [52] Yamanaka T, Amano T, Sasa M, et al. Prednisolone excitation of medial vestibular nucleus neurons in cats. Eur Arch Otorhinolaryngol 1995;252(2):112-8.
    [53] Ris L, Godaux E. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 1998;80(5):2352-67.
    [54] Takeshita S, Sasa M, Ishihara K, et al. Cholinergic and glutamatergic transmission in medial vestibular nucleus neurons responding to lateral roll tilt in rats. Brain Res 1999;840(1-2):99-105.
    [55] Nishiike S, Takada N, Nakamura S, et al. Response of locus coeruleus neurons to caloric stimulation in rats. Acta Otolaryngol 1995;520:105-109.
    [56] Goldberg JM, Highstein SM, Moschovakis AK, et al. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. Journal of neurophysiology 1987;58(4):700-718.
    [57] Precht W, Shimazu H. Functional connections of tonic and kinetic vestibular neuronswith primary vestibular afferents. Journal of neurophysiology 1965;28(6):1014-1028.
    [58] Shimazu H, Precht W. Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. Journal of neurophysiology 1965;28(6):991-1013.
    [59] Highstein SM, Goldberg JM, Moschovakis AK, Fernandez C. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. Journal of neurophysiology 1987;58(4):719-738.
    [60] Chen-Huang C, McCrea RA, Goldberg JM. Contributions of regularly and irregularly discharging vestibular-nerve inputs to the discharge of central vestibular neurons in the alert squirrel monkey. Experimental brain research Experimentelle Hirnforschung 1997;114(3):405-422.
    [61] Ris L, Hachemaoui M, et al. Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. J Neurophysiol 2001;86(2):703-716.
    [62] Johnston AR, Macleod NK, et al. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurons. J Physiol 1994;481(Pt1):61-77.
    [63] Him A, Dutia MB. Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res 2001;908(1):58-66.
    [64] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Experimental brain research Experimentelle Hirnforschung 1991, 84:417-425.
    [65] Serafin M, de Waele C, Khateb A, et al. Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 1991;84(2):426-33.
    [66] du Lac S, Lisberger SG. Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. Journal of comparative physiology 1995;176:641-651.
    [67] Babalian A, Vibert N. Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 1997;81(2):405-26.
    [68] Tomonori T, Yasuhiko S, Keisuke T, et al. Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. JNeurophysiol 2004;92:3106-3120.
    [69] Aaron JC, Robert JC, Alan MB. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. J Neurophysiol 2006;95:3208-3218.
    [70] Straka H, Vibert N, Vidal PP, et al. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Progress in neurobiology 2005; 76:349-392.
    [71] Dutia MB, Johnston AR. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones. Exp Brain Res 1998;118 (2):148-54.
    [72] Johnston AR, Dutia MB. Postnatal development of spontaneous tonic activity in mouse medial vestibular nucleus neurones. Neurosci Lett 1996;219(1):17-20.
    [73] Dutia MB, Lotto RB, Johnston AR. Post-natal development of tonic activity and membrane excitability in mouse medial vestibular nucleus neurones. Acta Otolaryngol Suppl 1995;520 Pt 1:101-4.
    [74] Murphy GJ, Du Lac S. Postnatal development of spike generation in rat medial vestibular nucleus neurons. J Neurophysiol 2001;85(5):1899-906.
    [75] Puyal J, Grassi S, Dieni C, et al. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors. J Physiol 2003 Dec 1;553(Pt 2):427-43.
    [76] Grassi S, Della Torre G, Capocchi G, et al. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei. Brain Res 1995 Nov 20;699(2):183-91.
    [77] Grassi S, Dieni C, Frondaroli A, et al. Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei. J Physiol 2004;560(Pt 3):767-77.
    [78] Popper P, Rodrigo JP, Alvarez JC, et al. Expression of the AMPA-selective receptor subunits in the vestibular nuclei of the chinchilla. Brain Res Mol Brain Res 1997;44(1):21-30.
    [79] Smith PF, Darlington CL. The contribution of N-methyl-D-aspartate receptors tolesion-induced plasticity in the vestibular nucleus. Prog Neurobiol 1997;53(5):517-31. Review.
    [80] Uno Y, Horii A, Uno A, et al. Quantitative changes in mRNA expression of glutamate receptors in the rat peripheral and central vestibular systems following hypergravity. J Neurochem 2002;81(6):1308-17.
    [81] Sans N, Sans A, Raymond J. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Eur J Neurosci 1997;9(10):2019-34.
    [82] de Waele C, Mühlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Brain Res Rev 1995 ;20(1):24-46. Review.
    [83] Smith PF, Darlington CL, Hubbard JI. Evidence that NMDA receptors contribute to synaptic function in the guinea pig medial vestibular nucleus. Brain Res 1990;513(1):149-51.
    [84] de Waele C, Serafin M, Khateb A, et al. Medial vestibular nucleus in the guinea-pig: apamin-induced rhythmic burst firing--an in vitro and in vivo study. Exp Brain Res 1993;95(2):213-22.
    [85] Darlington CL, Smith PF. Metabotropic glutamate receptors in the guinea-pig medial vestibular nucleus in vitro. Neuroreport 1995;6(13):1799-802.
    [86] Grassi S, Malfagia C, Pettorossi VE. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei. Neuroscience 1998;87(1):159-69.
    [87] Sargent EW, Paige GD. The primate vestibulo-ocular reflex during combined linear and angular head motion. Exp Brain Res 1991;87(1):75-84.
    [88] Furuya N, Koizumi T. Neurotransmitters of vestibular commissural inhibition in the cat. Acta Otolaryngol 1998;118:64-69.
    [89] Lewis MR, Phelan KD, Shinnick-Gallagher P, et al. Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse 1989;3(2):149-53.
    [90] Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro. Synapse 1992 ;10(4):349-58.
    [91] Ujihara H, Akaike A, Sasa M, et al. Muscarinic regulation of spontaneously active medial vestibular neurons in vitro. Neurosci Lett 1989;106(1-2):205-10.
    [92]余其林,孔维佳.毒蕈碱受体在大鼠前庭神经核中表达的免疫组织化学与原位杂交研究,听力学及言语疾病杂志2005;13(04).
    [93] Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res 2002;934(1):58-68.
    [94] Cass SP, Goshgarian HG. Vestibular compensation after labyrinthectomy and vestibular neurectomy in cats. Otolaryngol Head Neck Surg 1991;104(1):14-9.
    [95] Halmagyi GM, Curthoys IS, Cremer PD, et al. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy. Exp Brain Res 1990;81(3):479-90.
    [96] Beraneck M, Idoux E, Uno A, et al. Unilateral labyrinthectomy modifies the membrane properties of contralesional vestibular neurons. J Neurophysiol 2004;92(3):1668-84.
    [97] Beraneck M, Hachemaoui M, Idoux E, et al. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. J Neurophysiol 2003;90(1):184-203.
    [98] Gittis AH, du Lac S. Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 2006;16(4):385-90.