CRD诱发大鼠DRG神经元高敏感性的发生机制及乳酸杆菌的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内脏痛是许多胃肠道疾病最常见的症状之一,但其发生机制还不清楚。目前认为,内脏异常疼痛的产生主要归结为外周敏感化和中枢敏感化。各种原因引起的内脏组织和初级传入神经元的敏感化可以诱导和易化中枢敏感化,所以了解初级神经元敏感化的机制,探索降低其兴奋性的方法对干预痛觉信号的传导、控制疼痛具有重要意义。
     内脏感觉主要通过结状神经节与脊髓背根神经节(dorsal root ganglia,DRG)传入到次级感觉神经元,其中一般的内脏感觉主要通过结状神经节传导,而痛觉主要通过DRG神经元传导。按其直径不同,DRG神经元可以分为大型神经元(39-50μm)、中型神经元(33-38μm)和小型神经元(19-27μm)三类。其中,中、小型神经元主要发出细髓的Aδ纤维和无髓的C类纤维,传递伤害性感觉,与痛觉产生密切相关。因此,DRG中的中小神经元是内脏痛觉信号传导与调控的初级靶点。
     电压依赖性钠通道决定神经细胞动作电位的产生和传导,它的改变对于神经元的兴奋性具有重要的影响。钠通道由一个α亚单位和两个β亚单位组成。目前已经克隆出九种α亚单位,并据此将电压依赖性钠通道分为9种类型,即Nav1.1-Nav1.9。根据其对河豚毒素(tetrodotoxin,TTX)的敏感性又可分为河豚毒素敏感(TTX-sensitive,TTX-S)和河豚毒素不敏感(TTX-resistant,TTX-R)两种类型。其中,Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.6和Nav1.7属于TTX-S钠通道,而Nav1.5,Nav1.8和Nav1.9属于TTX-R钠通道。Nav1.3、Nav1.7、Nav1.8和Nav1.9参与痛觉信号的调控。一些诱发疼痛的病理性因素影响DRG细胞中钠通道的表达和功能,改变DRG细胞的兴奋性。
     BDNF(brain-derived neurotrophic factor)是一种神经营养因子,广泛存在于中枢与外周神经系统中。以往的研究认为,BDNF的主要作用是调节突触的可塑性和神经递质的释放,参与学习和记忆过程。但近来越来越多研究发现,BDNF也参与对痛觉传导的调控。在脊髓中,BDNF由DRG细胞合成后被运输到中枢端,在脊髓后角释放,与第二级感觉神经元上的Trk B受体结合,调节突触传递和脊髓痛觉的传导,导致中枢神经元兴奋性的改变。BDNF还可以通过自分泌和旁分泌的方式调节DRG神经元的兴奋性。
     肠道益生菌是与人类共生的、具有治疗或保健作用的细菌,主要包括乳酸杆菌(Lactobacillus reuteri)和双歧杆菌。它们能够调节炎症引起的肠道敏感性的改变,调节肠道内在感觉神经元的兴奋性,对一些肠道疾病包括肠易激综合征(irritable bowel syndrome,IBS)和炎症性肠道疾病等所引起的腹部不适症状具有明显的改善作用。
     由于重复的结直肠扩张刺激(colorectal distention,CRD)能够诱导内脏高敏感性,本课题研究该模型大鼠DRG神经元兴奋性的改变及其机制,探讨钠通道和BDNF在DRG兴奋性改变中所起的作用,并进一步研究乳酸杆菌对DRG兴奋性改变的调节作用及其相关机制。本课题将揭示DRG神经元兴奋性的改变在内脏高敏感性发生中的作用,并为寻找新的镇痛药物提供依据。
     [研究目的]
     1探讨CRD对大鼠远端结肠DRG神经元兴奋性的影响。
     2探讨CRD后大鼠DRG神经元电压依赖性钠通道表达和功能是否发生改变。
     3研究CRD对大鼠DRG神经元BDNF表达的影响及外源性BDNF在CRD致大鼠DRG神经元敏感化过程中所起的作用。
     4探讨乳酸杆菌对CRD后大鼠DRG神经元敏感性的影响及其机制。
     [研究方法和结果]
     1结直肠扩张内脏痛模型的建立
     1.1 DRG神经元的逆行标记
     健康雄性SD大鼠,腹腔注射麻醉,打开腹腔,找到结肠远端,向结肠壁注射1,1-dioctadecyl-3-3-3-3-tetramethylindocarbocyanine(DiI,5mg/ml),注射6到10个点(1.0μl/injection),缝合腹壁。
     1.2 CRD内脏痛模型的建立
     注射DiI两周后,大鼠腹腔内注射氯胺酮(75mg/kg)与甲苯噻嗪(10mg/kg)麻醉,利用Barostat system(Distender,G & J Electronic Inc)给予1小时重复的CRD刺激(80 mm Hg,30s on,30 s off),对照组只给予氯胺酮与甲苯噻嗪腹腔注射麻醉,不给予CRD刺激。
     2扩张肠段MPO活性检测
     大鼠处死后,取扩张的远端结肠段,根据试剂盒(南京建成生物工程研究所)说明书检测单位结肠重量中MPO的活性。结果显示,同no CRD组相比,在分别给予CRD后1h、3h、6h、12h、24h,其MPO活性未见明显增加。
     3 RT-PCR检测CRD后不同时间段DRG中BDNF mRNA含量的表达
     提取DRG中mRNA,检测发现在CRD后3h、6h、12h、24h,DRG中的BDNF mRNA含量明显增高。
     4 ELISA检测CRD后不同时间段DRG中BDNF蛋白含量的变化
     提取DRG中蛋白,检测发现同正常DRG相比,CRD后1h、3h、6h、12h、24h,DRG中BDNF蛋白含量明显增高。
     5 DRG细胞的培养
     给予CRD刺激之后,立刻颈椎脱臼牺牲大鼠,取出腰骶段脊柱,取出两边的DRG;置于Krebs溶液中;加入胶原酶Ⅰ(1mg/ml)和胰酶(0.25%),37℃消化50min,接种于包被了PLL的35mm培养皿中,37℃,5%CO_2,95%O_2培养过夜。
     6膜片钳记录
     6.1 CRD细胞自发放电
     在电流钳模式下,I=0,记录细胞自发放电的情况。结果发现,no CRD组,自发放电的细胞占7.3%;CRD组自发放电细胞数量有所增加占9.4%,两者未见显著性差异。
     6.2 CRD刺激之后动作电位的产生和各项指标的检测
     记录刺激动作电位产生所需要的基强度和2倍、3倍基强度刺激产生动作电位的数量。结果显示,在给予1h重复CRD刺激后,DRG神经元产生动作电位基强度降低,2倍、3倍基强度刺激诱发DRG神经元产生动作电位的数量增多,说明CRD后DRG神经元的兴奋性明显增高。
     6.3 CRD对大鼠DRG神经元钠电流的影响
     电极电阻控制在2-4 MΩ,所有的钠电流在细胞成为全细胞之后5分钟进行记录,串联电阻被补偿85-90%。分别记录no CRD组和CRD组大鼠DRG细胞钠通道的激活、失活及复活电流的变化。结果发现,在CRD后,大鼠DRG细胞上TTX-S和slow TTX-R钠通道的激活和复活过程没有发生明显的改变,而其失活曲线向去极化方向移动,表明其失活电压依赖性发生改变。
     6.4 BDNF对正常及CRD大鼠DRG神经元兴奋性的影响
     研究发现,no CRD组在加入5ng/ml BDNF 5min后,DRG动作电位阈值及动作电位的产生频率都未见变化,而幅值、去极化的速率明显下降;在CRD组中神经元加入同样剂量的BDNF后,DRG神经元动作电位的阈值明显升高,给予3倍基强度刺激诱发DRG神经元产生动作电位的数量减少。说明BDNF下调CRD后DRG神经元的敏感性。
     6.5乳酸杆菌对正常及CRD大鼠DRG神经元敏感性的影响。
     用乳酸杆菌(5×10~9CFU/ml)连续灌胃对正常大鼠DRG神经元的电生理特性没有影响,但明显升高CRD后DRG神经元动作电位产生的基强度,降低动作电位的去极化速率及产生频率,说明乳酸杆菌下调CRD后DRG神经元的兴奋性。
     [结论]
     1远端结肠受到80mmHg的CRD刺激1h后,可以引起相应节段DRG细胞兴奋性明显增加。
     2 CRD后DRG神经元电压依赖性钠通道失活动力学发生改变,这可能是CRD导致DRG细胞高敏感性的发生的原因之一。
     3内源性BDNF可能下调CRD后DRG神经元的兴奋性。
     4乳酸杆菌抑制CRD引起的DRG神经元的敏感化,对内脏痛具有潜在的治疗作用。
Visceral pain is an important phenomenon of some gastrointestinal(GI) diseases, but the molecular and cellular mechanisms are still not clear.The hypersensitivity of the nociceptive receptor,the primary sensory neuron and the central nervous system (CNS) are the main causes of visceral hyperalgesia.
     The GI tract has the potential to provide subconscious and conscious awareness of injury.The physiological or non-noxious stimuli are transmitted through vagal afferents with their cell bodies in nodose ganglion.But the pain is transmitted through the spinal afferents with their cell bodies in the dorsal root ganglia(DRG).
     DRG neurons are classified into three main groups according to their sizes: large-sized(39-50μm diameter),medium-sized(33-38μm diameter) and small-sized (19-27μm diameter) neuron.The spinal afferent Aδand C fibers,which transmit pain input to the dorsal corner in the spinal cord,are originated from medium-sized and small-sized neurons.So,the two kinds DRG neurons are the crucial "gateway" of visceral pain transmission.
     Voltage-gated sodium(Nav) channels play fundamental roles in the generation and conduction of neuronal action potentials.They are comprised ofα-subunit forming the pore,and auxiliaryβ-subunits.To date,nine kinds ofα-subunits have been cloned, and Nav were correspondingly classified into nine types,Nav1.1-Nav1.9.According to their sensitivity to tetrodotoxin(TTX),sodium channels have been classified to TTX-sensitive channels(TTX-S) and TTX-resistant channels(TTX-R).Nav1.1, Nav1.2,Nav1.3,Nav1.4,Nav1.6 and Nav1.7 are TTX-S channels and Nav1.5,Nav1.8 and Nav1.9 are TTX-R channels.Nav1.3,Nav1.7,Nav1.8 and Nav1.9 are thought to be involved in the modulation of the pain sensation by modulating the neurons excitability.But the detailed mechanisms are not clear.
     BDNF(brain-derived neurotrophic factor) is a kind of neurotrophic factor and is widely distributed in the peripheral and central nervous system.It is synthesized in the DRG,transported to the central terminals of the primary afferents,released into the spinal dorsal horn,and binds to the trkB receptors on second-order sensory neurons.It might play significant roles in synaptic plasticity,signal transmission,learning and memory.Nowadays,more and more studies found that BDNF also functions as a mediator of pain.Furthermore,BDNF itself could modulate the hypersensitivity of the DRG cells in a paracrine or autocrine manner.
     Probiotics,including Lactobacillus reuteri(L.reuteri) and Bifidobacterium,are health-promoting commensal bacteria that exert therapeutic or preventative roles to some gastrointestinal diseases.Beneficial effects of probiotics have been described in traveler's diarrhea,irritable bowel syndrome,and inflammatory bowel disease.In addition,probiotics can modulate postinflammatory gut hypersensitivity and alter neuropeptide expression in neurons.
     Based on the above backgrounds,we hypothesized that the change of the DRG neuron sensitivity was involved in the visceral hyperalgesia in some GI disease,and this hypersensitity of the DRG neurons might caused by the changes of the expression and electrical property of the sodium channels on the soma of the DRG neuron. BDNF and probiotics might modulate the sensation of pain by modulating the sensitivity of DRG neurons.In order to test this hypothesis,we use repeated noxious colorectal distention(CRD) to make the rat model of visceral hyperalgesia and monitor the sensitivity of the DRG neurons by whole cell recording.
     [Objective]
     1 To explore the effects of noxious CRD on the excitability of rat DRG neurons.
     2 To explore the effect of CRD on the expression and function of voltage-gated sodium channels.
     3 To explore the expression of BDNF in DRG following CRD and the effect of exogenous BDNF on the excitability of DRG neuron.
     4 To explore if L.reuteri could modulate the hypersensitivity of DRG neurons after CRD.
     [Methods and results]
     1 The noxious CRD model
     1.1 Male adult Sprague-Dawley rats were anesthetized with ketamine(75mg/kg, i.p.) and xylazine(10mg/kg,i.p.).A midline laparotomy was performed,and the descending colon was carefully exposed.1, 1-dioctadecyl-3-3-3-3-tetramethylindocarbocyanine(DiI) was injected into six to ten sites in the colon wall.Then,the abdomen was closed.
     1.2 Forteen days later,the rats were anesthetized again as above and treated with repeated distention for 1h(80 mm Hg,30s on,30 s off) by Barostat system.The vehicle control group was anesthetized but not treated with CRD.
     2 Measure of myeloperoxidase(MPO) activity
     The rats were sacrificed and the MPO activity of the distal colon was measured. The MPO activities did not change following CRD.
     3 The BDNF mRNA levels in DRG(PCR)
     The total mRNA were extracted from DRG and the amount of mRNA in DRG was measured by RT-PCR.The BDNF mRNA in DRG were significantly increased from 3 h to 24 h following CRD.
     4 The BDNF protein levels in DRG(ELISA)
     The total protein were extracted from DRG and the amount of BDNF protein was mesured by ELISA.The expression of BDNF protein in DRG were significantly increased from 1h to 24h following CRD.
     5 Cell dissociation and culture
     After CRD,the rat was sacrificed immediately and the spinal colum was completely removed,transferred to a beaker containing ice-cold sterile Krebs solution. DRG were exposed by dissection from both sides and collected from L1-S5 spinal levels.After incubated 50min in collagenase typeⅠ(1mg/ml) and trypsin(0.25%) at 37℃,the dissociated neurons were plated onto 35-mm-diameter Petri dishes previously coated with PLL.The neurons were then incubated overnight at 37℃with 5%CO_2 and 95%O_2.
     6 Electrophysiological recording
     6.1 Spontaneous discharge in DRG neurons
     The spontaneous discharge of the DRG DiI labled neurons was recorded in current clamp mode,I=0.The frequency of the spontaneous discharge in no CRD group were 7.3%(6/82),and that in the CRD group it was 9.4%(6/64).There were no significant difference betweent the two groups.
     6.2 Passive membrane and active membrane parameters in DRG neurons.
     With the amplifier in current clamp mode,action potential and passive membrane characteristics were measured.After CRD,the rheobase of the DRG neurons was significantly reduced and the number of APs discharged at 2×and 3×rheobase were increased compared with that in no CRD group.
     6.3 The effects of CRD on sodium current in DRG.
     Only DiI-labled DRG neurons were selected for this study.The patch pipettes were pulled with resistance 2-4 MΩ.After establishment of a whole cell recording,series resistance were compensated to 85-90%.The results showed that the activation and recovery currents of TTX-S and slow TTX-R channels in the CRD group have no difference from that in no CRD group.But theV_(1/2) of inaction current shifted to the right.This implies that CRD change the inactivation kinemics of the sodium channel.
     6.4 The effects of exogenous BDNF on the excitability of DRG neurons in CRD and no CRD groups
     Exogenous BDNF reduced the AP_(dV/dt) and the amplitude of AP of the DRG neuron in no DRG group.But in CRD group,exogenous BDNF increased the rheobase, decreased AP_(dV/dt) and the number of APs discharged at 3×rheobase.So,it it clear that exogenous BDNF decreased the excitability of the DRG neurons in CRD group.
     6.5 The effect of L.reuteri ingestion on the excitability of DRG neurons in CRD and no CRD groups
     In the DRG neuron of the CRD group,9 days of L.reuteri ingestion increase the rheobase,decreased the AP_(dV/dt) and decreased the number of APs discharged at 2×rheobase intensity stimulation..
     [Conclusion]
     1 Repeated 80mmHg CRD stimulation in distal colon can cause increased excitability of DRG neurons.
     2 CRD might increase the excitability of the DRG neuron by changing inactivation kinemics of sodium channels.
     3 Endogenous BDNF might downregulate the hypersensitivity of DRG neurons following CRD.
     4 Ingestion of L.reuteri downregulated the sensitivity of the DRG neurons following CRD.It may exert therapeutic or preventative role to visceral pain.
引文
[1] Bouin M, Plourde V, Boivin M, Riberdy M, Lupien F, Laganiere M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology. 2002;122:1771-7.
    
    [2] Bueno L, Fioramonti J. Visceral perception: inflammatory and non-inflammatory mediators. Gut. 2002;51 Suppl l:i19-23.
    
    [3] Laird JM, Olivar T, Roza C, De Felipe C, Hunt SP, Cervero F. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience. 2000;98:345-52.
    
    [4] Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306:686-8.
    
    [5] Furness JB, Clerc N, Kunze WA. Memory in the enteric nervous system. Gut. 2000;47 Suppl 4:iv60-2; discussion iv76.
    
    [6] Szurszewski JH, Ermilov LG, Miller SM. Prevertebral ganglia and intestinofugal afferent neurones. Gut. 2002;51 Suppl l:i6-10.
    
    [7] Lipkin M, Sleisenger MH. Studies of visceral pain: measurements of stimulusintensity and duration associated with the onset of pain in esophagus, ileum and colon. J Clin Invest. 1958;37:28-34.
    
    [8] Ness TJ, Gebhart GF. Characterization of neurons responsive to noxious colorectal distension in the T13-L2 spinal cord of the rat. J Neurophysiol. 1988;60:1419-38.
    
    [9] Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res. 1988;450:153-69.
    
    [10] Gschossmann JM, Coutinho SV, Miller JC, Huebel K, Naliboff B, Wong HC, et al. Involvement of spinal calcitonin gene-related peptide in the development of acute visceral hyperalgesia in the rat. Neurogastroenterol Motil. 2001 ;13:229-36.
    [11] Hasegawa S, Kohro Y, Tsuda M, Inoue K. Activation of cytosolic phospholipase A2 in dorsal root ganglion neurons by Ca2+/calmodulin-dependent protein kinase II after peripheral nerve injury. Mol Pain. 2009;5:22.
    
    [12] Moore BA, Stewart TM, Hill C, Vanner SJ. TNBS ileitis evokes hyperexcitability and changes in ionic membrane properties of nociceptive DRG neurons. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1045-51.
    
    [13] Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y, Wang Y, et al. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut. 2006;55:191-6.
    
    [14] McCafferty DM, Wallace JL, Sharkey KA. Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat. Am J Physiol. 1997;272:G272-80.
    
    [15] Amir R, Michaelis M, Devor M. Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci. 1999;19:8589-96.
    
    [16] Pedroarena CM, Pose IE, Yamuy J, Chase MH, Morales FR. Oscillatory membrane potential activity in the soma of a primary afferent neuron. J Neurophysiol. 1999;82:1465-76.
    
    [17] Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984;310:501-2.
    
    [18] Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, et al. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol. 2008;99:3151-6.
    
    [19] Coste B, Crest M, Delmas P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol. 2007;129:57-77.
    
    [20] White G, Lovinger DM, Weight FF. Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci U S A. 1989;86:6802-6.
    [21] Cummins TR, Rush AM, Estacion M, Dib-Hajj SD, Waxman SG. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc. 2009;4:1103-12.
    
    [22] Wu ZZ, Cai YQ, Pan HL. A functional link between T-type calcium channels and mu-opioid receptor expression in adult primary sensory neurons. J Neurochem. 2009;109:867-78.
    
    [23] Bocksteins E, Raes AL, Van de Vijver G, Bruyns T, Van Bogaert PP, Snyders DJ. Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons. Am J Physiol Cell Physiol. 2009;296:C1271-8.
    
    [24] Feng B, Strichartz G. Endothelin-1 raises excitability and reduces potassium currents in sensory neurons. Brain Res Bull. 2009;79:345-50.
    
    [25] Lu CL, Pasricha PJ, Hsieh JC, Lu RH, Lai CR, Wu LL, et al. Changes of the neuropeptides content and gene expression in spinal cord and dorsal root ganglion after noxious colorectal distension. Regul Pept. 2005; 131:66-73.
    
    [26] Martinez V, Melgar S. Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain. 2008; 12:934-44.
    
    [27] Wang L, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res. 2009;1247:79-91.
    
    [28] Larauche M, Gourcerol G, Wang L, Pambukchian K, Brunnhuber S, Adelson DW, et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297:G215-27.
    
    [29] Lindstrom E, Brusberg M, Hughes PA, Martin CM, Brierley SM, Phillis BD, et al. Involvement of metabotropic glutamate 5 receptor in visceral pain. Pain. 2008;137:295-305.
    
    [30] Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A. 1999;96:7723-30.
    [31] Mo G, Bernier LP, Zhao Q, Chabot-Dore AJ, Ase AR, Logothetis D, et al. Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol Pain. 2009;5:47.
    
    [32] Zacharova G, Palecek J. Parvalbumin and TRPV1 receptor expression in dorsal root ganglion neurons after acute peripheral inflammation. Physiol Res. 2009;58:305-9.
    
    [33] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117:500-44.
    [34] Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397-409.
    
    [35] George AL, Jr. Inherited disorders of voltage-gated sodium channels. J Clin Invest. 2005;115:1990-9.
    
    [36] Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, et al. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28:365-8.
    [37] Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24:4832-9.
    
    [38] Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain. 2002;95:143-52.
    
    [39] Stewart T, Beyak MJ, Vanner S. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol. 2003;552:797-807.
    
    [40] Beyak MJ, Ramji N, Krol KM, Kawaja MD, Vanner SJ. Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability. Am J Physiol Gastrointest Liver Physiol. 2004;287:G845-55.
    
    [41] Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem. 2004;279:29341-50.
    
    [42] Rogers M, Tang L, Madge DJ, Stevens EB. The role of sodium channels in neuropathic pain. Semin Cell Dev Biol. 2006;17:571-81.
    
    [43] Ko SH, Jochnowitz N, Lenkowski PW, Batts TW, Davis GC, Martin WJ, et al. Reversal of neuropathic pain by alpha-hydroxyphenylamide: a novel sodium channel antagonist. Neuropharmacology. 2006;50:865-73.
    
    [44] Dib-Hajj SD, Black JA, Waxman SG. Voltage-gated sodium channels: therapeutic targets for pain. Pain Med. 2009; 10:1260-9.
    
    [45] Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. J Neurobiol. 2004;61:55-71.
    
    [46] Waxman SG. Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci. 2001;2:652-9.
    
    [47] Waxman SG. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain. 1999;Suppl 6:S133-40.
    
    [48] Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 1994;72:466-70.
    
    [49] Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82:2776-85.
    
    [50] Catterall WA, Schmidt JW, Messner DJ, Feller DJ. Structure and biosynthesis of neuronal sodium channels. Ann N Y Acad Sci. 1986;479:186-203.
    
    [51] Guy HR, Seetharamulu P. Molecular model of the action potential sodium channel. Proc Natl Acad Sci U S A. 1986;83:508-12.
    
    [52] Tan ZY, Donnelly DF, LaMotte RH. Effects of a chronic compression of the dorsal root ganglion on voltage-gated Na+ and K+ currents in cutaneous afferent neurons. J Neurophysiol. 2006;95:1115-23.
    [53] West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992;89:10910-4.
    
    [54] Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140-3.
    
    [55] Lever IJ, Bradbury EJ, Cunningham JR, Adelson DW, Jones MG, McMahon SB, et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci. 2001;21:4469-77.
    
    [56] Li WP, Xian C, Rush RA, Zhou XF. Upregulation of brain-derived neurotrophic factor and neuropeptide Y in the dorsal ascending sensory pathway following sciatic nerve injury in rat. Neurosci Lett. 1999;260:49-52.
    
    [57] Salio C, Lossi L, Ferrini F, Merighi A. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci. 2005;22:1951-66.
    
    [58] Cho HJ, Kim JK, Zhou XF, Rush RA. Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res. 1997;764:269-72.
    
    [59] Cho HJ, Kim SY, Park MJ, Kim DS, Kim JK, Chu MY. Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation. Brain Res. 1997;749:358-62.
    
    [60] Qiao LY, Grider JR. Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol. 2007;204:667-79.
    
    [61] Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, et al. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat Neurosci. 2000;3:437-44.
    
    [62] Wang Y, Wagner MB, Kumar R, Cheng J, Joyner RW. Inhibition of fast sodium current in rabbit ventricular myocytes by protein tyrosine kinase inhibitors. Pflugers Arch. 2003;446:485-91.
    [63] Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci. 2001;21:4891-900.
    
    [64] Zhao X, Liu J, Guan R, Shen Y, Xu P, Xu J. Estrogen affects BDNF expression following chronic constriction nerve injury. Neuroreport. 2003; 14:1627-31.
    
    [65] Siuciak JA, Wong V, Pearsall D, Wiegand SJ, Lindsay RM. BDNF produces analgesia in the formalin test and modifies neuropeptide levels in rat brain and spinal cord areas associated with nociception. Eur J Neurosci. 1995;7:663-70.
    
    [66] Frank L, Wiegand SJ, Siuciak JA, Lindsay RM, Rudge JS. Effects of BDNF infusion on the regulation of TrkB protein and message in adult rat brain. Exp Neurol. 1997;145:62-70.
    
    [67] Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci. 2003;24:116-21.
    
    [68] Pezet S, Malcangio M. Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets. 2004;8:391-9.
    
    [69] Guo W, Robbins MT, Wei F, Zou S, Dubner R, Ren K. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci. 2006;26:126-37.
    
    [70] Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, et al. Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem. 2006;281:22180-9.
    
    [71] Lee SL, Kim JK, Kim DS, Cho HJ. Expression of mRNAs encoding full-length and truncated TrkB receptors in rat dorsal root ganglia and spinal cord following peripheral inflammation. Neuroreport. 1999; 10:2847-51.
    
    [72] Obata K, Yamanaka H, Fukuoka T, Yi D, Tokunaga A, Hashimoto N, et al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain. 2003;101:65-77.
    
    [73] Obata K, Tsujino H, Yamanaka H, Yi D, Fukuoka T, Hashimoto N, et al. Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain. 2002;99:121-32.
    
    [74] Pezet S, Cunningham J, Patel J, Grist J, Gavazzi I, Lever IJ, et al. BDNF modulates sensory neuron synaptic activity by a facilitation of GABA transmission in the dorsal horn. Mol Cell Neurosci. 2002;21:51-62.
    
    [75] Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, et al. Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci. 2002;21:684-95.
    
    [76] Lever IJ, Pezet S, McMahon SB, Malcangio M. The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Mol Cell Neurosci. 2003;24:259-70.
    
    [77] Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci. 1999;19:5138-48.
    
    [78] Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci. 2004;20:1769-78.
    
    [79] Slack SE, Thompson SW. Brain-derived neurotrophic factor induces NMDA receptor 1 phosphorylation in rat spinal cord. Neuroreport. 2002;13:1967-70.
    
    [80] Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633:326-30.
    
    [81] Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM. BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res. 1996;710:11-20.
    
    [82] Cirulli F, Berry A, Alleva E. Intracerebroventricular administration of brain-derived neurotrophic factor in adult rats affects analgesia and spontaneous behaviour but not memory retention in a Morris Water Maze task. Neurosci Lett. 2000;287:207-10.
    
    [83] Ohba S, Ikeda T, Ikegaya Y, Nishiyama N, Matsuki N, Yamada MK. BDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition. Cereb Cortex. 2005;15:291-8.
    
    [84] Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci. 1997;17:8476-90.
    
    [85] Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience. 1996;74:945-53.
    
    [86] Wirth MJ, Brun A, Grabert J, Patz S, Wahle P. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development. 2003;130:5827-38.
    
    [87] Danzer SC, Kotloski RJ, Walter C, Hughes M, McNamara JO. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB. Hippocampus. 2008;18:668-78.
    
    [88] Horch HW, Katz LC. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci. 2002;5:1177-84.
    
    [89] Gionchetti P, Lammers KM, Rizzello F, Campieri M. VSL#3: an analysis of basic and clinical contributions in probiotic therapeutics. Gastroenterol Clin North Am. 2005;34:499-513, ix-x.
    
    [90] O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005; 128:541-51.
    
    [91] Shanahan F. Irritable bowel syndrome: shifting the focus toward the gut microbiota. Gastroenterology. 2007;133:340-2.
    
    [92] Verdu EF, Collins SM. Irritable bowel syndrome and probiotics: from rationale to clinical use. Curr Opin Gastroenterol. 2005;21:697-701.
    [93] Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P, Jackson W, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut. 2006;55:182-90.
    
    [94] Liebregts T, Adam B, Bertel A, Jones S, Schulze J, Enders C, et al. Effect of E. coli Nissle 1917 on post-inflammatory visceral sensory function in a rat model. Neurogastroenterol Motil. 2005;17:410-4.
    
    [95] Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35-7.
    
    [96] Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K. Effects of intraduodenal injection of Lactobacillus johnsonii Lal on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett. 2005;389:109-14.
    
    [97] Munakata J, Naliboff B, Harraf F, Kodner A, Lembo T, Chang L, et al. Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology. 1997;112:55-63.
    
    [98] Serra J, Azpiroz F, Malagelada JR. Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology. 1995;109:1742-9.
    
    [99] Gold MS, Zhang L, Wrigley DL, Traub RJ. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J Neurophysiol. 2002;88:1512-22.
    
    [100] Huang LY, Neher E. Ca(2+)-dependent exocytosis in the somata of dorsa root ganglion neurons. Neuron. 1996;17:135-45.
    
    [101] Gold MS, Shuster MJ, Levine JD. Role of a Ca(2+)-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett. 1996;205:161-4.
    
    [102] Tan LL, Bornstein JC, Anderson CR. Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience. 2008; 156:334-43.
    [103] Zhang L, Weiner JL, Valiante TA, Velumian AA, Watson PL, Jahromi SS, et al. Whole-cell recording of the Ca(2+)-dependent slow afterhyperpolarization in hippocampal neurones: effects of internally applied anions. Pflugers Arch. 1994;426:247-53.
    
    [104] Beyak MJ, Vanner S. Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil. 2005; 17:175-86.
    
    [105] Sheil B, MacSharry J, O'Callaghan L, O'Riordan A, Waters A, Morgan J, et al. Role of interleukin (IL-10) in probiotic-mediated immune modulation: an assessment in wild-type and IL-10 knock-out mice. Clin Exp Immunol. 2006;144:273-80.
    
    [106] Verma-Gandhu M, Bercik P, Motomura Y, Verdu EF, Khan WI, Blennerhassett PA, et al. CD4+ T-cell modulation of visceral nociception in mice. Gastroenterology. 2006; 130:1721 -8.
    
    [107] Yoshimura N, de Groat WC. Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci. 1999;19:4644-53.
    
    [108] Al-Chaer ED, Traub RJ. Biological basis of visceral pain: recent developments. Pain. 2002;96:221-5.
    
    [109] Cervero F, Laird JM. Role of ion channels in mechanisms controlling gastrointestinal pain pathways. Curr Opin Pharmacol. 2003;3:608-12.
    
    [110] Bielefeldt K, Ozaki N, Gebhart GF. Experimental ulcers alter voltage-sensitive sodium currents in rat gastric sensory neurons. Gastroenterology. 2002;122:394-405.
    
    [111] Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain. 2004;108:237-47.
    
    [112] Blair NT, Bean BP. Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci. 2003;23:10338-50.
    [113] Blair NT, Bean BP. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci. 2002;22:10277-90.
    
    [114] Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, et al. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci. 2007;35:138-52.
    
    [115] Steers WD, Creedon DJ, Turtle JB. Immunity to nerve growth factor prevents afferent plasticity following urinary bladder hypertrophy. J Urol. 1996;155:379-85.
    
    [116] Jones RC, 3rd, Otsuka E, Wagstrom E, Jensen CS, Price MP, Gebhart GF. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology. 2007;133:184-94.
    
    [117] Williams TH, Zhang MQ, Jew JY. Hypertrophy of rat sensory ganglion neurons following intestinal obstruction. Gastroenterology. 1993; 105:8-14.
    
    [118] Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology. 2008; 134:2059-69.
    
    [119] Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, Forsythe P, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium dependent potassium channel opening. J Cell Mol Med. 2009.
    [1] Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13-25.
    
    [2] Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397-409.
    
    [3] George AL, Jr. Inherited disorders of voltage-gated sodium channels. J Clin Invest. 2005; 115:1990-9.
    
    [4] Isom LL. The role of sodium channels in cell adhesion. Front Biosci. 2002;7:12-23.
    
    [5] Goldin AL. Evolution of voltage-gated Na(+) channels. J Exp Biol. 2002;205:575-84.
    
    [6] Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, et al. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28:365-8.
    
    [7] Renganathan M, Dib-Hajj S, Waxman SG. Na(v)1.5 underlies the 'third TTX-R sodium current' in rat small DRG neurons. Brain Res Mol Brain Res. 2002;106:70-82.
    
    [8] Trimmer JS, Rhodes KJ. Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol. 2004;66:477-519.
    
    [9] Westenbroek RE, Noebels JL, Catterall WA. Elevated expression of type II Na+ channels in hypomyelinated axons of shiverer mouse brain. J Neurosci. 1992;12:2259-67.
    
    [10] Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A. 2000;97:5616-20.
    
    [11] Jenkins SM, Bennett V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol. 2001;155:739-46.
    [12] Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, et al. Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res. 1996;43:117-31.
    
    [13] Amaya F, Decosterd I, Samad TA, Plumpton C, Tate S, Mannion RJ, et al. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci. 2000;15:331-42.
    
    [14] Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. J Neurobiol. 2004;61:55-71.
    
    [15] Chen YH, Dale TJ, Romanos MA, Whitaker WR, Xie XM, Clare JJ. Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur J Neurosci. 2000; 12:4281-9.
    
    [16] Cummins TR, Waxman SG. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci. 1997;17:3503-14.
    
    [17] Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG. Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res. 1997;45:71-82.
    
    [18] Lindia JA, Abbadie C. Distribution of the voltage gated sodium channel Na(v)1.3-like immunoreactivity in the adult rat central nervous system. Brain Res. 2003;960:132-41.
    
    [19] Kim CH, Oh Y, Chung JM, Chung K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res Mol Brain Res. 2001;95:153-61.
    
    [20] Dib-Hajj SD, Fjell J, Cummins TR, Zheng Z, Fried K, LaMotte R, et al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain. 1999;83:591-600.
    
    [21] Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, et al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain. 2006;2:33.
    [22] Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 1994;72:466-70.
    
    [23] Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A. 2002 ;99:83 60-5.
    
    [24] Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB. Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000;290:124-7.
    
    [25] Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24:4832-9.
    
    [26] Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci. 2003;23:8881-92.
    
    [27] Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7:S3-S12.
    
    [28] Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82:2776-85.
    
    [29] Amir R, Liu CN, Kocsis JD, Devor M. Oscillatory mechanism in primary sensory neurones. Brain. 2002;125:421-35.
    
    [30] Sage D, Salin P, Alcaraz G, Castets F, Giraud P, Crest M, et al. Na(v)1.7 and Na(v)1.3 are the only tetrodotoxin-sensitive sodium channels expressed by the adult guinea pig enteric nervous system. J Comp Neurol. 2007;504:363-78.
    
    [31] Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN. Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. J Physiol. 2003;546:565-76.
    [32] Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, et al. A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem. 1997;272:14805-9.
    
    [33] Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A. 2004; 101:12706-11.
    
    [34] Yeomans DC, Levinson SR, Peters MC, Koszowski AG, Tzabazis AZ, Gilly WF, et al. Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Navl.7 sodium channels in primary afferents. Hum Gene Ther. 2005;16:271-7.
    
    [35] Bird EV, Robinson PP, Boissonade FM. Na(v)1.7 sodium channel expression in human lingual nerve neuromas. Arch Oral Biol. 2007;52:494-502.
    
    [36] Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol. 2008;64:644-53.
    
    [37] Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. From genes to pain: Na v 1.7 and human pain disorders. Trends Neurosci. 2007;30:555-63.
    
    [38] Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. 2007;l 17:3603-9.
    
    [39] Fertleman CR, Ferrie CD, Aicardi J, Bednarek NA, Eeg-Olofsson O, Elmslie FV, et al. Paroxysmal extreme pain disorder (previously familial rectal pain syndrome). Neurology. 2007;69:586-95.
    
    [40] Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894-8.
    
    [41] Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, et al. Loss-of-function mutations in the Navl.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007;71:311-9.
    
    [42] Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257-62.
    [43] Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A. 2006; 103:8245-50.
    
    [44] Renganathan M, Cummins TR, Waxman SG. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86:629-40.
    
    [45] Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain. 2002;95:143-52.
    
    [46] Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, et al. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain. 2000;85:41-50.
    
    [47] Wang H, Sun H, Delia Penna K, Benz RJ, Xu J, Gerhold DL, et al. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience. 2002;l 14:529-46.
    
    [48] Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ. The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain. 2002;96:269-77.
    
    [49] Lai J, Hunter JC, Porreca F. The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol. 2003; 13:291-7.
    
    [50] Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci. 1998;18:2174-87.
    
    [51] Hillsley K, Lin JH, Stanisz A, Grundy D, Aerssens J, Peeters PJ, et al. Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. J Physiol. 2006;576:257-67.
    [52] Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain. 2004; 108:237-47.
    
    [53] Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science. 2008;321:702-5.
    
    [54] Dib-Hajj SD, Tyrrell L, Waxman SG. Structure of the sodium channel gene SCN11A: evidence for intron-to-exon conversion model and implications for gene evolution. Mol Neurobiol. 2002;26:235-50.
    
    [55] Baker MD, Bostock H. Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. J Neurophysiol. 1997;77:1503-13.
    
    [56] Rush AM, Waxman SG. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res. 2004; 1023:264-71.
    
    [57] Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A. 2005; 102:9382-7.
    
    [58] Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci. 2006;26:12852-60.
    
    [59] Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, et al. Expression and localization of the Navl.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci. 2007;35:138-52.
    
    [60] Rugiero F, Mistry M, Sage D, Black JA, Waxman SG, Crest M, et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci. 2003;23:2715-25.
    
    [61] Lipkind GM, Fozzard HA. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol Pharmacol. 2005;68:1611-22.
    [62] Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A. 1996;93:9270-5.
    
    [63] Baumgartner MR, Verhoeven NM, Jakobs C, Roels F, Espeel M, Martinez M, et al. Defective peroxisome biogenesis with a neuromuscular disorder resembling Werdnig-Hoffmann disease. Neurology. 1998;51:1427-32.
    
    [64] Watson CP, Evans RJ, Reed K, Merskey H, Goldsmith L, Warsh J. Amitriptyline versus placebo in postherpetic neuralgia. Neurology. 1982;32:671-3.
    
    [65] Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol. 2005;96:399-409.