负载口独立电液比例方向阀控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压传动技术广泛应用于工程机械,多路阀是工程机械液压系统的核心控制元件,其性能好坏直接关系到整机的操控和节能性能。传统多路阀每联阀采用单主阀芯结构调节其进口和出口节流面积,而负载口独立控制多路阀的每联阀采用双阀芯结构独立调节其进口和出口节流面积,该结构增加了系统的控制自由度,使工程机械的操控和节能性能进一步提升成为可能。负载口独立方向阀控制系统的执行器速度和压力控制策略、与负载口独立方向阀控制系统在工程机械中的应用,是负载口独立控制技术研究的重点和难点。本学位论文研究负载口独立方向阀控制系统的控制策略和挖掘机负载口独立方向阀控制样机的机液耦合特性,充分利用负载口独立控制技术的优势来提高整机操控和节能性能,具有广泛的工程应用背景和重要的学术研究价值。
     本文提出了根据操作者输入控制速度大小来调控负载口独立方向阀两端压差的变压差补偿的速度控制方法,相比传统的机液定压差负载补偿方法,该控制方法在输入控制速度较小时,降低了负载口独立方向阀两端的压差,减少了系统的速度控制增益,提高了系统的稳定和节能性,在输入控制速度较大时,增加了负载口独立方向阀两端的压差,提高了系统增益,改善了系统的快速性,在挖掘机动臂液压缸变速提升典型工况的实验结果表明,该控制方法可节能系统能耗8%以上。建立了负载口独立方向阀控挖掘机系统机液耦合模型和性能测试样机,并设计了控制器,提出了兼顾操控和节能性能的执行器工作模式选择的新方法,在挖掘机动臂下降时,动臂选用高压再生模式,该模式相比低压再生下降模式,提高了系统的阻尼,动臂下降速度控制实验结果表明,可降低速度超调20%以上;在挖掘机动臂和斗杆空载并同时运行时,动臂选用阻抗伸出模式,斗杆选用高压再生模式,相比统一选用阻抗模式,可提高系统的效率7%以上。提出了由平衡阀的延滞时间调节速度控制器闭环增益的变增益速度调控方法,该方法通过估计平衡阀的延滞时间,分段调节执行器速度控制闭环增益,在平衡阀缓慢开启阶段采用小增益速度控制器以减少速度超调,在平衡阀全开阶段采用大增益速度控制器来提高系统动态响应,双执行器同时运行的实验结果表明,采用该方法所获得的速度控制结果相比定增益控制方法减少了执行器速度控制超调40%。本论文的研究成果为应用负载口独立控制技术改善工程机械系统的操控和节能性能提供了理论支撑和工程应用示范。
     论文的主要结构如下:
     第一章,指出了论文的研究目的和意义,介绍了负载口独立控制技术的研究背景和国内外研究现状,确定了负载口独立方向阀控制系统关键技术的研究内容。
     第二章,主要设计了负载口独立方向阀控制系统不同工作模式下执行器压力、速度控制策略,选择适合于负载口独立方向阀控制系统工程应用的控制方法。分别仿真和实验比较了基于计算流量反馈的速度控制器和压力前馈和反馈相结合的压力控制器,基于反馈线性化模型的计算力控制器和自适应鲁棒速度控制器和自适应鲁棒压力控制器三种控制器的控制性能。
     第三章,拓展负载口独立方向阀控制系统的应用领域,研究了负载口独立方向阀控制技术与负载敏感技术相结合的控制策略,分析了当前负载敏感技术的控制特点,提出了根据操作者输入速度信号改变控制阀两端压差的变压差补偿的速度控制方法,改善了系统的节能性能;研究了负载口独立控制技术与闭中心负载敏感技术相结合的控制方法,提出了区分轻、重负载执行器模式选择的速度控制方法,并进行了单个执行器工作模式切换的实验研究,该方法为进一步改善系统的节能性能提供了条件。
     第四章,研究了多执行器同时运行时的负载口独立比例方向阀控制系统的速度控制特性,建立了双执行器负载口独立方向阀控制系统的同步模型并设计了控制器,对比传统的电液比例控制方向阀控制系统,比较了不同工况下执行器速度控制特性。研究带平衡阀的负载口独立方向阀控多执行器同时运行系统,提出根据平衡阀延滞时间来分段调节速度增益的速度控制方法,改善了带平衡阀支路的速度控制稳定性。
     第五章,设计了挖掘机负载口独立方向阀控制系统,建立了基于AMESim的系统机液耦合模型,研究了不同工作模式下,挖掘机动臂和斗杆油缸的速度控制方法,分析获得在动臂油缸处于上升速度控制时,宜采用阻抗伸出模式,而动臂油缸下降速度控制时高压再生下降模式比阻抗下降模式具有更好的速度控制稳定性。对动臂和斗杆油缸进行了同时上升和同时下降速度控制实验,应用第四章设计的负载口独立多执行器控制方法获得了较好的速度控制特性。
     第六章,概括了全文的主要研究工作和成果,并展望了今后需要进一步研究的工作和方向。
Hydraulic system is well used in mobile machinery, multi-way directional valve is the key component in hydraulic system of mobile machinery, its properties has high relationship to the operational and energy saving characteristic of mobile machinery. Meter in and meter out orifice of traditional multi-way directional control valve is controlled by a single main spool, but meter in and meter out orifice in independent metering valve is separately controlled by two spools, so control degrees of freedom in independent valve control system is increased, which makes it possible to further improve operational and energy saving characteristic of mobile machinery. Controller design for velocity and pressure control of independent system as well as application of independent valve control system in mobile machinery, which has been considered as a challenge up to now, is responsible to improving system performance. Therefore it is necessary to study control strategies of independent metering valve control system and the mechanical-hydraulic coupling characteristic of mobile machinery, make full use of the increased degree of freedom to enhance operational and energy saving performance of mobile machinery.
     In this thesis, a new velocity control method to control the open center load sensing independent metering valve control system has been proposed, pressure difference of velocity control direction valve is regulated according to operator input command velocity, which is not set at a fixed value as in traditional load sensing system. When the command velocity is low, pressure difference is reduced, which reduces the velocity control gain, improve stability and energy saving performance; when the command velocity is high, pressure difference is increased, which increases system velocity control gain and enhances velocity dynamic response, this method was implemented in a variable command velocity lift experiment, obtained results showed that above 8% of energy saving performance was achieved using proposed method. Work modes of excavator actuators have been studied, a work mode selection criterion has been proposed, high pressure regeneration extraction mode is more suitable to control the downward motion of boom than low pressure regeneration extraction mode, experiment showed that high pressure regeneration extraction mode reduced 20% overshoot of velocity; in boom and arm simultaneous motion condition, it suggests that boom uses power extension work mode, arm uses high side regeneration extension work mode, it improved 7% efficient than both using power extension work mode. An independent metering valve control multi-actuator system with a counterbalance has been studied, a variable gain velocity control method has been proposed to improve system stability, experiment showed that the proposed method reduced 40% overshoot of velocity coMPared with using the fixed gain velocity control method. All obtain results provided the theoretical basis and application examples to explore independent metering valve control system.to improve operational and energy saving performance of mobile machinery.
     In chapter 1, the aim and significance of the study in the thesis were discussed. The current research progresses on IM technique were reviewed. The main research subjects were presented.
     In chapter 2, three different controllers were proposed to control IM valve control system based on the built mathematic model, the performance of those controllers were coMPared through simulation and experiment, Lyapunov based adaptive robust controller obtained highest velocity control accuracy.
     In chapter 3, controllers designed for combining IM and LS technique have been developed. A new control method for OCLS-IM system has developed to enhance energy saving performance by varying the pressure differential of IM valve according to the operator input velocity control signal. A CCLS-IM controller which differentiates the level of the external loads to choose work mode for actuators was also developed, it can also improved energy saving performance of the whole system significantly.
     In chapter 4, multi-actuators simultaneous motion control method of IM valve control system have been studied. CoMParisons of dynamic response of velocity control between traditional proportion directional valve control two-cylinder system and IM valve control two-cylinder system has been carried out. Obtained simulation results showed velocity response of IM valve control system was faster and more stable. A variable gain velocity control method was proposed to stable IM valve control two-cylinder velocity control system with a counterbalance valve.
     In chapter 5, a 2-ton excavator IM valve control system has been built, velocity control performance of different work modes were experimentally tested.It was found, when the boom was in extraction, high side regeneration extraction mode was preferred to be chosen due to its good velocity control performance. OCLS-IM control strategy was also verified in boom lift velocity control mode. Then arm and boom were controlled to lift and lower simultaneously with the IM technique, good velocity control performance was achieved.
     In chapter 6, conclusions in this thesis were summarized and future research proposals were suggested.
引文
[1]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [2]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2002.1
    [3]Backe W.. Design systematics and performance of cartridge valve controls. In: International Conference on Fluid Power, Tampere, Finland,1987,3:1-48
    [4]Jansson A, Palmberg J.O. Separate Controls of Meter-In and Meter-Out Orifices in Mobile Hydraulic Systems[J]. SAE Transactions,1990,99(2):377-383.
    [5]Elfving.M. A concept for a distributed controller of fluid power actuators[D]. Sweden: LinkoPIng University,1997.
    [6]Elfving M., Palmberg J.O., Jansson A. Distributed control of fluid power actuators-experimental verification of a decoupled chamber pressure controlled cylinder. In:the fourth International Conference on Fluid Power Transmission and Control, Hangzhou, China,1997
    [7]Elfving M., Palmberg J.O. Distributed control of fluid power actuators-a load sensing application of a cylinder with decoupled chamber pressure control. In:the fifth Scandinavian International Conference on Fluid Power, LinkoPIng, Sweden,1997
    [8]Elfving M., Palmberg J.O. Distributed control of fluid power actuators-decoupled chamber pressure controlled cylinder. In:the ninth Bath International Fluid Power Workshop, Bath, England,1996
    [9]Bjorn E. Control strategy for energy efficient fluid power Actuators[M]. Sweden: LinkoPIng University,2007.
    [10]Bjorn E. Mobile fluid power system design with a focus on energy efficient[D]. Sweden: LinkoPIng University,2010.
    [11]Bjorn Ericsson.Energy saving system utilizing LQ technique design. Proceedings of fluid power transmission. Hangzhou, China.2009
    [12]Andersen T.O., Munzer M.E., Hanse M.R.. Evaluation of control strategies for separate meter-in separate meter-out hydraulic boom actuation in mobile applications.In:the 17th International Conference on Hydraulic and Pneumatics, Ostrava, Czech Republic,2001, 6
    [13]Marc E.M.. Control of mobile hydraulic cranes. In:Proc. of first FPNI-PhD symposium, Hamburg,2000,9:475-483
    [14]K. A. Tabor and J. L. Pfaff. Apparatus and method for providing vibration to an appendage of a work vehicle. European Patent Application EP 1361 312 A1, November 2003. Husco International Inc.
    [15]J. L. Pfaff. Distributed electrohydraulic systems for telehandlers. In Proceedings of the 50th National Conference on Fluid Power, pages 779-784, Las Vegas, March 16-182005. HUSCO Commercial paper.
    [16]Nielsen B. Controller development for a separate meter-in separate meter-out fluid power valve for mobile applications[D].Denmark:Aalborg University,2009.
    [17]Yao B,Song L.Energy-saving control of hydraulic systems with novel programmable valves[C]//Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China,2002:81-91.
    [18]Liu S. Energy-saving control of hydraulic systems with novel programmable valves[D].United State:Purdue University,2005.
    [19]Bu, F. P. and Yao, B.; Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains, Proceedings of the 2000 American Control Conference, Chicago,IIIinois, USA, June 2000, Vol.6,4129-4133
    [20]Bu F. P. and Yao B.; Desired compensation adaptive robust control of single-rod electro-hydraulic actuator, Proceedings of the 2001 American Control Conference, Arlington, VA,USA, June 25-27,2001, Vol.5,3926-3931
    [21]Hu H.B, Zhang Q, A. Andrew. Multi-function Realization Using an Integrated Programmable E/H Control Valve[J]. Applied Engineering in Agriculture,2003,19(3): 283-290.
    [22]Hu H.B., Zhang Q.. Realization of programmable control using a set of individually controlled electro-hydraulic valves. International Journal of Fluid Power,2002,3(2): 29-34
    [23]R. Book. Programmable electrohydraulic valve[D], American:University of Illinois, 1998
    [24]R. Book, C.E. Goering. Programmable electrohydraulic valve. SAE Transactions,1999, 108(2):346-352.
    [25]Shenouda A. Quasi-static hydraulic control systems and energy savings potential using independent metering four-valve assembly configuration[D]. American:Georgia Institute of Technology,2006
    [26]Patrick O, Sadegh N. Learning control applied to Electro-Hydraulic Poppet Valves.Proceeding of IEEE control conference on automation,2008
    [27]MATTLA J., VIRVALO T.. Energy Efficient Control of a Hydraulic Manipulator. In: International Conference on Robotics and Automation, San Francisco, CA,2000
    [28]顾临怡.大惯性负载进出口独立调节数字控制及多执行器复合控制研究[D].杭州:浙江大学,1998.
    [29]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    [30]Jouni Mattila, TaPIo Virvalo. Energy-efficient Motion Control of a Hydraulic Manipulator. Proceedings of the 2000 IEEE international Conference on Robotics & Automation, San Francisco, PP:3000-3006.2000.
    [31]姚静.多功能组合阀及其控缸特性的理论与实验研究[M].秦皇岛:燕山大学,2003
    [32]Xu B, Liu Y, Yang H, Wang Y. Simulation Study of the Novel Valve Arrangement Used in Hydraulic Control System[C]//The Sixth International Fluid Power Conference, Dresden, Germany,2008, Workshop, Group B:139-146.
    [33]Xu B, Ma J, Lin J. Computational Flow Rate Feedback and Control Method in Hydraulic Elevators[J]. Chinese Journal of Mechanical Engineering,2005,18(4):490-495.
    [34]DeBoer C., Yao B.. Velocity control of hydraulic cylinders with only pressure feedback. In:Proc. of IMECE'012001 ASME International Mechanical Engineering Congress and Exposition, New York, USA,2001,11:1-9
    [35]王庆丰.集成化电液控制执行机构的数字控制及系统解耦研究[D].浙江大学博士学位论文,杭州,浙江大学,1994
    [36]Ultra Hydraulics Limited. Electrohydraulic proportional control valve assemblies. UKP 2,298,291,1996.02.22
    [37]CaterPIllar. System and method for controlling an independent metering valve. USP 5,960,695,1999.10.05
    [38]Husco International Inc.. Velocity based method of controlling an electrohydraulic proportional control valve. USP 6,775,974,2004.08.17
    [39]黄宗益.液压挖掘机分工况控制.建筑机械[J],1998,18(1):28-32.
    [40]赵凡.电液比例多路阀的开发和研究[M].浙江大学硕士学位论文,1991
    [41]程晓寅.复合变结构控制理论在液压与电气控制系统中的应用[D].浙江大学博士学位论文,杭州,浙江大学,1997
    [42]李景刚.高空作业车电液比例系统控制技术的研究[D].浙江大学博士学位论文,杭州,浙江大学,1991
    [43]权龙,廉自身.应用进出油口独立控制原理改善泵控差动缸的系统效率[J].机械工程学报,2005,42(3):123-127.
    [44]朱世强.高空作业车多臂协调控制技术研究[D].浙江大学博士学位论文,杭州,浙江大学,1994
    [45]魏建华.汽轮机电液控制系统的研究[D].浙江大学博士学位论文,杭州,浙江大学,1995
    [46]罗安.智能数字电液比例控制装置和控制策略的研究[D]..浙江大学博士学位论文,杭州,浙江大学,1993
    [47]俞浙青,吴根茂,路甬祥,郑庆良.多路阀的控制形式和控制性能[J].工程机械,1995(8),18-21
    [48]高峰,潘双夏.负流量控制模型与实验研究[J].机械工程学报,2005(41):107-111
    [49]肖清,王庆丰.液压挖掘机混合动力的参数匹配方法[J].中国公路学报,2008,21(1):121-126.
    [50]Liu Y, Xu B, Yang H, Modeling of Separate meter in and Separate meter out control system, In Proc.of ASME Advanced Intelligent Mechatronics, Singapore,227-232,2009.
    [51]Liu Y, Xu B, Yang H, Calculation Force Control Base on Linearization feedback Model of Separate Meter In and Separate Meter Out Control System. In IEEE Proc. Of Automation and Logistics, Shengyang, China,1464-1469,2009
    [52]Husco International Inc.. Method of selecting a hydraulic metering mode..US P 6880332,2004
    [53]Qingfei Yuan,Perry Y Li. Energy-Saving Control of an Unstable Valve with a MR Brake. In Proc. Of American Control Conference, Portland,USA,2005.
    [54]Liu Y J, Xu B, Yang H Y, Simulation of Separate Meter In and Separate Meter Out Valve Arrangement Used for Synchronized control of two cylinders, In Proc.of ASME Advanced Intelligent Mechatronics, Singapore,1665-1671,2009.
    [55]Liu Y J, Xu B, Yang H Y, Strategy for Flow and Pressure Control of Electro Hydraulic Proportional Separate Meter In and Separate Meter Out Control System, Transactions of the Chinese Society of Agricultural Machinery.2010,41 (5):182-186
    [56]Wang Q.F., Gu L.Y., Lu Y.X.. Research on digital control of meter-in and meter-out independent regulating for high inertia load. In Proc of Fluid Power Systems and Technology, Tennessee,USA.109-114,1999.
    [57]俞浙青,吴根茂,路甬祥,郑庆良.多路阀的特性分析[J].工程机械1996(10):31-35
    [58]龚进,冀谦,郭勇,张德胜.AMESim仿真技术在小型液压挖掘机液压系统中的应用[J].机电工程技术,2007(10):111-114
    [59]陈欠根,纪云锋,吴万荣.负载独立流量分配(LUDV)控制系统[J].液压与气动,2003(10):10-12
    [60]董光源.负荷传感控制液压系统[J].工程机械,1995(1):20-24
    [61]王庆丰,魏建华,吴根茂,张彦廷.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003(12):51-55
    [62]W.霍夫曼等.液压元件及系统的动态仿真[M].杭州:浙江大学出版社,1988
    [63]Backe, W.. Design systematics and perform-ance of cartridge valve controls. In:Inter-national Conference on Fluid Power, Tampere, Finland.1987,3:1-48
    [64]Wu, D. Schoenau, G, Burton, R., and Bitnet, D., "Model and experimental validation of a load sensing system," Intl. Journal Fluid Power, vol.6.5-8, Nov 2005.
    [65]黎启柏,液压元件手册[M].北京:机械工业出版社,1999.10
    [66]WU D.Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system. PHD Dissertations. Saskatchewan University.
    [67]Cetinkunt S. U. PInsopon C. Chen A. Implement-by-Wire Control of Electrohydraulic Closed Center Systems for Mobile Equipment Applications.International Association of Science and Technology for Development) International Conference on Robotics and Applications,2003
    [68]李安良.液压多路换向阀双阀芯控制技术的应用[J].工程机械,2005(2):54-56
    [69]李永旭.液压挖掘机工作装置和液压系统设计的研究[D].同济大学博士学位论文
    [70]倪文波,唐中一,曾德昭等.比例多路阀的开发和研究[J].工程机械,1998(2):11-12
    [71]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989.12
    [72]江国耀.力士乐LUDV系统[J].工程机械,2004.6
    [73]张书元.多路阀换向冲击动态特性的分析[J].烟台大学学报,1996(1):62-66
    [74]李乐奇,何清华,郭勇,陈勇.现代液压挖掘机斗杆阀联的结构[J].建筑机械,2006.5
    [75]郝鹏,液压挖掘机动力系统匹配和节能系统研究[D],中南大学博士学位论文,2007
    [76]林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988
    [77]黄宗益,叶伟,李兴华.液压挖掘机液压系统概述[J].建筑机械化,2003(9):12-16
    [78]Henke R.W.. Evolution of load-sensing hydraulics. Diesel Progress International Edition,1998,17(4):53-55
    [79]Maiti, R, Pan, S., and Bera, D.,1996, Analysis of a Load Sensing Hydraulic Flow Control Valve,Proc. of 3rd JHPS International Symposium on Fluid Power, K. Araki, ed., Yokohama, Japan,307-312.
    [80]Backe W, "Research and Development in Fluid Power Technology", Proceedings of First FPNI-PhD Symposium Hamburg 2000. September 17-20,2000, Hamburg, Germany, pp.9-21.
    [81]Yao B, Chris D. Energy-Saving Adaptive Robust Motion Control of Single-Rod Hydraulic Cylinders with Programmable valves. In:Proc. of the American Control Conference, Anchorag-e, AK.2002,5:4819-4824
    [82]CaterPIllar. Method for calibrating independent metering valves. USP 7562554,2009.
    [83]黄宗益,李兴华,陈明.挖掘机开中心和闭中心液压系统[J].建筑机械化,2004(6):53-55
    [84]武宏伟.挖掘机负载敏感系统的联合仿真及能耗分析[M].太原理工大学硕士论文
    [85]Rexroth Inc. Mobile Machine Training Manual[M],2005,World Express.
    [86]吕超,朱成建.WY21A液压挖掘机新型液压系统[J].建筑机械化,2004(1):58-60
    [87]秦家升.挖掘机液压系统研究[M].吉林大学硕士学位论文,2005
    [88]M., Tammisto, J., Koskinen, K. T.. Velocity control of water hydraulic motor. The Fifth JFPS International Symposium on Fluid Power,2002
    [89]Cho, S. H.,Linjama M.,Sairiala H.,Koskinen K. T.,Vilenius M., Sliding mode tracking control of a low-pressure water hydraulic cylinder under non-linear friction, Proceedings of the Institution of Mechanical Engineers, Part I-Journal of Systems and Control Engineering,2002,216 (15):383-392
    [90]杨华勇,曹剑,徐兵,吴根茂.多路换向阀发展历程与研究展望.机械工程学报,2005,41(10):1-5
    [91]Sun W. On Study of Energy Regeneration System for Hydraulic Manipulators [D]. Finland:Tampere University,2004
    [92]葛徐.电液比例多路阀的研究[M].浙江大学硕士学位论文,1993
    [93]付永领,祁晓野.AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006
    [94]朱笑丛,气动肌肉并联关节高精度位姿控制研究[D].浙江大学博士学位论文,2007
    [95]Ha Q.P., Nguyen H.Q.,Rye D.C., Durrant-Whyte H.F., Sliding mode control with fuzzy tuning for an electro-hydraulic position servo system,1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems,1998, Vol.1,141-148
    [96]Nasab, T. Munir.M.; Adaptive variable structure control system with free chattering, ISIE'99, Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia,1999, Vol.3,1300-1305
    [97]薛定宇,陈阳泉,基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,北京,中国,2002.04
    [98]范影乐,杨胜天,李轶,MATLAB仿真应用详解,人民邮电出版社,北京,中国,2001,07
    [99]Bobrow J.E. and Lum K.; Adaptive, high bandwidth control of a hydraulic actuator, Journal of Dynamic Systems Measurement and Control-Transactions of The ASME, 1996,Vol.118, No.4,714-720
    [100]孔晓武.带长管道的负载敏感系统研究[D].浙江大学博士学位论文,杭州,浙江大学,2003
    [101]Bonchis A., Corke P. I, Rye D. C., Ha Q. P., Variable structure methods in hydraulic servo systems control, Automatica,,2001,37(4),589-595.
    [102]Ghazy M.A., Variable structure control for electrohydraulic position servo system, Industrial Electronics Society-The 27th Annual Conference of the IEEE, Denver, CO USA,2001, pp.2194-2198.
    [103]Fung R. F., Wang Y.C., Yang R.T., H. H.Huang, A variable structure control with proportional and integral compensations for electrohydraulic position servo control system, Mechatronics,1997,7(1),67-81.
    [104]Jiang Z.M, Wang S.G., Lin T.Q., Variable structure control of electrohydraulic servo systems using fuzzy CMAC neural network, Transactions of the Institute of Measurement & Control,2003,25(3),185-201.
    [105]Fung R.F., Yang R.T., Application of VSC in position control of a nonlinear electrohydraulic servo system, Computers & Structures,1998,66(4),365-372
    [106]付永领,祁晓野AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006
    [107]Recker, D.A., Kokotovic, P.V., Rhode, D., Winkelman, J., Adaptive nonlinear control of systems containing a deadzone, Proceedings of the 30th IEEE Conference on Decision and Control,1991, pp.2111-2115
    [108]刘豹,现代控制理论,机械工业出版社,北京,中国,1999,05
    [109]Unbehauen H., Du P., Keuchel U., Application of a digital adaptive controller to a hydraulic system, International Conference on Control,1988, pp.177-182
    [110]Zheng D.N., Heather H., Andrew A., Nonlinear adaptive learning for electrohydraulic control systems, Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition,1998,Vol.5,83-90
    [111]Tochizawa, M. and Edge, K.A.; A coMParison of some control strategies for a hydraulic manipulator,1999AACC, Proceedings of the 1999 American Control Conference, San Diego, California, June 1999, Vol.2,744-748
    [112]Plummer A. R., Vaughan N. D., Robust adaptive control for hydraulic servosystems, Journal of Dynamic Systems Measurement and Control-Transactions of The ASME,118(2) (1996),237-244.
    [113]Yu W.S., Kuo T.S., Continuous-time indirect adaptive control of the electrohydraulic servo systems, IEEE Transactions on Control Systems Technology,1997,5(2),163-177
    [114]Knohl T., Unbehauen H., Adaptive position control of electrohydraulic servo systems using ANN, Mechatronics,2000,10 (1),127-143.
    [115]Ziaei K., Sepehri N., Design of a nonlinear adaptive controller for an electrohydraulic actuator, Journal of Dynamic Systems Measurement and Control-Transactions of The ASME,2001,123(3),449-456.
    [116]PInsopon U., Hwang T., Cetinkunt S., Ingram R.,.Zhang Q, Cobo M., Koehler D., Ottman R., Hydraulic actuator control with open-centre electrohydraulic valve using a cerebellar model articulation controller neural network algorithm, Proceedings of the Institution of Mechanical Engineers -Part Ⅰ-Journal of Systems & Control Engineering, 1999,213(1),33-48.
    [117]Deticek E., An intelligent position control of electrohydraulic drive using hybrid fuzzy control structure, ISIE'99-Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia,1999, pp.1008-1013.
    [118].Costa Branco P. J, Dente J. A., On Using Fuzzy Logic to Integrate Learning Mechanisms in an Electro-Hydraulic System-Part Ⅱ:Actuator's Position Control, IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews, 2000,30(3),317-328.
    [119]Branco P. J., Dente J. A., On Using Fuzzy Logic to Integrate Learning Mechanisms in an Electro-Hydraulic System—Part Ⅰ:Actuator's Fuzzy Modeling, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, August,2000,30 (3),305-316
    [120]王春行,液压伺服控制系统,机械工业出版社,北京,中国,1989
    [121]章宏甲,黄谊,液压传动,机械工业出版社,北京,中国,1995.10
    [122]李洪人,液压控制系统,国防工业出版社,北京,中国,1981.6
    [123]彭天好,杨华勇.液压挖掘机泵与发动机匹配研究[J].中国公路学报,2001,14(4):118-120.
    [124]曾定荣.多路阀综合实验系统设计及实验研究[M].浙江大学硕士学位论文,杭州:浙江大学,2010
    [125]Sun H. Motion synchronization of multi-cylinder electro-hydraulic lift systems[D].United State:Purdue University,2001.
    [126]阚超.电液伺服与比例压力控制系统辨识与特性比较研究[D].燕山大学博士学位论文,秦皇岛,燕山大学,2009
    [127]Zahe, B. Selection of Load Holding Valves with Lowest Possible Power Losses. Proceeding of fluid power ifk7.Aachean German,2010.
    [128]Henrick.C Pedersen.Torben.O Anderson et al. Investigation of Separate meter in and Separate Meter out with over center valve. Proceeding of fluid power ifk7.Aachean German,2010.
    [129]M. R. Hansen, T. O. Andersen, and F. Conrad. Experimentally based analysis and synthesis of hydraulically actuated loader crane. In Bath Power Transmissionand Motion Control Conference, Bath, UK,2001
    [130]Torben O,. Macheal. R. Evaluation of velocity control conception involving counterbalance valve in mobile system. Proceedings of fluid power transmission. Bath. United Kingdom.2010
    [131]王庆丰,张彦廷,肖清.工程机械举升油缸双泵-马达液压驱动系统,CN1683797
    [132]徐兵.曾定荣.葛耀峥.刘英杰.多执行器负载口独立控制负载敏感系统模式切换特性研究.浙江大学学报. (已录用)
    [133]徐兵.多执行器负载口独立电液比例节能系统,国资基金申请报告,2007。