长方体微波暗室内静区大小的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电磁兼容技术的应用越来越深入和广泛。对电磁兼容性的测试大都采用开阔的测试场地,但现代生活环境中很难找到理想的开阔场。因此,国内、外都相继建立了许多微波暗室。但微波暗室内可以模拟成自由空间的区域很小;因此,要想测试如战斗机的电磁兼容性,必须建成大型微波暗室。美国大约有十个(80m×76m×26m)规格的微波暗室。微波暗室的尺寸越大,内设吸收波材料越厚,对电磁波的吸收越好,越能更好的模拟开阔场地。但这样做的成本非常高,世界各国不惜重金建造不同用途的微波暗室。
     目前国内、外一定形状微波暗室内静区大小的计算还没有报道。本论文的指导思想是通过对一定形状外形尺寸的微波暗室内吸收材料对电磁波的吸收、反射、绕射。推导出静区的大小和形状。
     本文概述了电磁波的基本理论。对吸波的机理、种类、结构形状及国内外的相关研究做了一般的阐述。
     本文重点讨论微波暗室内静区的大小。主要计算长方体微波暗室内静区的大小,采用几何光学理论和几何绕射理论,从物理学中能量的角度对尖劈形吸波材料对电磁波的反射、折射、绕射及对电磁波的吸收做了定量的计算。并对由某一点发出的电磁波在尖劈界面的多次反射及在材料内部的衰减,绕射情况进行较详细的分析。用数学方法对微波暗室内发射点和接受点的几何关系进行推导。用射线跟踪方法,计算机编程,加入各种边界条件,对获得的不同结果进行筛选,从而得出最佳设计结果。
     本文还对微波暗室内静区的测试方法,测试天线的安装、调试做了一般性的阐述。
Recently, Electromagnetic Compatibility Technology (EMC) has been used widely. The test for EMC had been made with the open field in engineering. Because there could be few ideal open testing field, the microwave chambers have been built in many countries. The large chamber must be constructed for giving a big free space in order to make warplane testing. In the United States of American, there are more than 10 chambers with the volume of 80m×76m×26m. The bigger the volume of chamber is, the thicker the absorber lined is, and the better the electromagnetic wave would be taken up. Although the construction cost would be high, many chambers are being built hi advanced countries.
    So far there is no report about the computation for the pure area of microwave chamber in china, hi this paper, the pure area dimensions and shape are given by the computation to the absorbing, reflecting and bobbing of electromagnetic wave with the given absorber in chamber.
    At first, the basic theory of electromagnetic wave has been introduced. The research works reported about the principle, type and structure have been summarized.
    Secondly, the computation of the chamber pure area has been discussed mainly in the paper. With the Geometry Optics theory and the Geometry Optics Bobbing theory, the electromagnetic wave attenuation in and out the absorber has been analyzed by a computer. According to the computed results an optimal design has been obtained.
引文
[1] 谢处方,饶可谨.电磁场与电磁波.北京:高等教育出版社,1987
    [2] 汪茂光.几何绕射理论.西安:西北电讯工程学院出版社,1985
    [3] 王玮敏.电波暗室的吸波材料的性能与应用.材料与工艺,2002.5
    [4] 曹茂盛.多涂层吸波体的计算机智能化设计.秦皇岛:燕山大学学报,2001.1
    [5] 王相元.微波暗室吸波材料的分析和设计.微波学报,2000.12
    [6] 崔芙蓉.圆锥形模电磁波传输室特性的分析.应用科学学报,2001.3
    [7] 王亦方.家用微波炉炉腔内电磁场分布的解析计算.华南理工大学学报,2000.2
    [8] 甘甫烷.使用FDTD进行进行屏蔽盒的屏蔽效果分析.HIGH VOLTAGE ENGINEERING 2001.7
    [9] 王晓宁.用射线法预测电波暗室的性能.安全与电磁兼容,2000.4
    [10] 葛俊祥.大型微波暗室电磁特性的理论分析和设计.电子学报,1996.12
    [11] 葛德彪.表面具有分形结构金属劈边缘绕射系数的提取.电子学报,1996.9
    [12] 王瑞春.微波暗室反射电平的检定.宇航计测技术,1990.3
    [13] 秦顺友.微波暗室反射电平的测量技术.天线电通信技术,1995.10
    [14] SATOY,TOGAWAH.暗室中散射波的角度特性.空间电子技术,EMO专辑.
    [15] 沈国连.屏蔽暗室中天线收发方向图的同一性.2001
    [16] 闻映红.电波暗室内复合吸波材料反射系数的测量.铁道学报,1998.2
    [17] 杨恩耀,周朝栋.电磁场与微波技术.北京:北京理工大学出版社,1989
    [18] BhagSinghGum, HuseyinR, Hiziroglu.周克定译.电磁场与电磁波.机械工业出版社,2000
    [19] 金亚秋.复杂系统中的电磁波.复旦大学出版社,1995
    [20] Karl S, Kunz, Raymond J, Luebbers. The Finite Difference Time Domain Method For Electromagnetics. CRCPress, Inc. 1993
    [21] 高本庆.时域有限差分法.北京:国防工业出版社,1995
    
    
    [22] 全国电磁兼容标准化联合工作组等编著.电磁兼容标准实施指南.中国标准出版社,1999
    [23] 陈伟华.电磁兼容实用手册.机械工业出版社,2000
    [24] 国家技术监督局.高性能屏蔽室屏蔽效能的测量方法,中华人民共和国国家标准12190-90,1990
    [25] D.K.科夫涅里斯特.微波吸收材料.科学出版社,1985
    [26] 湖北省电磁兼容学会.电磁兼容性原理及应用.国防工业出版社,1996
    [27] 钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术.浙江大学出版社,2000
    [28] 白同云,吕晓德.电磁兼容设计.北京:北京邮电大学出版社,2001
    [29] 陈淑凤.电磁兼容试验技术.北京:北京邮电大学出版社,2001
    [30] 逯贵祯,蒋克华.通信系统中的电磁兼容理论与技术,北京广播学院出版社,2000
    [31] LeonCohen著.白居宪译.时-频分析:理论与应用.西安交通大学出版社,1986
    [32] 彭玉华.小波变换与工程应用.科学出版社,1999
    [33] 吴晓光,车哗秋.国外微波吸收材料.国防科技大学出版社,1990
    [34] WilliamH. Emerson, ElectrornagneticWaveAbsorbersandAnechoicChambersThroughthe Years, IEEETrans. AntennasPropagate. V01. AP21, No. 4, pp. 484-490, 1973
    [35] K.S. Yee, numedcal Solution Of Initial boundary Value Problems lnvolvingMaxwell's Equatiosninlsotropicmedia, IEEETrans. AntennasPropagate.V01.AP-1414,pp. 302-307, 1966
    [36] 孟新强.涂覆型RAM的研究现状和发展趋势,现代防御技术,V01.27,No.1,pp47-50,2000
    [37] Brian Thomas Dewitt, Analysis and Measurement Of Electromagnetic Scattering by PyramidalandWedgeAbsorbers, DoctorDissertation, The Ohio State University, 1986
    
    
    [38] FathiA. Sikta, Walterd. Bumsid, Tai-TsengChu&LeonPetersJR, FirstOrderEquivalent Current and Comer Diffraction Scattering from Flat Plate Structures IEEE Trans. AntennasPropagate, V01. AP31, No. 4, pp, 584-589, 1983
    [39] J. AppelHanson, ReflectivityLevel OfRadioAnechoic Chambers. IEEETrans, Antennas Propagate. V01. AP21, No. 4, pp. 490-498, 1973
    [40] H.Severin,Nonreflecting Absorbers for Microwave Radiation IRE Trans. On Antennas and propagation,V01. AP-4, pp. 385-392,1956
    [41] A.D. Rawlings, Diffraction by a Dielectric Wedge, J. Inst.Math.Appl V01.19,pp.261-279,1977
    [42] B.T. Dewitt, Analysis of the Scattering by a Cone and Time Domain Scattering by a Flat Plate, Thesis,The Ohio State University ElectroScience Lab., Department of Electrical Engineering, 1983
    [43] A. Michael, Equivalent Edge Currents For Currents for Arbitrary Aspects of Observation, IEEE Trans. on Antennas and Propagation, Vol.AP-32,No.3,pp.252-258,1984
    [44] E. F. knot, J. F. Shaeffer, M. T. Tuley, RADAR CROSS SECTION Artech House, Dedham, MA 1985