直纹曲面数控电解加工工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线刃阴极数控电解加工,是利用直线刃阴极作为通液电极,通过计算机控制阴极相对于工件的运动来加工曲面。它既具有电解加工的优点,又具有数控加工的柔性,能够解决难切削材料零件直纹曲面的加工难题。
     本文介绍了直纹曲面数控电解加工装置,包括机械本体、电源、电解液系统、控制系统,并在此试验装置上进行了直纹曲面数控电解加工工艺试验。
     研究数控展成电解加工的成形规律,是研究数控展成电解的基础。本文对内喷式直线刃阴极展成电解加工的成形规律进行了研究,并通过试验进行了验证。
     完成了直线刃阴极多因素正交试验,通过试验分析得出了各因素对表面粗糙度和切削深度的影响,并找出了表面粗糙度和切削深度的最优参数组合,为复杂曲面的加工奠定了基础。
     在正交试验的基础上,通过选择合适的加工参数,实现了圆弧面的加工。
Straight-edge cathode numerical controlled electrochemical machining is a new manufacturing technology which uses a simple straight-edge cathode as a pass fluid electrode and then does multi-dimensional motion driven by CNC system. It has both the advantages of electrochemical machining and the flexible of CNC machining, and it can work out the problems in machining ruled surface which are difficult to cut.
     In this paper, the electrochemical machining set-up was introduced, including mechanical body, power supply, electrolyte system and control system and the straight-edge cathode electrochemical machining experiments were done in this experimental set-up.
     Study of the forming laws is the basis of study the NC electrochemical contour evolution machining. In this paper, straight-edge cathode electrochemical contour evolution machining forming laws were studied and the experiments were carried out.
     Straight-edge cathode multi-factor orthogonal experiments were finished in the electrolysis machine experimental set-up. The analysis of the test described the affect of surface roughness and cutting depth by various factors and identified the optimal parameter combination of surface roughness, which laid the foundation for complex surface machining.
     Ruled surface processing were implemented successfully by selecting appropriate processing parameters based on the orthogonal experiments.
引文
[1]朱树敏,陈远龙.电化学加工技术[M].北京:化学工业出版社,2006
    [2]徐家文,云乃彰,王建业,等.电化学加工技术——原理、工艺及应用[M].北京:国防工业出版社,2008
    [3]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,2004,1:83
    [4]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,1
    [5]徐家文,王建业,田继安.21世纪初电解加工的发展和应用[J].电加工与模具,2001(6):1—5
    [6]周锦进,翟小兵,庞桂兵,等.脉冲电化学光整试验研究[J].大连理工大学学报,2003,43(3):311-314
    [7]翟小兵,周锦进.脉冲电化学光整加工技术的应用研究[J].制造技术与机床,2008(1):98-100
    [8]李志永,季画.电解加工在微细制造技术中的应用研究[J].机械设计与制造,2006(6)
    [9]康敏,赵建社,徐家文.数控展成电解加工技术的研究进展[J].电加工与模具,2004(3)
    [10]陈远龙,任中根,徐家文,等.电解加工技术的现状与展望[J].第11届全国特种加工学术会议专辑,2005,11
    [11]徐家文,王建业,田继安,等.电解加工在航空制造中的应用及发展[J].航空制造技术,2002(4)
    [12]Kozak, J, Rajurkar, K. P. and Wei, B. Modeling and Analysis of Pulse ECM[J]. ASME J. of Eng. for Ind,1994:116
    [13]Domanowski P, Kozak J. Direct and inverse problems of shaping by electrochemical generating machining[J]. Journal of materials Processing Technology,2000,107(1-3):300-306
    [14]Zybura-Skrabalak M, Ruszaj A. The mathematical modeling of electrochemical machining with flat ended universal electrodes[J]. Journal of Materials Processing Technology,2001,109(1-3):333-359
    [15]Kozak J. Computer simulation system for electrochemical shaping[J]. Journal of Materials Processing Technology,2001,109(1-3):354-359
    [16]徐家文,朱永伟,胡平旺,等.数控电解加工整体叶轮的关键技术[J].宇航材料工艺,2003(2):48-50
    [17]朱荻.国外电解加工的研究进展[J].电加工与模具,2001(1):11-16
    [18]康敏.整体叶轮的精密展成电解加工技术研究[D].南京:南京航空航天大学,2003
    [19]傅秀清,康敏,杨勇.基于PMAC5轴电解加工机床的设计[J].电加工与模具,2009(2):62—65
    [20]计海兵.数控电解车床试验装置及其控制系统设计[D].南京:南京农业大学,2009,6
    [21]钱密,徐家文.数控展成电解加工的阴极结构及流场研究[J].航空精密制造技术,2003,39(2):14-18
    [22]孙春华,朱荻,李志永,等.电解加工阴极设计CAD/CAE/CAM系统的开发[J].机械科学与 技术,2006(6):684-686
    [23]张永俊,徐家文. 展成电解加工中的内喷式阴极设计[J].电加工,1993(5):23—25
    [24]朱永伟,徐家文,胡平旺,等.线状阴极数控展成电解加工成形规律的研究[J].航空精密制造技术,2003(1):13-16
    [25]陆凡超.数控电解车削加工工艺试验研究[D].南京:南京农业大学,2009,6
    [26]潘丽军,陈锦权.试验设计与数据处理[M].南京:东南大学出版社,2008,2
    [27]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2004
    [28]廖永平,严擎宇编.正交试验法在机械工业中的应用[M].北京:中国农业机械出版社,1984
    [29]陈远龙.电解加工工艺参数数据库及电解加工基础工艺规律研究[D].合肥:合肥工业大学2000,9
    [30]关颖男,施大德编译.试验设计方法入门[M].北京:冶金工业出版社,1985