超级电容器石墨烯基复合材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种具有单个碳原子厚度的二维碳材料,由于这种碳材料具有良好的导电性和大的比表面积,而被认为是一种理想的双电层电容材料。但因其比电容低等不足限制了实际应用。赝电容材料虽然具有高的比电容,但又因其导电性差而降低了它们在电化学反应过程中的活性物质利用率、倍率性能和循环性能。本研究者利用石墨烯特殊的物理和化学性质,将赝电容材料作为第二相引入到石墨烯中,以获取的复合材料可以具有突出的电化学性能。结合Hummer法与热还原制备了石墨烯,并以石墨烯为载体,制备了MnO_2、MnOOH、Co和Co_3O_4与石墨烯的超级电容器复合电极材料,研究了它们的电化学性能。
     在石墨烯的合成方法研究中,发现当石墨粉具有规则的薄片状结构时,制备的石墨烯也具有相对小而且规则的石墨烯簇。在石墨烯的电化学性能研究中发现,在Na_2SO_4和KOH电解液中,石墨烯表现出不同的比电容。在Na_2SO_4电解液中,石墨烯在循环伏安扫描速度为5mV s~(-1)下的比电容为56.3F g~(-1);扫描速度为500mV s~(-1)时,石墨烯的比电容降低到18.1F g~(-1)。在KOH电解液中,石墨烯在循环伏安扫描速度为5mV s~(-1)下的比电容为146.0F g~(-1);扫描速度增加到500mV s~(-1)时,石墨烯的比电容降低到95.8F g~(-1)。石墨烯在KOH电解液中表现出了更高的比电容。此外,以石墨烯作为电极活性材料的对称电容器的比电容不会随着工作电压区间的变化而变化,说明石墨烯对称电容器在Na_2SO_4和KOH电解液中具有稳定的双电层电容性质。利用水热反应移除石墨烯中的羰基,通过红外和电化学阻抗分析发现,羰基的减少会破坏石墨烯的共轭结构和降低石墨烯的亲水性,使石墨烯的比电容发生降低。
     在石墨烯基复合材料的研究中,采用KMnO4与石墨烯之间的氧化还原反应,在石墨烯的表面生成了MnO_2颗粒,并通过水热反应将这种MnO_2转化成为了一维的MnOOH纳米丝。MnO_2/石墨烯和MnOOH/石墨烯复合材料的电化学性能研究表明,在Na_2SO_4电解液中MnO_2可以显著的提高超级电容电极材料的比电容;在制备MnOOH/石墨烯复合材料的水热反应过程中加入氨水可以明显的降低MnOOH/石墨烯复合材料的欧姆阻抗和电化学阻抗,有利于提高这种复合材料的比电容。
     通过沉淀法将Co(OH)_2纳米片嵌入到石墨烯的交错片层结构中,并采用热处理方法将石墨烯中的Co(OH)_2纳米片分解成为Co_3O_4纳米片,制备了纳米片Co_3O_4/石墨烯复合材料。另外,采用水热反应将石墨烯中的Co(OH)_2纳米片转化成为了均匀分布在石墨烯表面的金属Co颗粒,制备了金属Co/石墨烯复合材料。电化学性能研究表明,在充放电电流密度为0.2A g~(-1)下,Co_3O_4纳米片和纳米片Co_3O_4/石墨烯复合材料的比电容分别为203F g~(-1)和338F g~(-1);在充放电电流密度为1.5A g~(-1)下,金属Co和金属Co/石墨烯复合材料的比电容分别为460F g~(-1)和1373F g~(-1)。另外,金属Co/石墨烯复合材料的电化学反应电极电位为-0.70V和~(-1).07V (vs. Hg/HgO),因此该复合材料适合作为不对称电容器的负极材料。以金属Co/石墨烯复合材料为负极,石墨烯为正极的不对电容器在充放电电流密度为0.5A g~(-1)下的比电容为197F g~(-1)。
Graphene which has a two dimensional carbon plane with one-atomicthickness is considered as a new carbon material for supercapacitors, due to itsextraordinary electrical and high surface-to-volume. However, the lowcapacitance of graphene hinders its practical application. Additionally,pseudo-capacitor materials have high theoretical capacitances, but the poorelectric conductivity and low specific surface area of these materials reduce theutilization of active materials in the electrode, rate capability and cycleperformance. With the special chemical and physical properties of graphene, thecombination of graphene with a second phase material can further obtain thecomposites with excellent electrochemical properties. Herein, graphene wasprepared through Hummer method followed by thermal treatment. AndMnO_2/graphene composites, MnOOH/graphene composites, Co/graphenecomposites and Co_3O_4/graphene composites were synthesized, and theirelectrochemical performance was studied.
     Researches on the preparation of graphene show that the graphene preparedfrom graphite powers with regular morphology possesses small and regulargraphene clusters. However, the electrochemical characterization of grapheneindicates that this kind of carbon material exhibits different electrochemicalperformance in the terms of the specific capacitance and rate performance inNa_2SO_4electrolytes and KOH electrolytes, respectively. In Na_2SO_4electrolytes,specific capacitances of graphene are56.3F g~(-1)and18.1Fg~(-1)at CV scan rates of5mV s~(-1)and500mV s~(-1), respectively. Moreover, in KOH electrolytes, specificcapacitances of graphene are146.0Fg~(-1)and95.8F g~(-1)at CV scan rates of5mVs~(-1)and500mV s~(-1), respectively. The results show that graphene has a higherspecific capacitance in KOH electrolytes rather than that in Na_2SO_4electrolytes.The specific capacitance of the symmetrical capacitor consisting of graphene asthe active materials is steady when the cell potential range of symmetricalcapacitor is changed, indicating that graphene has ideal electrochemical stabilityin Na_2SO_4electrolytes and KOH electrolytes. Through hydrothermal reaction,the number of carbonyl groups within graphene was decreased. The results fromFT-IR and EIS show that the reduction of carbonyl groups can damage theconjugate structure of graphene and increase its hydrophobic, which reducedspecific capacitances of graphene.
     In the researches on the graphene based composites, MnO_2particles wereintroduced to the surface of graphene through the redox reacton between KMnO4 and graphene. And then, MnO_2was transformed to MnOOH nanowire under thehydrothermal condition. The electrochemical characterizations ofMnO_2/graphene and MnOOH/graphene show that the addition of MnO_2canenhance obviously specific capacitances of the electrode materials forsupercapacitor in Na_2SO_4electrolytes; aqueous ammonia added into the reactionsystem can decrease the electrochemical impedance of as preparedMnOOH/graphene and increase the specific capacitance.
     Co(OH)_2nanoplates can be inserted into the intercalated structure of graphenethrough the precipitation method. Co_3O_4nanoplates/graphene were preparedthrough thermal treatment of Co(OH)_2nanoplates within graphene-basedcomposites. Moreover, under the hydrothermal condition, Co particles can beobtained within graphene-based composites and dispersed well on the surface ofgraphene. The research on electrochemical performance indicates that specificcapacitances of Co_3O_4nanoplates and Co_3O_4nanoplates/graphene are203F g~(-1)and338F g~(-1)at a current density of0.2A g~(-1); specific capacitances of Co andCo/graphene are460F g~(-1)and1373F g~(-1)at a current density of1.5A g~(-1). Theelectrochemical reaction of Co/graphene occurs at-0.70V and~(-1).07V (vs.Hg/HgO). Hence, this composite material can be used as an anode material forsupercapacitors. The specific capacitance of the asymmetry capacitor usingCo/graphene as the anode electrode and graphene as the cathode electrode is197F g~(-1)at a current density of0.5A g~(-1).
引文
1. Winter M. and Brodd R.J. What are batteries, fuel cells, andsupercapacitors[J]. Chem.Rev.,2004,104:4245-4270.
    2. Burke A. Ultracapacitors: why, how, and where is the technology[J]. J.Power Sources,2000,91:37-50.
    3. Jurewicz K., Babe K., ió kowski A. and Wachowska H. Ammoxidation ofactive carbonsfor improvement of supercapacitor characteristics[J].Electrochim. Acta,2003,48:1491-1498.
    4. Balducci A., Dugas R., Taberna P.L., Simon P., Plée D., Mastragostino M.and Passerini S., High temperature carbon–carbon supercapacitor using ionicliquid as electrolyte[J]. J. Power Sources,2007,165:922-927.
    5. Lv Y.K., Gan L.H., Liu M.X., Xiong W., Xu Z.J., Zhu D.Z. and Wright D.S.Aself-template synthesis of hierarchical porous carbon foams based onbanana peel for supercapacitor electrodes[J]. J. Power Sources,2012,209:152-157.
    6. Moore J. J., Kang J.H. and Wen J.Z. Fabrication and characterization ofsingle walled nanotube supercapacitor electrodes with uniform pores usingelectrophoretic deposition[J]. Mater. Chem. Phys.,2012,134:68-73.
    7. Ruch P.W., K tz R. and Wokaun A. Electrochemical characterization ofsingle-walled carbon nanotubes for electrochemical double layer capacitorsusing non-aqueous electrolyte[J]. Electrochim. Acta,2009:54,4451-4458.
    8. Miller J. R. and Burke A. F. Electrochemical capacitors: challenges andopportunities for real-world applications[J]. Electrochem. Soc. InterfaceSpring,2008,17:53.
    9. Frackowiak E. Carbon materials for supercapacitor application[J]. Phys.Chem. Chem. Phys.,2007,9:1774-1785.
    10. Naoi K. and Simon P. New materials and new configurations for advancedelectrochemical capacitors[J]. Electrochem. Soc. Interface Spring,2008,17:34.
    11. Simon P. and Gogotsi Y. Materials for electrochemical capacitors[J]. Nat.Mater.,2008,7:845-854.
    12. Aricò A.S., Bruce P., Scrosati B., Tarascon J.M. and Schalkwijk W.V.Nanostructured materials for advanced energy conversion and storagedevices[J]. Nat. Mater.,2005,4:366-377.
    13. Frackowiak E. Carbon materials for supercapacitor application[J]. Phys.Chem. Chem. Phys.,2007,9:1774-1785.
    14. Knox J.H., Kaur B. and Millward G.R. Structure and performance of porousgraphitic carbon in liquid chromatography[J]. J. Chromatogr. A,1986,352:3-25.
    15. Lee J., Kim J. and Hyeon T. Recent progress in the synthesis of porouscarbon materials[J]. Adv. Mater.,2006,18:2073-2094.
    16. Geim K. and Novoselov K.S. The rise of graphene[J]. Nat. Mater,2007,6:183-191.
    17. Zhang L.L. and Zhao X.S. Carbon-based materials as supercapacitorelectrodes[J].|Chem. Soc. Rev.,2009,38:2520-2531.
    18. Qu D.Y., Shi H. Studies of activated carbons used in double-layercapacitors[J]. J. Power Sources,1998,74:99-107.
    19. Endo M., Maeda T., Takeda T., Kim Y.J., Koshiba K., Hara H. andDresselhaus M.S. Capacitance and pore-Size distribution in aqueous andnonaqueous electrolytes using various activated carbon electrodes[J]. J.Electrochem. Soc.,2001,148: A910-A914.
    20. Raymundo-Pi ero E., Kierzek K., Machnikowski J. and Béguin F.Relationship between the nanoporous texture of activated carbons and theircapacitance properties in different electrolytes[J]. Carbon,2006,44:2498-2507.
    21. Huang J.S., Sumpter B.G. and Meunier V. A universal model for nanoporouscarbon supercapacitors applicable to diverse pore regimes, carbon materials,and electrolytes[J]. Chem. Eur. J.,2008,14:6614-6626.
    22. Subramanian V., Hall S.C., Smith P.H. and Rambabu B. Mesoporousanhydrous RuO2as a supercapacitor electrode material[J]. Solid State Ionics,2004,175:511-515.
    23. Mondal S.K. and Munichandraiah N. Anodic deposition of porous RuO2onstainless steel for supercapacitor studies at high current densities[J]. J. PowerSources,2008,175:657-663.
    24. Patil U.M., Kulkarni S.B., Jamadade V.S. and Lokhande C.D. Chemicallysynthesized hydrous RuO2thin films for supercapacitor application[J]. J.Alloys and Compounds,2011,509:1677-1682.
    25. Patake V.D. and Lokhande C.D. Chemical synthesis of nano-porousruthenium oxide (RuO2) thin films for supercapacitor application[J]. Appl.Surp. Sci.,2008,254:2820-2824.
    26. Gujar T.P., Shinde V.R., Lokhande C.D., Kim W.Y., Jung K.D. and Joo O.S.Spray deposited amorphous RuO2for an effective use in electrochemicalsupercapacitor[J]. Electrochem. Commun.,2007,9:504-510.
    27. Yuan A.B., Wang X.L., Wang Y.Q. and Hu J. Comparison of nano-MnO2derived from different manganese sources and influence of active materialweight ratio on performance of nano-MnO2/activated carbonsupercapacitor[J]. Energ. Convers. Manage.,2010,51:2588-2594.
    28. Subramanian V., Zhu H.W. and Wei B.Q. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as a supercapacitorelectrode material[J]. J. Power Sources,2006,159:361-364.
    29. Li Y., Xie H.Q., Wang J.F. and Chen L.F. Preparation and electrochemicalperformances of α-MnO2nanorod for supercapacitor[J]. Mate. Lett.,2011,65:403-405.
    30. Ghaemi M., Ataherian F., Zolfaghari A. and Jafari S.M. Charge storagemechanism of sonochemically prepared MnO2as supercapacitor electrode:Effects of physisorbed water and proton conduction[J]. Electrochim. Acta,2008,53:4607-4614.
    31. Yan D.L., Guo Z.L., Zhu G.S., Yu Z.Z., Xu H.R. and Yu A.B. MnO2filmwith three-dimensional structure prepared by hydrothermal process forsupercapacitor[J]. J. Power Sources,2012,199:409-412.
    32. Ming B.S., Li J.L., Kang F.Y., Pang G.Y., Zhang Y.K., Chen L., Xu J.Y. andWang X.D. Microwave–hydrothermal synthesis of birnessite-type MnO2nanospheres as supercapacitor electrode materials[J]. J. Power Sources,2012,198:428-431.
    33. Cheng F.K., He C., Shu D., Chen H.Y., Zhang J., Tang S.Q. and Finlow D.E.Preparation of nanocrystalline VN by the melamine reduction of V2O5xerogel and its supercapacitive behavior[J]. Mater. Chem. Phys.,2011,131:268-273.
    34. Zhou X.P., Chen H.Y., Shu D., He C. and Nan J.M. Study on theelectrochemical behavior of vanadium nitride as a promising supercapacitormaterial[J]. J. Phys. Chem. Solids,2009,70:495-500.
    35. Zhou X.H., Shang C.Q., Gu L., Dong S.M., Chen X., Han P.X., Li L.F., YaoJ.H., Liu Z.H., Xu H.X., Zhu Y.W. and Cui G.L. Mesoporous coaxialtitanium nitride-vanadium nitride fibers of core–shell structures forhigh-performance supercapacitors[J]. ACS Appl. Mater. Interfaces,2011,3:3058-3063.
    36. Zhang H.M., Zhao Q., Zhou S.P., Liu N.J., Wang X.H., Li J. and Wang F.S.Aqueous dispersed conducting polyaniline nanofibers: Promising highspecific capacity electrode materials for supercapacitor[J]. J. Power Sources,2011,196:10484-10489.
    37. Ryu K.S., Kim K.M., Park N.G., Park Y.J. and Chang S.H. Symmetric redoxsupercapacitor with conducting polyaniline electrodes[J]. J. Power Sources,2002,103:305-309.
    38. Sumboja A., Wang X., Yan J. and Lee P.S. Nanoarchitectured currentcollector for high rate capability of polyaniline based supercapacitorelectrode[J]. Electrochim. Acta,2012,65:190-195.
    39. Yang M.M., Cheng B., Song H.H. and Chen X.H. Preparation andelectrochemical performance of polyaniline-based carbon nanotubes aselectrode material for supercapacitor[J]. Electrochim. Acta,2010,55:7021-7027.
    40. Sivakkumar S.R., Kim W.J., Choi J.A., MacFarlane D.R., Forsyth M. andKim D.W. Electrochemical performance of polyaniline nanofibres andpolyaniline-multi-walled carbon nanotube composite as an electrode materialfor aqueous redox supercapacitors[J]. J. Power Sources,2007,171:1062-1068.
    41. Hu J., Wang H.L. and Huang X. Improved electrochemical performance ofhierarchical porous carbon-polyaniline composites[J]. Electrochim. Acta,2012,74:98-104.
    42. Wang H.H., Zhu E.W., Yang J.Z., Zhou P.P., Sun D.P. and Tang W.H.Bacterial cellulose nanofiber-supported polyaniline nanocomposites withflake-shaped morphology as supercapacitor electrodes[J]. J. Phys. Chem. C,2012,116:13013-13019.
    43. Zhang K., Zhang L.L., Zhao X.S. and Wu J.S. Graphene-polyanilinenanofiber composites as supercapacitor electrodes[J]. Chem. Mater.,2010,22:1392-1401.
    44. Wen T.C. and Hu C.C. Hydrogen and oxygen evolutions on Ru‐Ir binaryoxides[J]. J. Electrochem. Soc.,1992,139:2158-2163.
    45. Zheng J.P., Cygan P.J., and Jow T.R. Hydrous ruthenium oxide as anelectrode material for electrochemical capacitors[J]. J. Electrochem. Soc.,1995,142:2699-2703.
    46. Long J.W., Swider K.E., Merzbacher C.I. and Rolison D.R. Voltammetriccharacterization of ruthenium oxide-based aerogels and other RuO2solids:The nature of capacitance in nanostructured materials[J]. Langmuir,1999,15:780-785.
    47. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., DubonosS.V., Grigorieva I.V. and Firsov A.A., Electric field effect in atomically thincarbon films, Science[J].2004,306:666-669.
    48. Stoller M.D., Park S., Zhu Y., An J. and Ruoff R.S. Graphene-basedultracapacitors[J]. Nano Lett.,2008:3498-3502.
    49. Huang P.Y., Wang L., Muller D., Shepard K.L. and Hone J., Chemical vapordeposition-derived graphene with electrical performance of exfoliatedgraphene[J]. Nano Lett.,2012,12:2751-2756.
    50. Strupinski W., Grodecki K., Wysmolek A., Stepniewski R., Szkopek T.,Gaskell P.E., Gruneis A., Haberer D., Bozek R., Krupka J. and BaranowskiJ.M., Graphene epitaxy by chemical vapor deposition on SiC[J]. Nano Lett.,2011,11:1786-1791.
    51. Reddy A.L.M., Srivastava A., Gowda S.R., Gullapalli H., Dubey M. andAjayan P.M. Synthesis of nitrogen-doped graphene films for lithium batteryapplication[J]. ACS Nano,2010,4:6337-6342.
    52. Gomez De Arco L., Zhang Y., Schlenker C.W., Ryu K., Thompson M.E. andZhou C.W. Continuous, highly flexible, and transparent graphene films bychemical vapor deposition for organic photovoltaics[J]. ACS Nano,2010,4:2865-2873.
    53. Li Z.C., Zhang W.H., Fan X.D., Wu P., Zeng C.G., Li Z.Y., Zhai X.F., YangJ.L. and Hou J.G. Graphene thickness control via gas-phase dynamics inchemical vapor deposition[J]. J. Phys. Chem. C,2012,116:10557-10562.
    54. Zhang Y., Gomez L., Ishikawa F.N., Madaria A., Ryu K., Wang C., BadmaevA. and Zhou C.W., Comparison of graphene growth on single-crystalline andpolycrystalline Ni by chemical vapor deposition[J]. J. Phys. Chem. Lett.,2010,1:3101-3107.
    55. Li Z.C., Wu P., Wang C.X., Fan X.D., Zhang W.H., Zhai X.F., Zeng C.G., LiZ.Y., Yang J.L. and Hou J.G. Low-temperature growth of graphene bychemical vapor deposition using solid and liquid carbon sources[J]. ACSNano,2011,5:3385-3390.
    56. Wu Z.S., Ren W.C., Gao L.B., Zhao J.P., Chen Z.P., Liu B.L., Tang D.M.,Yu B., Jiang C.B. and Cheng H.M. Synthesis of graphene sheets with highelectrical conductivity and good thermal stability by hydrogen arc dischargeexfoliation[J]. ACS Nano,2009,3:411-417.
    57. Subrahmanyam K.S., Panchakarla L.S., Govindaraj A. and Rao C.N.R.Simple method of preparing graphene flakes by an arc-discharge method[J]. J.Phys. Chem. C,2009,113:4257-4259.
    58. Yu H.H., Chen X.F., Zhang H.J, Xu X.G, Hu X.B, Wang Z.P., Wang J.Y.,Zhuang S.D. and Jiang M.H. Large energy pulse generation modulated bygraphene epitaxially grown on silicon carbide[J]. ACS Nano,2010,4:7582-7586.
    59. Hofrichter J., Szafranek B. N., Otto M., Echtermeyer T.J., Baus M., MajerusA., Geringer V., Ramsteiner M. and Kurz H. Synthesis of graphene on silicondioxide by a solid carbon source[J]. Nano Lett.,2010,10:36-42.
    60. Sorkin V. and Zhang Y.W. Epitaxy of prestrained graphene on aSi-Terminated SiC(0001) surface[J]. J. Phys. Chem. C,2012,116:13928-13934.
    61. Kim H., Abdala A.A. and Macosko C.W. Graphene-polymer nanocomposites,Macromolecules[J].2010,43:6515-6530.
    62. Brodeid B.C. On the atomic weight of graphite[J]. Philos. Trans. R. Soc.Lond.,1859,149:249-259.
    63. Staudenmaier L. Verfahren zur darstellung der graphitsure[J]. Ber. Dtsch.Chem. Ges.,1898,31:1481-1487.
    64. Hummer W.S. and Richard E.O. Preparation of graphite oxide[J]. J. Am.Chem. Soc.,1958,80:1339-1340.
    65. D Marcano.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., SlesarevA., Alemany L.B., Lu W. and Tour J.M. Improved synthesis of grapheneoxide[J]. ACS Nano,2010,4:4806-4814.
    66. Park S. and Ruoff S.R.S. Chemical methods for the production ofgraphene[J]. Nature Nanotechnol.,2009,4:217-224.
    67. Jeong H.K., Lee Y.P., Lahaye R.J.W.E., Park M.H., An K.H., Kim I.J., YangC.W., Park C.Y., Ruoff R.S. and Lee Y.H. Evidence of graphitic AB stackingorder of graphite oxides[J]. J. Am. Chem. Soc.,2008,130:1362-1366.
    68. Cai W.W., Piner R.D., Stadermann F.J., Park S., Shaibat M.A., Ishii Y.,Yang D.X., Velamakanni A., An S.J., Stoller M., An J., Chen D.G. and RuoffR.S. Synthesis and solid-state NMR structural characterization of13C-labeledgraphite oxide, Science[J].2008,321:1815-1817.
    69. Mkhoyan K.A., Contryman A.W., Silcox J., Stewart D.A., Eda G., Mattevi C.,Miller S. and Chhowalla M. Atomic and electronic structure ofgraphene-oxide[J]. Nano Lett.,2009,9:1058-1063.
    70. Boukhvalov D.W. and Katsnelson M.I. Modeling of graphite oxide[J]. J. Am.Chem. Soc.,2008,130:10697-10701.
    71. Paci J.T., Belytschko T. and Schatz G.C. Computational studies of thestructure, behavior upon heating, and mechanical properties of graphiteoxide[J]. J. Phys. Chem. C,2007,111:18099-18111.
    72. Zhang W.H., Carravetta V., Li Z.Y., Luo Y. and Yang J.L. Oxidation statesof graphene: Insights from computational spectroscopy[J]. J. Chem. Phys.,2009,131:244505-1-244505-6.
    73. He H.Y., Klinowski J., Forster M. and Lerf A. A new structural model forgraphite oxide[J]. Chem. Phys. Lett.,1998,287:53-56.
    74. Lerf A., He H.Y., Forster M. and Klinowski J. Structure of Graphite OxideRevisited[J]. J. Phys.Chem. B,1998,102:4477-4482.
    75. Steurer P., Wissert R., Thomann R. and Mülhaupt R. Functionalizedgraphenes and thermoplastic nanocomposites based upon expanded graphiteoxide[J]. Macromol. Rapid Commun.,2009,30:316-327.
    76. Gao W., Alemany L.B., Ci L. and Ajayan P.M., New insights into thestructure and reduction of graphite oxide[J]. Nature Chem.,2009,1:403-408.
    77. Schniepp H.C., Li J.L., McAllister M.J., Sai H., Herrera-Alonso M.,Adamson D.H., Prud'homme R.K., Car R., Saville D.A. and Aksay I.A.Functionalized single graphene sheets derived from splitting graphiteoxide[J]. J. Phys. Chem. B,2006,110:8535-8539.
    78. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., JiaY., Wu Y., Nguyen S.T. and Ruoff R.S. Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565.
    79. Wang G.X., Shen X.P., Wang B., Yao J. and Park J. Synthesis andcharacterisation of hydrophilic and organophilic graphene nanosheets[J].Carbon,2009,47:1359-1364.
    80. Li D., Muller M.B., Gilje S., Kaner R.B. and Wallace G.G. Processableaqueous dispersions of graphene nanosheets[J]. Nature nanotech.,2008,3:101-105.
    81. Long D.H., Li W., Ling L.C., Miyawaki J., Mochida I., Yoon S.H.Preparation of nitrogen-doped graphene sheets by a combined chemical andhydrothermal reduction of graphene oxide[J]. Langmuir,2010,26:16096-16102.
    82. McAllister M.J., Li J.L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J.,Herrera-Alonso M., Milius D.L., Car R., Prud'homme R.K. and Aksay I.A.Single sheet functionalized graphene by oxidation and thermal expansion ofgraphite[J]. Chem. Mater.,2007,19:4396-4404.
    83. Dubin S., Gilje S., Wang K., Tung V.C., Cha K., Hall A.S., Farrar J.,Varshneya R., Yang Y. and Kaner R.B. A one-step, solvothermal reductionmethod for producing chemically reduced graphene oxide dispersions inorganic solvents[J]. ACS Nano,2010,4:3845-3852.
    84. Du X., Guo P., Song H.H. and Chen X.H. Graphene nanosheets as electrodematerial for electric double-layer capacitors[J]. Electrochim. Acta,2010,55:4812-4819.
    85. Wang Y., Shi Z.Q., Huang Y., Ma Y.F., Wang C.Y., Chen M.M. and ChenY.S. Supercapacitor devices based on graphene materials[J]. J. Phys. Chem.C,2009,113:13103-13107.
    86. Shao Y.Y., Wang J., Engelhard M., Wang C.M. and Lin Y.H. Facile andcontrollable electrochemical reduction of graphene oxide and itsapplications[J]. J. Mater. Chem.,2010,20:743-748.
    87. Du Q.L., Zheng M.B., Zhang L.F., Wang Y.W., Chen J.H., Xue L.P., DaiW.J., Ji G.B. and Cao J.M. Preparation of functionalized graphene sheets bya low-temperature thermal exfoliation approach and their electrochemicalsupercapacitive behaviors[J]. Electrochim. Acta,2010,55:3897-3903.
    88. Lin Z.Y, Liu Y., Yao Y.G., Hildreth O.J., Li Z., Moon K. and Wong C.P.Superior capacitance of functionalized graphene[J]. J. Phys. Chem. C,2011,115:7120-7125.
    89. Li Z.S., Wang H.Q., Huang Y.G., Li Q.Y. and Wang X.Y. Manganesedioxide-coated activated mesocarbon microbeads for supercapacitors inorganic electrolyte[J]. Colloid Surface A,2010:366104-109.
    90. Lee S.W., Kim J., Chen S., Hammond P.T. and Shao-Horn Y. Carbonnanotube-manganese oxide ultrathin film electrodes for electrochemicalcapacitors[J]. Acs Nano,2010,4:3889-3896.
    91. Fischer A.E., Saunders M.P., Pettigrew K.A., Rolison D.R. and Long J.W.Electroless deposition of nanoscale MnO2on ultraporous carbonnanoarchitectures: correlation of evolving pore-solid structure andelectrochemical performance[J]. J. Electrochem. Soc.2008,155:A246-A252.
    92. Wu Q., Xu Y.X., Yao Z.Y., Liu A.R. and Shi G.G. Supercapacitors based onflexible graphene-polyaniline nanofiber composite films[J]. ACS Nano,2010,4:1963-1970
    93. Du X., Wang C.Y., Chen M.M., Jiao Y. and Wang J. Electrochemicalperformances of nanoparticle Fe3O4-activated carbon supercapacitor usingKOH electrolyte solution[J]. J. Phys. Chem. C,2009,113:2643-2646.
    94. Saravanakumar B., Purushothaman K.K. and Muralidharan G. InterconnectedV2O5nanoporous network for high-performance supercapacitors[J]. ACSAppl. Mater. Interfaces,2012,4:4484-4490.
    95. Sathiya M., Prakash A.S., Ramesha K., Tarascon J.M. and Shukla A.K.V2O5-anchored carbon nanotubes for enhanced electrochemical energystorage[J]. J. Am. Chem. Soc.,2011,133:16291-16299.
    96. Wang X., Sumboja A., Khoo E., Yan C., and Lee P.S. Cryogel synthesis ofhierarchical interconnected macro--mesoporous Co3O4with superbelectrochemical energy storage[J]. J. Phys. Chem. C,2012,116:4930-4935.
    97. Meher S.K. and Rao G.R. Effect of microwave on the nanowire morphology,optical, magnetic, and pseudocapacitance behavior of Co3O4[J]. J. Phys.Chem. C,2011,115:25543-25556.
    98. Xia X.H., Tu J.P., Zhang Y.Q., Mai Y.J., Wang X.L., Gu C.D. and Zhao X.B.Freestanding Co3O4nanowire array for high performance supercapacitors[J].RSC Adv.,2012,2:1835-1841.
    99. Xia X.H., Tu J.P., Mai Y.J., Wang X.L., Gu C.D. and Zhao X.B.Self-supported hydrothermal synthesized hollow Co3O4nanowire arrays withhigh supercapacitor capacitance[J]. J. Mater. Chem.,2011,21:9319-9325.
    100. Pang H., Gao F., Chen Q., Liu R.M. and Lu Q.Y. Dendrite-like Co3O4nanostructure and its applications in sensors, supercapacitors and catalysis[J].Dalton Trans.,2012,41,5862-5868.
    101. Yang Q., Lu Z.Y., Chang Z., Zhu W., Sun J.Q., Liu J.F., Sun X.M. andDuan X. Hierarchical Co3O4nanosheet@nanowire arrays with enhancedpseudocapacitive performance[J]. RSC Adv.,2012,2:1663-1668.
    102. Dahal N., Ibarra I.A. and Humphrey S.M. High surface area mesoporousCo3O4from a direct soft template route[J]. J. Mater. Chem.,2012,22:12675-12681.
    103. Zhu J.H., Jiang J., Liu J.P., Ding R.M., Ding H., Feng Y.M., Wei G.M. andHuang X.T. Direct synthesis of porous NiO nanowall arrays on conductivesubstrates for supercapacitor application[J]. J. Solid State Chem.,2011,184:578-583.
    104. Lee J.W., Ahn T., Kim J.H., Ko J.M. and Kim J.D. Nanosheets basedmesoporous NiO microspherical structures via facile and template-freemethod for high performance supercapacitors[J]. Electrochim. Acta,2011,56:4849-4857.
    105. Patil U.M., Salunkhe R.R., Gurav K.V. and Lokhande C.D. Chemicallydeposited nanocrystalline NiO thin films for supercapacitor application[J].Appl. Surf. Sci.,2008,255:2603-2607.
    106. Wang Y.G. and Xia Y.Y. Electrochemical capacitance characterization ofNiO with ordered mesoporous structure synthesized by template SBA-15[J].Electrochim. Acta,2006,51:3223-3227.
    107. Wang L., Hao Y.J., Zhao Y., Lai Q.Y. and Xu X.Y. Hydrothermal synthesisand electrochemical performance of NiO microspheres with differentnanoscale building blocks[J]. J. Solid State Chem.,2010,183:2576-2581.
    108. Cao C.Y., Guo W., Cui Z.M., Song W.G. and Cai W. Microwave-assistedgas-liquid interfacial synthesis of flowerlike NiO hollow nanosphereprecursors and their application as supercapacitor electrodes[J]. J. Mater.Chem.,2011,21:3204-3209.
    109. Liang K., Tang X.Z. and Hu W.C. High-performance three-dimensionalnanoporous NiO film as a supercapacitor electrode[J]. J. Mater. Chem.,2012,22:11062-11067.
    110. He Y.B., Li G.R., Wang Z.L., Su C.Y. and Tong Y.X. Single-crystal ZnOnanorod-amorphous and nanoporous metal oxide shell composites:Controllable electrochemical synthesis and enhanced supercapacitorperformances[J]. Energy Environ. Sci.,2011,4:1288-1292.
    111. Selvakumar M., Bhat D.K., Aggarwal A.M., Iyer S.P. and Sravani G. NanoZnO-activated carbon composite electrodes for supercapacitors[J]. Physica B,2010,405:2286-228.
    112. Kalpana D., Omkumar K.S., Kumar S.S. and Renganathan N.G. A novelhigh power symmetric ZnO-carbon aerogel composite electrode forelectrochemical supercapacitor[J]. Electrochim. Acta,2006:1309-1315.
    113. Subramanian V., Zhu H.W. and Wei B.Q. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as asupercapacitorelectrode material[J]. J. Power Sources,2006,159:361-364.
    114. Liu K.Y., Zhang Y., Zhang W., Zheng H. and Su G. Charge-dischargeprocess of MnO2supercapacitor[J]. T. Nonferr. Metal. Soc.,2007,17:649-653.
    115. Li Y., Xie H.Q., Wang J.F. and Chen L.F. Preparation and electrochemicalperformances of α-MnO2nanorod for supercapacitor[J]. Mater. Lett.,2011,65:403-405.
    116. Gao P.C., Lu A.H. and Li W.C. Dual functions of activated carbon in apositive electrode for MnO2/based hybrid supercapacitor[J]. J. PowerSources,2011,196:4095-4101.
    117. Gao H.C., Xiao F., Ching C.B. and Duan H.W. High-performanceasymmetric supercapacitor based on graphene hydrogel and nanostructuredMnO2[J]. ACS Appl. Mater. Interfaces,2012,4:2801-2810.
    118. Lei Z.B., Shi F.H. and Lu L. Incorporation of MnO2/coated carbonnanotubes between graphene sheets as supercapacitor electrode[J]. ACS Appl.Mater. Interfaces,2012,4:1058-1064.
    119. Huang S., Zhu G.N., Zhang C., Tjui W.W., Xia Y.Y. and Liu T.X.Immobilization of Co–Al layered double hydroxides on graphene oxidenanosheets: Growth mechanism and supercapacitor studies[J]. ACS Appl.Mater. Interfaces,2012,4:2242-2249.
    120. Biswas S. and Drzal L.T. Multilayered nanoarchitecture of graphenenanosheets and polypyrrole nanowires for high performance supercapacitorelectrodes[J]. Chem. Mater.,2010,22:5667-5671.
    121. Dong X.C., Xu H., Wang X.W., Huang Y.X., Chan-Park M.B., Zhang H.,Wang L.H., Huang W. and Chen P.3D graphene–cobalt oxide electrode forhigh-performance supercapacitor and enzymeless glucose detection[J]. ACSNano,2012,6:3206-3213.
    122. Sun Z.P. and Lu X.M. A solid-state reaction route to anchoring Ni(OH)2nanoparticles on chemically reduced graphene oxide sheets forsupercapacitors[J]. Ind. Eng. Chem. Res.,2012,51:9973-9979.
    123. Li B.J., Cao H.Q., Shao J., Qu M.Z. and Warner J.H. SuperparamagneticFe3O4nanocrystals@graphene composites for energy storage devices[J]. J.Mater. Chem.,2011,21:5069-5075.
    124. Xia X.F., Hao Q.L., Lei W., Wang W.J., Sun D.P. and Wang X.Nanostructured ternary composites of graphene-Fe2O3/polyaniline forhigh-performance supercapacitors[J]. J. Mater. Chem.,2012,22:16844-16850.
    125. Li F.H., Song J.F., Yang H.F., Gan S.Y., Zhang Q.X., Han D.X., Ivaska A.and Niu L., One-step synthesis of graphene-SnO2nanocomposites and itsapplication in electrochemical supercapacitors[J]. Nanotechnology,2009,20:455602-1-455602-6.
    126. Chen S., Zhu J.W., Wu X.D., Han Q.F. and Wang X. Graphene oxide-MnO2nanocomposites for super-capacitors[J]. ACS Nano,2010,4:2822-2830.
    127. Wang H.L., Casalongue H.S., Liang Y.Y. and Dai H.J. Ni(OH)2nanoplatesgrown on graphene as advanced electrochemical pseudocapacitormaterials[J]. J. Am. Chem. Soc.,2010,132:7472-7477.
    128. Chen S., Zhu J.W. and Wang X. One-step synthesis of graphene cobalthydroxide nanocomposites and their electrochemical properties[J]. J. Phys.Chem. C,2010,114:11829-11834.
    129. Simon P. and Gogotsi Y. Materials for electrochemical capacitors[J]. Nat.Mater.,2008,7:845-854.
    130. Hou J.B., Shao Y.Y., Ellis M.W., Moore R.B. and Yi B.L. Graphene-basedelectrochemical energy conversion and storage: fuel cells, supercapacitorsand lithium ion batteries[J]. Phys. Chem. Chem. Phys.,2011,13:15384-15402.
    131. Zhu J.X., Sharma Y.K., Zeng Z.Y., Zhang X.J., Srinivasan M., MhaisalkarS., Zhang H., Hong H.H. and Yan Q.Y. Cobalt oxide nanowall arrays onreduced graphene oxide sheets with controlled phase, grain size, and porosityfor Li-ion battery electrodes[J]. J. Phys. Chem. C2011,115:8400-8406.
    132. Zhao B., Song J.S., Liu P., Xu W.W., Fang T., Jiao Z., Zhang H.J. and JiangY. Monolayer graphene/NiO nanosheets with two-dimension structure forsupercapacitors[J]. J. Mater. Chem.,2011,21:18792-18798.
    133. Yan J.A., Khoo E., Sumboja A. and Lee P.S. Facile coating of manganeseoxide on tin oxide nanowires with high-performance capacitive behavior[J].ACS Nano,2010,4:4247-4255.
    134. Li Q.Y., Wang H.Q., Dai Q.F., Yang J.H. and Zhong Y.L. Novel activatedcarbons as electrode materials for electrochemical capacitors from a series ofstarch[J]. Solid State Ionics,2008,179:269-273.
    135. Wang H.W., Wang Y.L., Hu Z.Z. and Wang X.F. Cutting and unzippingmultiwalled carbon nanotubes into curved graphene nanosheets and theirenhanced supercapacitor performance[J]. ACS Appl. Mater. Interfaces2012,4:6827-6834.
    136. Qu Q.T., Zhang P., Wang B., Chen Y.H., Tian S., Wu Y.P. and Holze R.Electrochemical performance of MnO2nanorods in neutral aqueouselectrolytes as a cathode for asymmetric supercapacitors[J]. J. Phys. Chem. C,2009,113:14020-14027.
    137. Cormiea A., Crossa A., Hollenkamp A.F. and Donnea S.W. Cycle stabilityof birnessite manganese dioxide for electrochemical capacitors[J].Electrochim. Acta,2010,50:7470-7478.
    138. Williams G. R. and Norquist A.J. and O’Hare D. Incorporation of Li intoMnOOH:-An in situ X-ray and neutron diffraction study[J]. Chem. Mater.,2006,18:3801-3807.
    139. Hu C.C., Liao S.C., Chang K.H., Yang Y.L. and Lin K.M. Electrochemicalcharacterization of MnOOH–carbon nanocomposite cathodes for metal-airbatteries: Impacts of dispersion and interfacial contact[J]. J. Power Sources,2010,195:7259-7263.
    140. Gao L., Fei L. and Zheng H. Preparation of α-MnO2nanowires through aγ-MnOOH precursor route[J]. Mater. Lett.,2007,61:1785-1788.
    141. Zhang Y., Liu Y., Guo F., Hu Y., Liu X. and Qian Y. Single-crystal growthof MnOOH and beta-MnO2microrods at lower temperatures[J]. Solid StateCommun.,2005,134:523-527.
    142. Li Y., Tan H.Y., Lebedev O., Verbeeck J., Biermans E., Tendeloo G.V. andSu B.L. Insight into the growth of multiple branched MnOOH nanorods[J].Cryst. Growth Des.,2010,10:2969-2976.
    143. Zheng D.S., Yin Z.L., Zhang W.M., Tan X.J. and Sun S.X. Novel branchedγ-MnOOH and β-MnO2multipod nanostructures[J]. Cryst. Growth Des.,2006,6:1733-1735.
    144. Toupin M., Brousse T. and Bélanger D. Charge storage mechanism ofMnO2electrode used in aqueous electrochemical capacitor[J]. Chem. Mater.,2004,16:3184-3190.
    145. Hu C.C., Wu Y.T. and Chang K.H. Low-temperature hydrothermalsynthesis of Mn3O4and MnOOH single crystals: determinant influence ofoxidants[J]. Chem. Mater.,2008,20:2890-2894.
    146. Dong Z., Fu Y.Y., Han Q., Xu Y.Y. and Zhang H. Synthesis and physicalproperties of Co3O4nanowires[J]. J. Phys. Chem. C,2007,111:18475-18478.
    147. Takada S., Fujii M., Kohiki S., Babasaki T., Deguchi H., Mitome M. andOku M. Intraparticle magnetic properties of Co3O4nanocrystals[J]. Nano Lett.,2001,1:379-382.
    148. Liu X.H., Yi R., Wang Y.T., Qiu G.Z., Zhang N. and Li X.G. Highlyordered snowflakelike Cobalt microcrystals[J]. J. Phys. Chem. C,2007,111:163-167.
    149. Liu Q.Y., Guo X.H., Li Y. and Shen W.J. Hierarchical growth of Conanofowers composed of nanorods in polyol [J]. J. Phys. Chem. C,2009,113:3436-3441.
    150. Wu Z.S., Ren W., Gao L., Liu B., Jiang C., Cheng H.M. Synthesis ofHigh-Quality Graphene with a Predetermined Number of Layers[J]. Carbon2009,47:493–499.