跑台运动训练和停训对去卵巢大鼠骨密度、体成分及骨生物力学性能的影响及相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:绝经后骨质疏松症是女性绝经后常见的一种疾病。本研究采用去卵巢大鼠模型模拟女性绝经后骨质疏松状况,探讨中等强度跑台运动减缓去卵巢大鼠骨量丢失的作用机制。
     实验方法:将60只3月龄雌性SD大鼠按体重随机分为假手术(Sham)、去卵巢静止(OVX)和去卵巢运动(EX)三个组。手术后第2周,去卵巢运动组大鼠先在小动物跑台上开始适应训练1周,然后每周进行4次/45min、速度18m/min、坡度5°的跑台训练。所有运动训练均在上午进行,各组大鼠同等条件饲养。期间每周称量各组大鼠的体重及进食量。正式运动训练15周后,将每组大鼠按体重又随机分为两个亚组,分别在去卵巢16和32周,称量各组大鼠体重,检测大鼠活体全身及主要部位骨密度及体成分后,腹主动脉取血后处死,收集腹腔内脂肪、子宫、股骨下脂肪、骨骼肌以及骨组织并称重。用双能X射线骨密度仪检测离体股骨、胫骨、第5腰椎骨密度和骨矿物含量后用股骨三点弯曲方法检测股骨生物力学性能指标的变化。
     实验结果:去卵巢16周后:(1)OVX-16组大鼠的体重、体重指数、进食量、脂肪重量、体脂含量、腹腔脂肪和股骨下脂肪显著高于Sham-16组;子宫重量、瘦体含量、左右股骨湿重灰重及去脂肪干重的相对重量和血清钙的含量均显著低于Sham-16组;与OVX-16组比较,EX组大鼠的体脂重量、体脂含量、瘦体重含量、腹腔脂肪、股骨下脂肪、趾长伸肌重量、股骨湿重和去脂肪干重的相对重量有显著性差异,但体重、体重指数、子宫重量、血清钙和磷含量差异无显著性。(2)与Sham-16组比较,OVX-16组大鼠在体全身、腰椎、股骨骨密度显著降低,离体的股骨远端BMD和BMC,胫骨的近端和远端的BMD和BMC显著降低,经过跑台运动训练后,EX组大鼠的在体全身、腰椎BMD均显著升高,离体股骨远端BMD和BMC,胫骨的近端BMD和远端BMC显著升高;(3)相关性分析表明,Sham-16组大鼠的瘦体重与全身骨密度呈显著性正相关,OVX-16组大鼠的体重、瘦体重与全身骨密度均显著正相关,腹腔脂肪与腰椎BMD显著正相关;EX组大鼠的体重、瘦体重与全身BMD显著正相关,左股骨下脂肪与股骨中段BMD显著正相关,右股骨下脂肪与股骨近端和中段BMD显著正相关,腹腔脂肪与股骨近端和远端BMD显著性正相关。(4)OVX-16组大鼠最大载荷、弹性载荷、破坏载荷、最大应力、弹性应力、最大应变、弹性应变均显著小于Sham-16组,经过跑台运动处理后,EX组大鼠的最大载荷、弹性载荷、破坏载荷、最大挠度、最大应力、弹性应力、最大应变、弹性应变均显著大于OVX-16组。
     去卵巢32周,经过停训处理后,与OVX-32组相比:(1)D-EX组大鼠的进食量显著升高;体重、体重指数、腹腔脂肪升高,但差异无显著性。(2)D-EX组大鼠的全身、腰椎、股骨BMD虽然高于OVX-32组,但差异无显著性;(3)相关性分析表明,Sham-32组大鼠体重与骨密度无显著性相关;瘦体重与全身骨密度、股骨骨密度呈显著正相关关系;OVX-32组大鼠的体重、体脂重量与全身骨密度和股骨骨密度极显著正相关;D-EX组大鼠的体重与骨密度呈正相关关系,体脂重量与全身骨密度、腰椎骨密度和股骨骨密度显著正相关,离体腹腔脂肪重量与腰椎BMD显著正相关。(4)OVX-32组大鼠最大载荷、破坏载荷、最大应力、弹性应力均显著低于Sham-32组,停训后,D-EX组大鼠的弹性载荷、破坏载荷、弹性应力显著高于OVX-32组。
     实验结论:中等强度跑台运动能:(1)使去卵巢大鼠的体脂重量降低,体脂含量降低,瘦体重含量增加,优化体成分;(2)减缓去卵巢大鼠骨量的丢失;(3)减少去卵巢大鼠股骨胫骨无机矿物质含量的丢失;(4)改善和提高去卵巢大鼠的股骨生物力学性能。但除了骨生物力学性能外,以上效应会由于停训而减弱或消失。(5)大鼠去卵巢后血钙浓度明显降低,血磷降低无显著性意义。运动对血清的钙磷影响无显著性意义。
     骨密度和体成分的相关性:(1)去卵巢16周后,体重是影响去卵巢大鼠骨密度的重要因素,各组大鼠骨密度与瘦体重密切相关,与脂肪重量无关;(2)去卵巢32周后,去卵巢大鼠骨密度与体重、体脂重量均密切正相关。(3)离体去卵巢大鼠的腹腔脂肪与腰椎骨密度密切相关,股骨下脂肪与股骨近端和中段骨密度密切相关。
Objective: Postmenopausal osteoporosis is a common disease in postmenopausal women. In this study, we take ovariectomized female rats as the model of postmenopausal osteoporosis. To explore the mechanism of moderate-intensity treadmill exercise on the loss of bone mass in ovariectomized rats.
     Methods: Sixty female SD rats were randomly divided into following three groups: sham-operation (Sham), ovariectomized (OVX) and ovariectomized exercised (EX, 18 m/minute, 45 min/day, 5 uphill, 4 times/week). All exercise training was conducted in the morning, feeding the rats in the same conditions. Weigh the body weight of rats and food intake every week. After formal training for 15 weeks, the rats in each group were randomly divided into subgroups, weighing the weight of rats in each group after ovariectomized for 16 and 32 weeks respectively; detected the the bone mineral density (BMD) and body composition in whole body and major parts of body, collected and weighed abdominal fat, uterus, the fat under femur, muscle and bone tissue. Bone mineral density (BMD) and bone mineral content (BMC) of isolated femur, tibia and L5 lumbar were detected by dual energy X-ray, and detect the femur bone biomechanics by the three-point bending method.
     Result: After ovariectomized for 16 weeks: (1) The body weight, Lee’s, food intake, fat mass, fat content, abdominal fat and hip fat in OVX-16 group were significantly higher than Sham-16 group; the uterine weight, lean mass content, the relative weight of wet、ash and dry femur in both left and right and the levels of Ca、P in serum were significantly lower than Sham-16 group; Compared with OVX-16, fat mass, fat mass content, lean mass content, abdominal fat, fat under the femur, extensor digitorum longus weight, the relative weight of wet and dry femur in EX group were significantly different, but body weight, Lee’s, uterine weight, the calcium and phosphorus content in serum have no significant difference. (2) Compared with Sham-16 group, BMD of the whole body、lumbar spine and femur,BMD and BMC of distal femur,BMD and BMC of the proximal and distal tibia in OVX-16 decreased significantly;After treadmill exercise training, BMD of the whole body、lumbar spine,BMD and BMC of the distal femur,BMD of proximal tibia,BMC of distal tibia in EX increased significantly; (3) Correlation analysis showed that, lean mass was significantly positively correlated with BMD of the whole body in Sham-16 group; Body weight, lean mass were significantly positively related to BMD of the whole body in OVX-16; abdominal fat was positively related to lumbar spine BMD in OVX-16; Body weight and lean mass were significantly positively related to BMD of the whole body in EX; Fat under left femur was significantly positively related to middle femur BMD in EX; Fat under right femur was significantly positively related to proximal and mid-BMD, abdominal fat and the proximal and distal femoral BMD has a significant positive correlation in EX. (4) Maximum load, elastic load, failure load, maximum stress, elastic stress, maximum strain, elastic strain in OVX-16 group was significantly lower than that of Sham-16 group; After treadmill exercise treatment, maximum load, elastic load, failure load, maximum deflection, maximum stress, elastic stress, maximum strain, elastic strain in EX were significantly higher than that of OVX-16 group.
     After ovariectomized for 32 weeks, compared with OVX-32 group: (1) Food intake was significantly increased; Body weight, Lee’s, abdominal fat increased, but no significant difference in D-EX. (2) Although BMD of the whole body, lumbar spine and femur in D-EX is higher than OVX-32 group, but no significant difference; (3) Correlation analysis showed that, body weight had no significant related with BMD, lean mass was significantly positively correlated with BMD and femur BMD in Sham-32 group; Body weight and fat mass was significantly positively correlated with BMD and femoral BMD in OVX-32; body weight and BMD have a positive correlation with each other, fat mass was significantly positively related to the whole body, lumbar spine and femoral BMD, abdominal fat was positively correlated with lumbar spine BMD in D-EX group; (4) Maximum load, failure load, maximum stress, elastic stress in OVX-32 group were significantly lower than Sham-32 group, after detraining, elastic load, failure load, elastic stress in D-EX were significantly higher in OVX-32 group.
     Conclusion: Moderate-intensity treadmill exercise can: (1) reduce the fat mass, fat mass content in ovariectomized rats, increased lean mass content, optimize body composition; (2) slow the loss of bone mass in ovariectomized rats; (3 ) decrease the loss of both femur and tibial’s inorganic mineral content in ovariectomized rats; (4) improve bone biomechanical properties of the femur in ovariectomized rats. But except bone biomechanical properties, the above effects are becoming weakened or disappeared due to detraining. (5) The level of calcium, phosphorus in serum in ovariectomized rats was significantly lower; the level of phosphorus in serum has no significant decrease. Effects of exercise on calcium and phosphorus in serum had no significant meaning.
     Correlation between BMD and body composition: (1) 16 weeks after ovariectomy, body weight is an important factor to bone mineral density in ovariectomized rats and lean body mass and bone mineral density is closely related to each other; (2) 32 weeks after ovariectomized, body weight, fat mass in ovariectomized rats are closely correlated with BMD. (3) Abdominal fat in ovariectomized rats is closely related with the lumbar spine bone mineral density, fat under femur is closely related to the proximal and middle femur BMD.
引文
[1] Andersson G B, Bostrom M P, Eyre D R, et al. Consensus summary on the diagnosis and treatment of osteoporosis[J]. Spine (Phila Pa 1976). 1997, 22(24 Suppl): 63S-65S.
    [2] Qiu M. [Osteoporosis research: the present and future][J]. Zhonghua Yi Xue Za Zhi. 2001, 81(14): 833-835.
    [3] Tuck S P, Francis R M. Osteoporosis[J]. Postgrad Med J. 2002, 78(923): 526-532.
    [4]卫小春,段王平.骨质疏松性骨折的治疗进展[J].继续医学教育. 2006(12): 16-19.
    [5]郑晓黎.运动和骨质疏松的早期预防[J].北京体育大学学报. 2007(1): 71-73.
    [6] Borges J L, Bilezikian J P. Update on osteoporosis therapy[J]. Arq Bras Endocrinol Metabol. 2006, 50(4): 755-763.
    [7]裴育.原发性骨质疏松的发病机制[J].中国临床医生. 2006(7): 4-6.
    [8]王晓阳.益骨胶囊对去卵巢OP大鼠骨组织MMP-1、MT1-MMP的影响[D].暨南大学, 2008.
    [9]李和标.运动与大豆异黄酮的联合作用对去卵巢大鼠骨生物力学特性的影响[J].齐齐哈尔医学院学报. 2010(7).
    [10]李建伟,刘石平,廖二元.瘦组织和脂肪的影响因素及其对骨密度和骨强度的影响[J].中国骨质疏松杂志. 2009, 15(1): 75-79.
    [11]聂伟志,隋显玉,李立,等.骨量(骨密度)与体重、体成分的关系[J].中医正骨. 2004, 16(10): 61-62.
    [12]陈金标,秦林林,张卫,等.体重体成分与骨密度的关系[J].中国骨质疏松杂志. 1997(2): 15-18.
    [13]周波,王晓红,张卉,等.男性青少年身体成分与骨矿含量的关系[J].中国骨质疏松杂志. 1998(3): 36-38.
    [14] Manzoni P, Brambilla P, Pietrobelli A, et al. Influence of body composition on bone mineral content in children and adolescents[J]. Am J Clin Nutr. 1996, 64(4): 603-607.
    [15] Salamone L M, Glynn N, Black D, et al. Body composition and bone mineral density in premenopausal and early perimenopausal women[J]. J Bone Miner Res. 1995, 10(11): 1762-1768.
    [16] Reid I R, Plank L D, Evans M C. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men[J]. J Clin Endocrinol Metab. 1992, 75(3): 779-782.
    [17] Reid I R, Evans M C, Ames R W. Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women[J]. Osteoporos Int. 1994, 4(6): 362-367.
    [18] Khosla S, Atkinson E J, Riggs B L, et al. Relationship between body composition and bone mass in women[J]. J Bone Miner Res. 1996, 11(6): 857-863.
    [19]游志清,万勇,郎红梅,等.绝经前后女性身体成分与骨密度相关性分析[J].四川医学. 2009(5).
    [20] Douchi T, Yamamoto S, Oki T, et al. Difference in the effect of adiposity on bone density between pre- and postmenopausal women[J]. Maturitas. 2000, 34(3): 261-266.
    [21] Ijuin M, Douchi T, Matsuo T, et al. Difference in the effects of body composition on bone mineral density between pre- and postmenopausal women[J]. Maturitas. 2002, 43(4): 239-244.
    [22] Smith G, Stassen L, Flint S. Treating osteoporosis[J]. Ir Med J. 2009, 102(3): 88, 89.
    [23] Cooper C, Harvey N, Cole Z, et al. Developmental origins of osteoporosis: the role of maternal nutrition[J]. Adv Exp Med Biol. 2009, 646: 31-39.
    [24] Siegrist M. [Role of physical activity in the prevention of osteoporosis][J]. Med Monatsschr Pharm. 2008, 31(7): 259-264.
    [25] Zehnacker C H, Bemis-Dougherty A. Effect of weighted exercises on bone mineral density in post menopausal women. A systematic review[J]. J Geriatr Phys Ther. 2007, 30(2): 79-88.
    [26] Martyn-St J M, Carroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis[J]. Osteoporos Int. 2006, 17(8): 1225-1240.
    [27] Siegrist M. [Role of physical activity in the prevention of osteoporosis][J]. Med Monatsschr Pharm. 2008, 31(7): 259-264.
    [28] Martyn-St J M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women[J]. Bone. 2008, 43(3): 521-531.
    [29] Rotstein A, Harush M, Vaisman N. The effect of a water exercise program on bone density of postmenopausal women[J]. J Sports Med Phys Fitness. 2008, 48(3): 352-359.
    [30] Simoes P A, Zamarioli A, Bloes P, et al. Effect of treadmill exercise on lumbar vertebrae in ovariectomized rats: anthropometrical and mechanical analyses[J]. Acta Bioeng Biomech. 2008, 10(2): 39-41.
    [31] Stengel S V, Kemmler W, Pintag R, et al. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women[J]. J Appl Physiol. 2005, 99(1): 181-188.
    [32] Chuin A, Labonte M, Tessier D, et al. Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study[J]. Osteoporos Int. 2009, 20(7): 1253-1258.
    [33] Kemmler W, Engelke K, von Stengel S, et al. Long-term four-year exercise has a positive effect on menopausal risk factors: the Erlangen Fitness Osteoporosis Prevention Study[J]. J Strength Cond Res. 2007, 21(1): 232-239.
    [34] Umemura Y, Nagasawa S, Sogo N, et al. Effects of jump training on bone are preserved after detraining, regardless of estrogen secretion state in rats[J]. J Appl Physiol. 2008, 104(4): 1116-1120.
    [35] Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you?[J]. Br J Sports Med. 2005, 39(9): 585-589, 589.
    [36] Verschueren S M, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study[J]. J Bone Miner Res. 2004, 19(3): 352-359.
    [37] Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial[J]. BMC Musculoskelet Disord. 2006, 7: 92.
    [38] Rubinacci A, Marenzana M, Cavani F, et al. Ovariectomy sensitizes rat cortical bone to whole-body vibration[J]. Calcif Tissue Int. 2008, 82(4): 316-326.
    [39] Judex S, Lei X, Han D, et al. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude[J]. J Biomech. 2007, 40(6): 1333-1339.
    [40] Sehmisch S, Galal R, Kolios L, et al. Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model[J]. Osteoporos Int. 2009, 20(12): 1999-2008.
    [41] Kawanabe K, Kawashima A, Sashimoto I, et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly[J]. Keio J Med. 2007, 56(1): 28-33.
    [42] Cheung W H, Mok H W, Qin L, et al. High-frequency whole-body vibration improves balancing ability in elderly women[J]. Arch Phys Med Rehabil. 2007, 88(7): 852-857.
    [43] Iwamoto J, Takeda T, Sato Y, et al. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treatedwith alendronate[J]. Aging Clin Exp Res. 2005, 17(2): 157-163.
    [44] Bonnet N, Beaupied H, Vico L, et al. Combined effects of exercise and propranolol on bone tissue in ovariectomized rats[J]. J Bone Miner Res. 2007, 22(4): 578-588.
    [45] Dickerson D A, Sander E A, Nauman E A. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects[J]. Biomech Model Mechanobiol. 2008, 7(3): 191-202.
    [46]吴华,吴纪饶.绝经女性骨质疏松的运动干预[J].中国临床康复. 2005(4): 168-169.
    [47]聂伟志,石关桐.生物力学因素与女性骨质疏松症病人骨密度的关系[J].中国中医骨伤科杂志. 2002(3): 3-5.
    [48]马涛.跳跃对生长期大鼠骨组织形态计量学和生物力学指标的影响[D].华东师范大学, 2007.
    [49]吕厚山,孙铁铮,刘忠厚.骨关节炎的诊治与研究进展[J].中国骨质疏松杂志. 2004(1): 16-31.
    [50]张林.不同强度运动对骨质疏松大鼠骨生物力学性能的影响[J].体育科学. 2000(5): 72-76.
    [51]章晓霜,许豪文,赵卫东.不同强度运动和雌激素联合作用对去卵巢大鼠骨骼生物力学性能的影响[J].中国运动医学杂志. 2006(2).
    [52] Wolman R L. ABC of sports medicine. Osteoporosis and exercise[J]. BMJ. 1994, 309(6951): 400-403.
    [53] Hulkko A, Orava S. Stress fractures in athletes[J]. Int J Sports Med. 1987, 8(3): 221-226.
    [54] Courteix D, Lespessailles E, Obert P, et al. Skull bone mass deficit in prepubertal highly-trained gymnast girls[J]. Int J Sports Med. 1999, 20(5): 328-333.
    [55] Geng W, Demoss D L, Wright G L. Effect of calcium stress on the skeleton mass of intact and ovariectomized rats[J]. Life Sci. 2000, 66(24): 2309-2321.
    [56] Frost H M. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem[J]. Anat Rec. 1990, 226(4): 403-413.
    [57]章晓霜.不同强度运动和雌激素联合作用对去卵巢大鼠骨骼影响的实验研究[D].华东师范大学, 2004.
    [58] Peng Z, Tuukkanen J, Vaananen H K. Exercise can provide protection against bone loss and prevent the decrease in mechanical strength of femoral neck in ovariectomized rats[J]. J Bone Miner Res. 1994, 9(10): 1559-1564.
    [59]孙颖.不同强度运动对骨质疏松模型大鼠骨代谢的影响[D].北京体育大学, 2001.
    [60] Shinoda M, Latour M G, Lavoie J M. Effects of physical training on body composition and organ weights in ovariectomized and hyperestrogenic rats[J]. Int J Obes Relat Metab Disord. 2002, 26(3): 335-343.
    [61]沈华.不同形式的健身运动和体成分对中老年女性骨密度的影响[J].成都体育学院学报. 2008(12).
    [62]陈光辉,王发成.我院就诊人群中老年人骨密度分析及骨质疏松患病率调查[J].福建医药杂志. 2004(4): 145-147.
    [63]那晓琳,刘秀梅,陈文华.大豆异黄酮对去卵巢大鼠体重及食物利用率的影响[J].卫生研究. 2005, 34(4): 433-435.
    [64] Bunyan J, Murrell E A, Shah P P. The induction of obesity in rodents by means of monosodium glutamate[J]. Br J Nutr. 1976, 35(1): 25-39.
    [65]彭维杰何明涂长春黄起壬李萍. Lee_s指数用于评价成年大鼠肥胖程度的探讨[J].中国临床药理学与治疗学杂志. 1997, 2(3): 177-179.
    [66]周轶琳,赵敏,杨杏芬,等.雌激素对去卵巢大鼠生长发育及骨代谢影响[J].中国公共卫生.2008(2).
    [67]陈新霞,石根勇,凌宝银.氨基酸复合制剂改善生长发育的动物实验研究[J].江苏预防医学. 2006(4): 12-15.
    [68]章晓霜,陈历敏,李红.运动对去卵巢大鼠的影响[J].湛江师范学院学报(自然科学版). 1999(2).
    [69]崔玉玲,李新红.不同强度模拟低氧训练对大鼠体重摄食量的影响[J].体育成人教育学刊. 2008(2): 44-46.
    [70]汪军.运动对肥胖大鼠摄食量和体重影响及机制研究[D].北京体育大学, 2007.
    [71]朴俊红,庞莲萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准和发生率[J].中国骨质疏松杂志. 2002(1): 5-11.
    [72] Kalu D N. The ovariectomized rat model of postmenopausal bone loss[J]. Bone Miner. 1991, 15(3): 175-191.
    [73] Lelovas P P, Xanthos T T, Thoma S E, et al. The laboratory rat as an animal model for osteoporosis research[J]. Comp Med. 2008, 58(5): 424-430.
    [74] Pansini F, Cervellati C, Guariento A, et al. Oxidative stress, body fat composition, and endocrine status in pre- and postmenopausal women[J]. Menopause. 2008, 15(1): 112-118.
    [75] Bayramoglu M, Sozay S, Karatas M, et al. Relationships between muscle strength and bone mineral density of three body regions in sedentary postmenopausal women[J]. Rheumatol Int. 2005, 25(7): 513-517.
    [76] Frost H M. On our age-related bone loss: insights from a new paradigm[J]. J Bone Miner Res. 1997, 12(10): 1539-1546.
    [77] Kalu D N. The ovariectomized rat model of postmenopausal bone loss[J]. Bone Miner. 1991, 15(3): 175-191.
    [78] Felson D T, Zhang Y, Hannan M T, et al. The effect of postmenopausal estrogen therapy on bone density in elderly women[J]. N Engl J Med. 1993, 329(16): 1141-1146.
    [79] Drinkwater B L, Nilson K, Chesnut C R, et al. Bone mineral content of amenorrheic and eumenorrheic athletes[J]. N Engl J Med. 1984, 311(5): 277-281.
    [80]张国海.运动对大学生骨密度和体成分的影响及相互关系的研究[J].中国体育科技. 2008(5): 56-62.
    [81] Salamone L M, Glynn N, Black D, et al. Body composition and bone mineral density in premenopausal and early perimenopausal women[J]. J Bone Miner Res. 1995, 10(11): 1762-1768.
    [82]肖艳霞陈金标秦林林张卫葛崇华.体重体成分与骨密度的关系[J].中国骨质疏松杂志. 1997(2).
    [83] Reid I R, Plank L D, Evans M C. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men[J]. J Clin Endocrinol Metab. 1992, 75(3): 779-782.
    [84] Khosla S, Atkinson E J, Riggs B L, et al. Relationship between body composition and bone mass in women[J]. J Bone Miner Res. 1996, 11(6): 857-863.
    [85] Gnudi S, Sitta E, Fiumi N. Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass[J]. J Bone Miner Metab. 2007, 25(5): 326-332.
    [86] Li S, Wagner R, Holm K, et al. Relationship between soft tissue body composition and bone mass in perimenopausal women[J]. Maturitas. 2004, 47(2): 99-105.
    [87] Ribot C, Tremollieres F, Pouilles J M, et al. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women[J]. Bone. 1987, 8(6):327-331.
    [88] Heaney R P. Thinking straight about calcium[J]. N Engl J Med. 1993, 328(7): 503-505.
    [89] Kanis J A. Calcium requirements for optimal skeletal health in women[J]. Calcif Tissue Int. 1991, 49 Suppl: S33-S41.
    [90] Danz A M, Zittermann A, Schiedermaier U, et al. The effect of a specific strength-development exercise on bone mineral density in perimenopausal and postmenopausal women[J]. J Womens Health. 1998, 7(6): 701-709.
    [91] Peng Z, Tuukkanen J, Vaananen H K. Exercise can provide protection against bone loss and prevent the decrease in mechanical strength of femoral neck in ovariectomized rats[J]. J Bone Miner Res. 1994, 9(10): 1559-1564.
    [92]雷艳霞,郭雄,赵俊杰,等.大鼠骨质疏松治疗前后血清微量元素的变化[J].西安医科大学学报. 2001(5).
    [93]陈大福,薛延,袁越,等.钙及高压氧对卵巢切除大鼠骨丢失影响的实验研究[J].中国骨质疏松杂志. 2001(1).
    [94] Ke H Z, Paralkar V M, Grasser W A, et al. Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus and body composition in rat models[J]. Endocrinology. 1998, 139(4): 2068-2076.
    [95] Douchi T, Yamamoto S, Yoshimitsu N, et al. Relative contribution of aging and menopause to changes in lean and fat mass in segmental regions[J]. Maturitas. 2002, 42(4): 301-306.
    [96] Poehlman E T, Toth M J, Gardner A W. Changes in energy balance and body composition at menopause: a controlled longitudinal study[J]. Ann Intern Med. 1995, 123(9): 673-675.
    [97] Schneider J G, Tompkins C, Blumenthal R S, et al. The metabolic syndrome in women[J]. Cardiol Rev. 2006, 14(6): 286-291.
    [98] Rogers N H, Perfield J N, Strissel K J, et al. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity[J]. Endocrinology. 2009, 150(5): 2161-2168.
    [99] Raisz L G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects[J]. J Clin Invest. 2005, 115(12): 3318-3325.
    [100]廖春海,张兆强.运动和碳酸钙联合应用对去卵巢大鼠骨矿盐代谢的影响[J].广东微量元素科学. 2009(4): 36-40.
    [101]钟卫权.不同负荷的游泳训练及雌激素对去卵巢大鼠骨质疏松症的影响[J].中国组织工程研究与临床康复. 2007(17).
    [102]张兆强,刘浩宇,刘锡仪.运动对大鼠骨矿盐含量的影响[J].中国临床康复. 2005(43).
    [103]刘本伟.不同运动方式对去卵巢大鼠骨密度、生物力学及代谢指标的影响[D].华东师范大学, 2007.
    [104]朱慧锋,程金海,王珠美,等.去卵巢大鼠干预后骨生物力学研究[J].中医正骨. 2009(8): 5-7.
    [105]张林.不同强度运动对骨质疏松大鼠骨生物力学性能的影响[J].体育科学. 2000(5): 72-76.
    [106] Murray D W, Rushton N. The effect of strain on bone cell prostaglandin E2 release: a new experimental method[J]. Calcif Tissue Int. 1990, 47(1): 35-39.
    [107] Frost H M. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage[J]. Calcif Tissue Int. 1988, 42(3): 145-156.
    [108] Martin R B, Burr D B. A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage[J]. J Biomech. 1982, 15(3): 137-139.