酵母细胞壁多糖对杭白菊抗氧化活性和黄酮类物质合成积累的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以浙江省道地药材“浙八味”之一的杭白菊为材料,对其提取液进行体外抗氧化试验,通过抗氧化模型来考查不同诱导剂诱导处理对杭白菊抗氧化活性的影响,从而筛选出其中最佳的诱导剂和最佳诱导方法,并进一步考查了该诱导剂对杭白菊抗氧化防御系统和黄酮类物质合成积累的影响。主要研究结论如下:
     1.以杭白菊叶提取物的总还原能力、清除·OH能力和清除DPPH (?).力等为指标,考查了水杨酸、壳聚糖等不同诱导子对杭白菊叶抗氧化活性的影响。结果表明,酵母细胞壁多糖对杭白菊叶抗氧化能力的诱导效果最佳。其中经200mg/L酵母细胞壁多糖处理24h后,总还原能力、清除·OH能力和·DPPH清除率分别可达26.69U/mL、87.12U/mL、77.23%,分别约为对照的1.91、1.39、1.23倍。
     2.经酵母细胞壁多糖诱导处理后,杭白菊叶的总酚、总黄酮含量显著提高,说明酵母细胞壁多糖对杭白菊叶酚类和黄酮类物质的合成积累具有促进作用。
     3.经500mg/L的酵母细胞壁多糖诱导处理后的24h,杭白菊总抗氧化能力与总黄酮含量之间具有很好的相关性(R2=0.9278),提示酵母细胞壁多糖可能是通过提高杭白菊黄酮类物质合成积累从而提高杭白菊总抗氧化能力。
     4.经酵母细胞壁多糖处理后,杭白菊叶中POD的活性大大提高,并且始终高于对照组。诱导后POD活性呈上升趋势,在诱导后的48h达到最大值。杭白菊叶中CAT活性在诱导后的24h达到最大值,其活性约为对照组的1.3倍。经酵母细胞壁多糖诱导后的24h内,处理组杭白菊叶的PPO活性明显高于对照组。上述试验结果表明,酵母细胞壁多糖处理可以激活杭白菊叶中的抗氧化酶系统。
     5.经酵母细胞壁多糖诱导处理后,处理组的花和叶中的绿原酸、木犀草苷和蒙花苷这三种主要活性成分含量均明显比对照组高。实验结果表明,酵母细胞壁多糖对杭白菊花和叶中的绿原酸、木犀草苷和蒙花苷这三种主要活性成分的合成积累具有促进作用。
     6.酵母细胞壁多糖处理可以显著提高杭白菊叶中黄酮类物质次生代谢合成途径关键酶PAL、C4H活性,表明酵母细胞壁多糖能够激活杭白菊叶中黄酮类物质次生代谢合成途径。因此,推测酵母细胞壁多糖可能通过激活杭白菊叶中黄酮类物质次生代谢合成途径,促进黄酮类物质合成积累。
     综上所述,酵母细胞壁多糖处理可以提高杭白菊的抗氧化活性,对杭白菊活性成分的合成有一定的促进作用。提示酵母细胞壁多糖作为一种新型绿色环保的天然调控剂,在药用植物次生代谢产物调控中具有广阔的应用前景。
In this study, Chrysanthemum morifolium extracts were tested in vitro antioxidant tests. In order to filter out the best elicitor and the best induction method, we evaluated the effects of different elicitors on antioxidant activity of Chrysanthemum morifolium through this antioxidant model. Fuether work was to evaluate the effects of this elicitor on antioxidant system and biosynthesis of flavonoids in Chrysanthemum morifolium. The main original research results were shown as follows:
     1. After teated with different elicitors, Leaves of Chrysanthemum morifolium were collected for the determination of total reductive capacity,-OH rdical-scavenging activity and-DPPH radical-scavenging activity respectively. Results indicated that antioxidant activities in leaves of Chrysanthemum morifolium treated with yeast cell wall polysaccharides were significantly increased as compared with those of control. In particular, At the24h after treatment of200mg/L yeast cell wall polysaccharides, total reductive capcity,-OH radical-scavenging activity and-DPPH radical-scavenging activity of the leaves were increased to26.69U/mL,87.12U/mL and77.23%respectively, being about1.91-fold,1.39-fold and1.23-fold of control.
     2. After yeast cell wall paccharides treatment, total phenols and total flavonoids contents in Chrysanthemum morifolium leaves were significantly increased. It indicated that yeast cell wall polysaccharides had a positive effect on synthesis of phenols and flavonoids in Chrysanthemum morifolium leaves.
     3. There was a positive correlation (R2=0.9278) between total flavonoid concentration and total antioxidant activity after24h yeast cell wall polysaccharides (500mg/L) treatment. From the results, we speculated that yeast cell wall polysaccharides may increased total antioxidant capacity by increasing concentration of flavonoids in Chrysanthemum morifolium.
     4. After treatment by yeast cell wall polysaccharides, POD activity in Chrysanthemum morifolium leaves greatly increased, and were always higher than control. POD activity reached the maximum at the48h after treatment. At the24h after treatment, CAT activity in Chrysanthemum morifolium leaves reached the maximum, about1.3-fold of control. Within24h after treatment, PPO activity in Chrysanthemum morifolium leaves was significantly higher than control. The results showed that yeast cell wall polysaccharides coud activate antioxidant enzymes system in Chrysanthemum morifolium leaves.
     5. Concentrations of chlorogenic acid, luteolin and Linarin in flowers and leaves of Chrysanthemum morifolium were significantly higher than control after treatment by yeast cell wall polysaccharides. It indicated that yeast cell wall polysaccharides had a positive effect on synthesis of chlorogenic acid, luteolin and Linarin in flowers and leaves of Chrysanthemum morifolium.
     6. Yeast cell wall polysaccharides can significantly improve the key enzyme PAL, C4H activities of flavonoids secondary metabolic pathway in leaves of Chrysanthemum morifolium, indicating that yeast cell wall polysaccharides could activate flavonoids secondary metabolic pathway in leaves of Chrysanthemum morifolium. So, it was presumed that yeast cell wall polysaccharides promoted the accumulation of flavonoids synthesis through activating flavonoids secondary metabolic pathway in leaves of Chrysanthemum morifolium.
     In summary, yeast cell wall polysaccharides could increase the antioxidant activity of Chrysanthemum morifolium, and had a positive effect on synthesis of the active ingredients of Chrysanthemum morifolium. Therefore, yeast cell wall polysaccharides had a broad prospect to be developed as a new type of green natural elicitor used in secondary metabolites regulation of medicinal plants.
引文
[1]韩伟.药用植物次生代谢工程的应用前景.医药世界,2005(10):58.
    [2]Kutchan T M. Ecological arsenal and developmental dispatcher:The paradigm of secondary metabolism [J]. Plant Physiology,2001,125:58-60.
    [3]付洋,王洋,阎秀峰.萜类化合物的生理生态功能及经济价值[J].东北林业大学学报,2003,31(6):59-62.
    [4]陈晓亚,叶和春.植物次生代谢及其调控[J].植物科学进展.1998,1(12):293-304.
    [5]Verpoorte R, Memelink J. Engineering secondary metabolite production in plants[J]. Current Opinion in Biotechnology,2002,13:181-187.
    [6]Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agriindustrial by products:antioxidant activity, occurrence, and potential uses[J]. Food Chemistry,2006,99 (1):191-203.
    [7]Ringli C, Biogler L, Kuhn BM, et al. The modified flavonol glycosylation profile in the Arabidosis roll mutants results inalterations in plant grow th and cell shape for mation[J]. Plant Cell,2008,20:1470-1481.
    [8]Brenda W S. Evidence for enzyme complexes in the phenylpropanoid and flavonoid Pathways[J]. Physiologia Plantarum,1999,107:142-149.
    [9]Weisshaar B, Jekins G L. Phenylpropanoid biosynthesis and its regulation[J]. Current Opinion in Plant Biology,1998,1:251-257.
    [10]Russell D W, ConnE E. The cinnamic acid 4-hydroxylase of pea seedlings[J]. Archives of Biochemistry and Biophysics,1967,122:256-258.
    [11]Potts J R M, Weklych R, Conn E E. The 4-hydroxylation of cinnmic acid by Sorghum mierosomes and the requirement for cytoehrome P450[J]. Biochemical Journal,1974,249:5019-5026.
    [12]Mansell R L, BabbeJ G R, Zenk M H. Multiple forms and specificity of coniferyl alcohol dehydrogenase from cambial regions of higher plants [J]. Phytochemistry,1976,15:1849-1853.
    [13]王玲平,周生茂,戴丹丽,曹家树.植物酚类物质研究进展[J].浙江农业学报,22(5):696-701.
    [14]Kahkonnen M P, Hopia A I, Vuorela H J, el al. Antiodant activity of plant extracts containing phenolic compounds[J]. Food Chemistry,1999,47(10): 3954-3962.
    [15]王静,刘大川.紫(白)苏叶黄酮类化合物抗氧化性能的研究[J].中国油脂,2004,29(3):33-36.
    [16]龙文静.咖啡豆中咖啡因与绿原酸的研究进展[J].广西轻工业,2010,1(134):1-2.
    [17]Kasai H, Fukadaa S, Yamaizumib Z, et al. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model[J]. Food and Chemical Toxicology,2000,38(5): 467-471.
    [18]张名位,郭宝江.果蔬抗氧化作用研究进展[J].华东师范大学学报(自然科学版),2001,4(9):115-120.
    [19]于善凯,张英.不同品种杭白菊中酚类物质含量和清除自由基活性的比较[J].食品科学.2001,22(4):84-87.
    [20]饶卫芳.南方红豆杉濒危机制研究[J].现代农业科学,2008,15(7):11-12.
    [21]吕华,赵群华,草日强,等.固定化培养和产物释放促进剂对紫草细胞代谢的影响[J].植物生理学报,1995,21(2):111-116.
    [22]Mei X G, Huang W, Wang C G, et al. Production of taxo by two-phase culture Taxus cell suspension[J]. Biotechnology,2000,10(1):10-12.
    [23]戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用[J].植物生理学通讯[J],1999,35(1):69-76.
    [24]李永丽,周洲,李科友.细胞培养生产药用次生代谢物研究进展[J].安徽农业科学,2006,34(2):219-221.
    [25]肖春桥,张华香,高洪.促进植物细胞培养生产次生代谢物的几种途径[J].武汉化工学院学报,2005,27(1):288-311.
    [26]Darvill A G, A lbersheim P. Phytoalexins and their elictors:a defence against microbial infection in plants[J]. Annual Review of Plant Physiology,1984,35: 243-276.
    [27]Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components[J]. Physiologial Plant Pathology,1983,23:345-357.
    [28]王红,叶和春,李国凤.诱导子的作用方式及其在植物组织培养中的应用[J].植物学通报,1999,16(1):11-18.
    [29]宁文,曹日强.真菌诱导物在植物次生代谢中的调节作用[J].植物生理学通讯,1993,29(5):321-329.
    [30]王和勇,罗恒,孙敏.诱导子在药用植物细胞培养中的应用[J].中草药,2004,35(8):1-5.
    [31]滕艳萍,梁宗锁.诱导子在药用植物中的应用[J].西北农林科技大学学报(自然科学版),2006,34(4):91-94.
    [32]张莲莲,谈锋.真菌诱导子在药用植物细胞培养中的作用机制和应用进展[J].中草药,2006,37(9):1426-1430.
    [33]肖春桥,高洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发,2004,16(5):473-476.
    [34]Yoshikawa M, Keen N T, Wang M C A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiology and Biochemistry, 1983,73 (2):497-506.
    [35]Renelt A, Colling C, Hahlbroek K et al. Studies on elicitor recognition and signal transduction in plant defence[J]. Journal of experimental botany,1993,44: 257-268.
    [36]Ron M, Avni A. The receptor for the fungal elicitor ethylene-indueing xylanase is a member of a resistanee-like gene family in tomato[J]. Plant Cell,2004,16(6): 1604-1615.
    [37]Nurnberger T, Nennstiel D, Jabs T. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses[J]. Cell,1994,78(3):449-460.
    [38]Gregg N. Investigation of a putative interaction between TGalphal, a heterotrimeric G protein alpha subunit, and a DnaJ homologue in tomato[J]. University of Toronto,2000,38 (6):1546-1551.
    [39]崔洪宇,孙玉河.植物抗病的Ca2+信号转导研究进展[J].天津农业科学,2007,13(1):48-51.
    [40]Liu P, Meng L J, Zhang H X,et al. Involvement of cAMP in ABA Signal Transductionin Tobacco Suspension Cells[J].植物学报,2002,14(12):14321-1437.
    [41]Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid[J]. Science,1993,262:1882-1886.
    [42]周莹,寿森炎,贾承国等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展,2007,17(3):305-311.
    [43]贾燕涛.植物抗病信号转导途径[J].植物学通报,2003,20(5):602-608.
    [44]Pauli H H, Kutchan T M. Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis[J]. The Plant Journal. 1998,13 (6),793-801.
    [45]Liu W Q, Guo Z J. Effects of signal transduetion antagonists on phytoalexin and isofiavonoid accumulation in soybean cells[J]. Journal of Plant Physiology and Molecular Biology.2003,29(4):301-308.
    [46]宋经元,祁建军,雷和田等.蜜环菌诱导子对丹参冠瘦组织积累丹参酮的影响[J].植物学报,2000,42(3):316-320.
    [47]刘长军,侯篙生.真菌诱导子对新疆紫草悬浮培养细胞的生长和紫草索合成的影响[J].植物生理学报,1998,24(1):6-10.
    [48]李家儒,管志勇,刘曼西.Cu2+对红豆杉培养中紫杉醇形成的影响[J].华中农业大学学报,1999,18(2):117-120.
    [49]Kim C Y, Im H W, Kim H K, et al. Accumulation of 2,5-dimethoxy-1,4-benzoquinone in suapension cultures of Panaxginseng by a fungal elicitor preparation and a yeast elicito rp reparation[J]. Microboil Biotechnol,2001,56: 239-242.
    [50]苗志奇,未作君,元英进等.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学报,2000,16(4):509-513.
    [51]晏琼,胡宗定,吴建勇.生物与非生物诱导予协同作用对丹参毛状根培养生产丹参酮的影响[J].中国中药杂志,2006,3(15):106-110.
    [52]Wu J, Lin L. Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction [J]. Applied Microbiology and Bioteehnology,2003,2 (23):2-3.
    [53]肖春桥,高洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发,2004,16(5):473-476.
    [54]Kuc J.Induced immunity to plant disease[J]. Bioscience Reports,1982,32: 854-860.
    [55]Szabo E, Thelen A, Petersen M. Fungal elicitor preparation and methyljasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei[J]. Plant Cell Reports,1999,18(6):485-489.
    [56]Hajime Mizukami, Terumi Ogawa, Hiromu Ohashi and Brian E. E. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract[J]. Plant Cell Reports,1992,11:480-483.
    [57]Park H H, Hakamatsuka T, Sankawa U. Rapid metabolism of isoflavonoids in elicitor-treated cell suspension cultures of Pueraria lobata[J]. Phytochemistry,1995, 38 (2):373-380.
    [58]张春荣,李玲.水杨酸、茉莉酸甲酯和乙烯利对野葛细胞悬浮培养生产葛根素的影响[J].植物资源与环境学报,2003,12(1):56-57.
    [59]陈年来,胡敏,代春艳,杨世梅.诱抗处理对甜瓜叶片酚类物质代谢的影响[J].园艺学报,2010,37(11):759-1766.
    [60]国家药典委员会编.中国药典一部[M].北京:中国医药科技出版社,2010.
    [61]王本祥.现代中药药理学[M].天津:天津科学技术出版社,1995:160-164.
    [62]李广勋.中药药理毒理与临床[M].天津:天津翻译科技出版公司,1992:10-11.
    [63]裴凌鹏,惠伯棣,金宗濂.黄酮类化合物的生理活性及其制备技术研究进展[J].食品科学,2004,25(2):203-207.
    [64]Lin L Z, Harnly J M. Identification of the phenolic components of chrysanthemum flower(Chrysanthemum morifolium Ramat.)[J]. Food Chemistry, 2010,120,319-326.
    [65]戴敏,刘青云,李道中.菊花解热、降压作用的物质基础[J].中药材,2001,24(7):505.
    [66]苏祝成,叶立扬.杭白菊清除活性氧自由基研究[J].食品科学,2000,21(7):6-9.
    [67]于善凯,张英.不同品种杭白菊中酚类物质含量和清除自由基活性的比较[J].食品科学,2001,22(4):84-87.
    [68]张洁枝,张琳,付红伟.杭白菊茎叶中两种黄酮HPLC定量分析及其特征指纹图谱研究[J].中国药师.2010,13(6):796-799.
    [69]刘金旗,吴得林,王兰.菊花中黄酮苷的含量分析[J].中草药,2001,32(4):308-310.
    [70]高锦明,张鞍灵,赵晓明.绿原酸分布、提取与生物活性研究综述[J].西北林学院学报,1999,14(2):73-82.
    [71]Feng R T, L u Y J, Bowman L L, et al. Inhibition of Activator Protein-1, NF-B, and MAPKs and Induction of Phase 2 Detoxifying Enzyme Activity by Chlorogenic Acid[J]. Journal of Biological Chemistry,2005,280 (30):27888-27895.
    [72]顾瑶华,秦民坚.不同药用菊花品种绿原酸含量的RP-HPLC分析[J].植物资源与环境学报,2005,14(2):56-57.
    [73]刘金旗,王兰,刘劲松,等.菊花叶黄酮类化合物的实验分析[J].中国中医药科技,2002,9(4):226-227.
    [74]官艳丽,王燕军,石琳,等.杭白菊和杭黄菊挥发油的GC-MS分析[J].分析试验室,2007,26(6):77-80.
    [75]刘伟,郭庭江,梁生旺.不同产地菊花中挥发油的GC/MS的分析[J].河南中医药学刊,1995,10(5):12-13.
    [76]姜宁华,朱山寅,吴素香.杭白菊挥发油成分分析[J].浙江中医学院学报, 2003,27(5):83-84.
    [77]胡立宏,陈仲良.杭白菊的化学成分研究:正戊基果糖甙的结构测定[J].植物学报,1997,39(2):181-184.
    [78]Cotelle N, Bernier J L, Catteau J P, et al. Antioxidant Properties of Hydroxy Flavones[J]. Free Radical Biology and Medicine,1996,20(3):35-43.
    [79]Hu F L, Schmidt K, Stefka S, et al. Radical Scavengers from the Entomogenous Deuteromycete Beauveria amorpha[J]. Planta medica,2002,68(1):64-65.
    [80]陆健,樊伟,孔维宝等.大麦总多酚不同溶剂提取物对DPPH自由基清除能力的影响[J].食品与生物技术学报,2008,27(1):57-61.
    [81]Hasegawa P M, Bressan R A, Zhu J-K, Bohnert H J.Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-99.
    [82]李巨秀,王柏玉.福林-酚比色法测定桑椹中总多酚[J].食品科学,2009,30(18):292-295.
    [83]章宇,谢萌,等.强化竹叶黄酮对酿造酒抗自由基和抗氧化性能的改进[J].中国食品学报,2005,5(4):34-39.
    [84]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.
    [85]田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344.
    [86]宋新华,赵凤云.植物体内过氧化氢酶的研究进展[J].安徽农业科学.2007,35(31):9824-9827.
    [87]王曼玲,胡中立,周明全,等.植物多酚氧化酶的研究进展[J].植物学通报,2005,22(2):215-222.
    [88]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,24(3):9-16.
    [89]李合生.植物生理生化试验原理与技术[M].北京:高等教育出版社,2000.198-201.
    [90]Lamb C, Rubery P H. A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity[J]. Analytical Biochemistry,1975,68:554-561.
    [91]Knoblock K H, Hahlbrock K. Isoenzymes of pcoumarate:CoA ligase from cell suspension cultures of Glycine max[J]. European Journal of Biochemistry,975,52: 311-320.
    [92]Yoon H J, Kim H K, Ma C J, et al. Induced accumulation of triterpenoids in Scutellaria baicalensis suspension cultures using a yeast clicitor[J]. Biotechnology Letters,2000,22(3):1071-1075.