东北地区蝗总科昆虫特有属种的分类学研究(直翅目:蝗亚目)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝗总科是直翅目中较大的一个类群,全世界有1万余种,分布于热带、温带的草原和沙漠地区。蝗虫是典型的植食性昆虫,由于有些种类的翅长且个体较为强壮,具有迁飞能力,是重要的农林害虫。但由于其营养成分含量高,因此它也是重要的食用资源昆虫。蝗虫的研究不仅具有一定的理论意义,而且在害虫防治和资源利用上具有重要的现实意义。
     特有种是指在一个区域分布而其他区域没有分布的种类,其形成受生物地理历史过程和生态环境的双重影响。我国东北地区特有属种资源丰富,但鲜见有相关的研究报道。本论文首先对东北地区特有属种的名录进行了概括总结,并对其分布也进行了记述。由于特有属种中绝大部分种类属于近缘种,在形态上极其相似不易区分。因此,本论文除了从外部形态学方面对东北地区特有属种的34种蝗虫进行研究之外,又从解剖学、细胞学以及分子生物学方面对这34种蝗虫进行了较详尽的研究,以探讨它们之间的系统发育关系。
     1.形态学方面
     本部分对采自东北地区的34种特有属种蝗虫的外部形态进行了描述并进行传统分类,在采集过程中得到2新种——鳞翅跃度蝗和狭额跃度蝗,其中鳞翅跃度蝗已发表在Entomologica Fennica上。采用了夏凯龄(1985)等以印象初(1982)系统为基础,做了修改的用于编写的中国蝗总科志系统,把蝗总科分为8个科。研究结果如下。
     本论文研究的34种蝗虫隶属于3科9属,分别是:
     ①斑腿蝗科Catantopidae:无翅蝗属Zubovskia Dov.–Zap;安秃蝗属Anapodisma Dovnar-Zapolskii;翘尾蝗属Primnoa Fischer-Waldheim;秃蝗属Podisma Berthold;玛蝗属Miramella Dovnar-Zapolskii;
     ②网翅蝗科Arcypteridae:跃度蝗属Podismopsis Zubovski;
     ③剑角蝗科Acrididae:绿洲蝗属Chrysochraon Fisch;迷蝗属Confusacris Yin et Li;鸣蝗属Mongolotettix Rehn。
     2.解剖学方面
     本部分实验运用生理解剖和扫描电镜技术对25种特有属种蝗虫的消化道外部形态、前胃以及贲门的内部形态进行了研究,并利用蝗虫消化道前肠、中肠、后肠,以及前肠的嗉囊、前胃、胃盲囊及贲门的各部分长度进行了聚类分析。结果如下。
     (1)蝗虫消化道可分为前、中、后肠三个部分,不同科、属、种之间的差别主要是消化道各段长度的不同以及前肠的前胃和贲门的内部显微结构的差异。
     (2)对于蝗总科高级分类阶元:不同科间、属间消化道的内部与外部形态特征具有稳定的显著的差异,其可以作为不同科、属间的分类依据。
     (3)对于蝗总科低级分类阶元:由于本实验选取的蝗虫种类亲缘关系较近,同属不同种的蝗虫在消化道外部以及内部显微结构存在差异,但差异不明显。但即便如此,消化道的形态特征对同属不同种间的鉴定仍然可以起到辅助作用。
     (4)蝗虫消化道的形态结构是其对植物长期选择和适应的结果,换句话说,消化道的形态结构与蝗虫的食性具有紧密的相互关系,对这种相互关系的研究,不仅能够为分析不同种类蝗虫的食性提供基础资料,还对蝗害的防治有帮助。
     (5)聚类结果与形态学分类结果基本一致,表明聚类分析方法有一定的参考价值。
     3.细胞学方面
     本部分试验运用染色体常规压片法对2科6属18种蝗虫的染色体核型进行了研究,利用染色体的相对长度进行了聚类分析,同时制作了其核型模式图。
     (1)蝗虫的性别决定机制均为XX♀/X0♂,斑腿蝗科染色体数目为2n(♂)=23或21,均为端部着丝粒染色体;网翅蝗科染色体数目为2n(♂)=17,第一至第三对染色体为亚中部着丝粒染色体,其余都为端部着丝粒染色体。
     (2)所研究的斑腿蝗科中的无翅蝗属、翘尾蝗属、秃蝗属、玛蝗属以及安秃蝗属均为丧失飞行能力的属,它们的染色体核型表现出一定的相似性,可能与其在长期进化过程中都适应了相似的外部环境有关。
     (3)染色体核型在蝗总科昆虫高级分类阶元中具有十分稳定的差异性,可作为鉴定不同科及属间蝗虫的一个分类依据。
     (4)由于同属不同种的蝗虫亲缘关系较近,染色体核型存在一定的共性,但种间也存在染色体组式、染色大小及相对长度不同,性染色体类型不同等差异。研究的属内蝗虫种类越多,这种差异表现得就越明显,因此染色体核型也可作为种间的分类指标。
     (5)染色体核型的近似程度在一定程度上与形态分类结果相吻合,二者存在正态相关关系,或者说核型进化与形态进化是平行的。
     4.分子生物学方面
     本部分实验提取了蝗总科昆虫26种昆虫基因组总DNA。采用2对特异性引物扩增并测定了DNA序列,获得长度为492bp的Cytb基因序列21条,420bp长度的16SrDNA序列23条;使用DNASTAR、DNAMAN、DNAsp5和MEGA5.05软件对DNA序列的碱基组成、氨基酸组成、碱基替换及遗传距离进行了分析;采用邻接法(NJ)、最小进化法(ME)、最大简约法(MP)和贝叶斯法对分别对Cytb和16SrDNA基因序列进行了蝗总科的系统发育关系重建,在此基础上联合2段基因数据集同样利用4种建树方法构建系统发育树。结果如下。
     (1)Cytb(492bp)基因序列中,A、T、G、C的平均含量分别为40.3%、32.4%、16.0%、11.3%。A+T平均含量较高,为72.7%,而G+C的平均含量仅为27.3%。其中密码子第一位点A+T平均含量为75.0%,第二位点A+T平均含量为64.2%,第三位点A+T平均含量最高,为78.6%。
     16SrDNA(420bp)基因序列中,A、T、G、C的平均含量分别为33.4%、37.9%、17.5%、11.2%。A+T平均含量较高,为71.3%,而G+C的平均含量仅为28.7%。其中密码子第一位点A+T平均含量为72.1%,第二位点A+T平均含量为68.1%,第三位点A+T平均含量最高,为72.9%。
     Cytb基因序列与16SrDNA基因序列中的A+T和G+C含量相似。2种线粒体基因片段碱基组成均表现出明显的A+T组成偏向性。
     (2)21条蝗总科昆虫Cytb基因序列中,核苷酸替代的转换数与颠换数的比值(R)的平均值为1.29。转换的平均数高于颠换的平均数。密码子不同位点的转换数与颠换数的比值(R)存在差异。密码子第二位点的R值明显高于第一位点和第三位点的R值,密码子第三位点的转换和颠换的频率都比第一位点的和第二位点的高。
     23条蝗总科昆虫16SrDNA基因序列的颠换数略大于转换数,转换数与颠换数的比值(R)的平均值为0.9,与Cytb基因之间存在差异。转换以A-G为主(7),颠换以T-A为主(10),这一点与Cytb基因的相似。
     (3)用P距离与R值作图发现P距离与R值之间的关系是存在依赖性的,这种距离依赖性的R值是昆虫线粒体DNA的典型特征,即随着P距离的增大,R值基本呈现下降的趋势。
     (4)采用4种方法对Cytb与16SrDNA单个基因及联合2个基因构建NJ、MP、ML、贝叶斯树,比较Cytb与16SrDNA单个基因及联合2个基因所建的树,虽然个别属种的聚类结果存在出入,但各建树结果仍存在一定的相似性,并且联合基因建的树的各分支的支持率较单个基因建的树的各分支的支持率显著提高。
     (5)单个基因建树与联合建树的结果均支持斑腿蝗科与网翅蝗科为非单系群的结论,该结论与前人的研究结果相一致。
     (6)通过本研究,我们推测网翅蝗科跃度蝗属昆虫中,狭翅跃度蝗Podismopsisangustipennis、长须跃度蝗Podismopsis dolichocerca、土门岭跃度蝗Podismopsistumenlingensis与牡丹江跃度蝗Podismopsis mudanjiangensis是同种异名。
     通过以上研究结果可以看出,采用扫描电镜技术、染色体常规压片法和DNA测序等现代分类手段对东北地区特有属种部分种类的研究结果基本一致,虽然个别种类在种属上的分类与形态分类略有出入,但大体上与传统的形态分类结果一致。同时,我们还发现应用现代分类手段有助于区分近缘种类。现代分类学方法以其准确、直观、灵敏等优点弥补了传统分类手段的不足,尤其是对近源种的研究方面。但由于传统分类手段具有直观性等优点,也不可将其摒弃。将传统分类与现代分类手段相结合,是未来解决系统发育关系的一个趋势。
Acridoidea is a bigger superfamily in Caelifera of Orthoptera, with more than10000known species in worldwide. Acridoidea is typical phytophagous insects. Several specieswhose tegmina developed and body robusted have strongly migration capacity, so theybecome important pests in agriculture and forest. However, because of high content ofnutrients, they also become important food resource insects. This study on Acridoidea is notonly have theoretical significance but also practical value in pests control, plant protectionand resources usage.
     Special species refers species which distribution in one region, and at the same timeother regions do not have. These species are impact by biogeographic history of the processand the ecological environment. Special species are resourceful abundant in Northeast Area ofChina, but revelant reports are rare. In this paper, i first list a cataloge of Acridoidea specialspecies and describe their distribution, which distribute in Northeast Area. Because of most ofthem are closely related species, and are difficult to distinguish by morphological, then icollected34species of Acridoidea which belong to3families,10genera, decribed theirconfigurations separately, and researched them with the methods of anatomy, cytology andmolecular. Their purpose is to discuss the phylogenetic relationships.
     1.Morphology
     In this part, the configurations of34special genera and species of Acridoidea weredescribed using the traditional classification methods. During the collection process idiscovered two new species (P. angustifronsensis sp. nov. and P. squamopennis Lu, Wang etRen). The classification system that Xia brought up in1985, which devided Acridoidea intoeight families was used. The results are as follows.
     The34species of Acridoidea belong to3families,9genera are:
     ①Family Catantopidae:Genus Zubovskia Dov.–Zap;Genus Anapodisma Dovnar-Zapolskii;Genus Primnoa Fischer-Waldheim;Genus Podisma Berthold;Genus Miramella Dovnar-Zapolskii;
     ②Family Arcypteridae:Genus Podismopsis Zubovski;
     ③FamilyAcrididae:Genus Chrysochraon Fisch; Genus Confusacris Yin et Li;Genus Mongolotettix Rehn.
     2.Anatomy
     In this part, the alimentary canals of25species of Acridoidea were analyzed using themethod of the external anatomy and scanning electron microscope. The relation betweenmorphological characters of alimentary canals was briefly discussed, and the clusteringanalysis of these25species was studied based on their lengths of foregur, midgut, hindgut,crop, proventriculus, gastric cecum and cardia. The results are as follows.
     (1) The alimentary canals of grasshoppers include three parts: foregut, midgut andhindgut. The significant differences between different genera exist in the proventriculus andcardia.
     (2) For Acridoidea high level: there are some obviously differences in the morphologicalcharacters of alimentary canals between different families and different genera. It can be usedin classification of different families and different genera.
     (3) For Acridoidea low level: the selected species which used in this experiment areclosely related species. There some differences in the morphological characters of alimentarycanals among them, but this difference is not obvious. Even though, the morphologicalcharacteristics still can play a supporting role in the classification of the different species ofthe same genus.
     (4) The morphological characters of alimentary canals of grasshoppers are the result oflong-term selection and adaptation with plants. In another word, there is closely relationshipbetween morphological characters of alimentary canals and feeding habits. These interactionrelationship not only to provide basic information to analysis the feeding habits of differentkinds of grasshoppers, but also practical value in pests control.
     (5) The results of clustering analysis are consistent with those of morphologicalclassification.It showed that clustering analysis method has some reference value.
     3.Cytology
     In this part, the chromosomal conventional karyotypes of18species of grasshopperswere studied, which belong to2families,6genera. At the same time the clustering analysis ofthese species was studied based on their chromosomal relative lengths, and the karyotypespattern graph was made. The results are as follows.
     (1) All the species of grasshoppers have the basic sex determining mechanism XX♀/X0♂. The family Catantopidae has the chromosome numbers of2n=23or21, chromosomeare all telocentric chromosomes; the family Arcypteridae has the chromosome numbers of2n=17, the first to the third paris of chromosome are sumbmetacentric chromosome, othersare telocentric chromosomes.
     (2) Zubovskia Dov.–Zap, Primnoa Fischer-Waldheim, Podisma Berthold, Miramella Dovnar-Zapolskii and Anapodisma Dovnar-Zapolskii of Catantopidae are withoutflying ability. Their cytology characters are similar. This may relevant that they acclimatizedthemselves to similar environmental conditions during perennial evolution.
     (3) There are some obviously differences about the cytological characters betweendifferent families and different genera. It can be used in classification of different families anddifferent genera.
     (4) Because of the same genus of different species have closely relationship, theircytological characters have some commonalities. But there are also have some differences ingenome formula, the size of chromosomes and their chromosomal relative lengths, the type ofsex chromosomes. The more species in the same genus which we studies, the moredifferences between species are obviously. Therefore, the chromosomal karyotype could usein different species.
     (5) The results of the clustering analysis are consistent with that of anatomy and theseresults are in line with the result of morphological classification. In another word, thekaryotype evolution of grasshoppers is parallel with that of morphology evolution.
     4.Molecular Biology
     In this part, total genomic DNA was extracted from26species,8genera,3families.21sequences of Cytb (492bp) and23sequences of16SrDNA (420bp) have been acquired byPCR amplification and sequenced using specific two pair primers. The base frequency, aminoacid frequency, base substitution and genetic distance of DNA sequence were analyzed usingsome biosoftware such as DNAMAN, DNAsp5and MEGA5.05software. The phylogeneticrelationships were reconstructed from the Cytb and16SrDNA, and the data was combinedusing PAUP4.0(NJ, MP), PHYMLv2.4.4(ML) and MrBayes3.1.2(BI). The results are asfollows.
     (1) In Cytb gene sequences (492bp): the average content of A, T, G, C of Cytb genesequence are40.3%、32.4%、16.0%and11.3%respectively, and the A+T average content is72.7%, the G+C average content is27.3%. The A+T average content of the first site, thesecond site and the third site is75.0%,64.2%and78.6%respectively.
     In16SrDNA gene sequences (420bp): The average content of A, T, G, C of Cytb genesequence are33.4%、37.9%、17.5%and11.2%respectively, and the A+T average content is71.3%, the G+C average content is28.7%. The A+T average content of the first site, thesecond site and the third site is72.1%,68.1%and72.9%respectively.
     The content about A+T and G+C are similar in Cytb gene sequences and16SrDNA genesequences. They all show a strong A+T bias.
     (2) In21sequences of Cytb, the average transition and transversion ratio (R) is1.29.Average transition is highly more than average transversion. The average transition andtransversion ratio (R) are different in different sites of codon. The transition and transversion ratio (R) of the second site is highly more than that of the first and the third site. Thetransition and transversion of the third site are all highly more than that of the first and thesecond site.
     In23sequences of16SrDNA, the transversion is highly more than transition. Theaverage transition and transversion ratio (R) is0.9different from that of Cytb. Transitionfrequently occurs between A and G, and transversion usually occurs between T and A. It isthe same as Cytb.
     (3) The relationship between P distance and R value are dependence. This dependence ofR is a typical characteristic of the insect mitochondrial DNA. As the P distance increases, theR value showed downward trend basically.
     (4) The phylogenetic trees were inferred from the Cytb,16SrDNA single gene andcombined gene sequences using4methods to construct NJ、MP、ML and BI. Although theclustering results of individual species exist difference, there is still a certain degree. And thesupport rates of the various branches of the trees of combined gene sequences significantlyhigher than that of a single gene
     (5) The phylogenetic trees were inferred from the Cytb,16SrDNA single gene andcombined gene sequences are all supported that family Catantopidae and Arcypteridae arenon-monophyly group. The conclusion is the same as the former.
     (6) I assumed that Podismopsis angustipennsis, Podismopsis dolichocerca, Podismopsistumenlingensis and Podismopsis mudanjiangensis are the same species of the genus ofPodismopsis.
     In the above results we can see that, the results of the above three parts are accordant andconsistent with those of morphological classification. Although individual species clusteringresult are difference, the result is the same as that of traditional classification. At the sametime the modern classification methods are absolutely used in identification of closely relatedspecies. The modern classification bear the accuracy, impersonality and delicacy and play as aremedy for the traditional classification, especially for closely related species. Because of thecharacteridtic of intuition, traditional classification is not given up. The results ofphylogenetics analyses based on traditional classification and modern classification are moreconvinced compared with the sole analyses.
引文
[1] Simpson G G. Principles of Anamal Taxonomy [M]. New York: Columbia University Press,1961.
    [2] Mayr E. Principles of Systematic Aoology [M]. New York: McGraw Hill,1969.
    [3] Sokal R R, Sneath P H A. Principles of Numerical Taxonomy [M]. San Franciso: W. H. Freeman,1963.
    [4] Sneath P H A, Sokal R R. Numerical Taxonomy [M]. San Franciso: W. H. Freeman,1973.
    [5] Hennig W. Grundzuge einer Theorie der Phylogenetischen Systematik [M]. Berlin: DeutscheZentralverlag,1950.
    [6] Hennig W. Phylogenetic Systematics [M]. Translated by D. D. Davis and R. Zangerl. Urnana:University of Illinois Press,1966.
    [7] Hennig W. Kritische Bemerkungen zum phylogenetischen System der Insekten [J]. Beitr. Eny.,1953,3(Sonderheft):1-85.
    [9] Hennig W. Die Stammesgeschichte der Insekten [M]. Frankfurt am Main: Waldemar Krammer.[Englishedition with supplementary notes1981. W. Hennig: Insect Phylogeny. J. Wiley&Sons, New York]
    [10] Boudreaux H B. Arthropod Phylogeny with Special Reference to Insects [M]. New York: J. Wiley&Sons,1979.
    [11] Uvarov B P. Grasshoppers and locusts. A handbook of general acrifology [M]. Volume1. Anatomy,development phase polymorphism, introduction to taxonomy. Cambridge Univ. Press,1966.
    [12] Ragge D R, Reynolds W J. The songs of the grasshoppers and crickets of Western Europe [M].Colchester: Harley Books.1998.
    [13] Claudia H, Siegfried K. Taxonomic changes and new species of the flightless genus ParepistaurusKarsch,1896(Orthoptera: Acrididae, Coptacridinae) from Mountainous East Africa [J]. Journal ofOrthoptera Research,2010,19(1):31-39.
    [14] Fernando Montealegre-Z, Glenn K Morris. The spiny devil katydids, Panacanthus Walker (Orthoptera:Tettigoniidae): an evolutionary study of acoustic behaviour and morphological traits [J]. SystematicEntomology,2004,29:21-57.
    [15]莫圣书,王玉洁,赵冬香.中国昆虫分类研究进展.广东农业科学[J],2010,7:114-133.
    [16]王文强.欧亚大陆斑翅蝗科昆虫的系统学研究(直翅目:蝗总科)[D]:[博士学位论文].保定:河北大学,2005.
    [17] Eades D C, Otte D. Orthoptera Species File Online. Version2.0/3.3..2011.
    [18] Burnner L. South American Locusts (Acridoidea) Ⅱ [J]. Annals of the Carnegie Museum,1913,8(3-4):423-506.
    [19] Kirby W F. The fauna of British India, including Ceylon and Burma. Orthoptera (Acridiidae)[M].London,1914. i-x,1-276pp., figs.1-140.
    [20] Chopard L. Orthoptera. Faune de France [M].56. Paris: Lechevalier,1951.203-316.
    [21] Bei-Bienko G J, Mishchenko L L. Acridoidea of the fauna of the USSR and neighbouring Countries[M]. Pts.1and2.[In Russian.] Moscow: Opred. Faune SSSR,1951.
    [22] Dirsh V M. Notes on Acridoidea of Africa, Madgascar and Asia (Orthoptera)[M]. Eos., Madrid.1961.
    [23] Dirsh V M. The African genera of Acridoidea [M]. Cambridge: Univ. Press,1965.
    [24] Shumakov E M. The grasshoppers of Iran and Afghanistan [M]. Trudy Vsesoyuznogo Entomologic-heskogo Obschestva,1963.
    [25] Harz K. The Orthoptera of Europe (Volume Ⅱ)[M]. Dr. W. Junk B. V.–Publishers-The Hague.1975.
    [26] Willemes F. Fauna Graeciae (Ⅰ): Catalogue of the Orthoptera of Greece [M]. Athens,1984.
    [27] Willemes F. Fauna Graeciae (Ⅱ): A Key to the Orthoptera species of Greece [M]. Athens,1985.
    [28] Rowell C, Hugh F. New and little known species of Cloephoracris (Orthoptera: Caelifera: Romaleidae)from Central America [J]. Revue Suisse de Zoologie,1999,106(1):3-20.
    [29] Cigliano M M, De Wysiecki M L, Lange C E. Grasshopper (Orthoptera: Acridoidea) species diversityin the Pampas, Argentina [J]. Journal of Orthoptera Research,2000,6(2):81-91.
    [30] Evans H C, Shah P A. Taxonomic status of the genera Sorosporella and Syngliocladium associatedwith grasshoppers and locusts (Orthoptera: Acridoidea) in Africa [J]. Mycological Research,2002,106:737-744.
    [31] Mahmood K. Taxonomic study of some Catantopinae (Acrididae: Orthoptera) from Azad Jammu andKashmir [J]. Proc. Pakistan. Congr. Zool.,2002,22:139-144.
    [32] Cigliano M M, Otte D. Revisionary study of the Dichroplus maculipennis species group (Orthoptera:Acrididae: Melanoplinae)[J]. Transactions of the American Entomological Society,2003,129:133-162.
    [33] Soomro S, Wagan M S. Notes on subfamily Calliptaminae (Acrididae: Acridoidea: Orthoptera) ofPakistan, with the description of one new species [J]. Zoological Society of Pakistan,2005,37(4):229-247.
    [34] Bugrov A, Novikova O, Mayorov V, et al. Molecular phylogeny of Palearctic genera of Gompjocerinaegrasshoppers (Orthoptera, Acrididae)[J]. Systematic Entomology,2006,31(2):362-368.
    [35] Usmani M K. Studies on some Libyan species of Pamphagidae (Orthoptera:Acridoidea)[J]. Zootaxa,2007,1625:47-60.
    [36] Yassin A. Molecular taxonomy and species delimitation in Andean Schistocerca (Orthoptera: Acrididae)[J]. Molecular Phylogenetics and Evolution,2009,53(2):404-411.
    [37] Ansa T, Khalid M, Zaid M, et al. Grasshopper Species Composition in Mirpur Division of AzadJammu and Kashmir, Pakistan. Pakistan. J. Zool,2011,43(2):223-227.
    [38]伟军.内蒙古呼伦贝尔草地蝗虫种类组成区系及生态分布的研究[D]:[硕士学位论文].呼和浩特:内蒙古师范大学,2009.
    [39]胡经甫.中国昆虫名录[M].北京:农业出版社,1935.
    [40]夏凯龄.中国蝗科分类概要[M].北京:科学出版社,1958.
    [41]印象初.青藏高原的蝗虫[M].北京:科学出版社,1984.
    [42]郑哲民,许文贤.陕西蝗虫[M].西安:陕西师范大学出版社,1990.
    [43]郑哲民.蝗虫分类学[M].西安:陕西师范大学出版社,1993.
    [44]郑哲民,夏凯龄.中国动物志,昆虫纲,第十卷,直翅目,蝗总科,斑翅蝗科及网翅蝗科[M].北京:科学出版社,1998.
    [45] Dirsh V M. Classification of the Acridomorphoid insects [M]. E. W. Classey Ltd, Farringdon, Oxon.1975.
    [46]印象初.中国蝗总科Acridoidea分类系统的研究[J].高原生物学集刊,1982,1:69-99.
    [47] Kevan D K M. Orthoptera: In Synopsis and classification of living organisms Vol.2[M]. New York:McGraw-Hill,1982.
    [48] Otte D. Orthoptera species file4Grasshoppers (Acridomorpha) C Acridoidea: Lentulidae, Pauliniidae,Tristridae, Romaleidae, Acrididae (part)[M]. Pjiladelphia: The Orthopterists’ Society and theAcademy of Natural Sciences of Philadelphia,1995.
    [49] Otte D. Orthoptera species file5Grasshoppers (Acridomorpha) D Acridoidea: Acrididae (part)[M].Pjiladelphia: The Orthopterists’ Society and the Academy of Natural Sciences of Philadelphia,1996.
    [50]毛本勇,任国栋,欧晓红.云南蝗虫区系、分布格局及适应特性[M].北京:中国林业出版社,2011.
    [51]黄春梅.翘尾蝗属二新种(直翅目:蝗科)[J].昆虫学报,1982,25(4):431-433.
    [52]黄春梅.中国无翅蝗属三新种(蝗虫:斑腿蝗亚科)[J].昆虫学报,1987,30(3):307-312.
    [53]郑哲民,廉振民.东北地区跃度蝗属的研究(蝗总科:网翅蝗科)[J].昆虫分类学报,1988,1(1-2):87-96.
    [54]郑哲民,曹立民,廉振民.中国跃度蝗属3新种(蝗总科:网翅蝗科)[J].湖北大学学报,1991,13(2):159-165.
    [55]任炳忠,张凤岭,郑一平.黑龙江蝗虫二新种(直翅目:蝗总科)[J].东北师范大学学报(自),1991,(1):103-106.
    [56]张凤岭,任炳忠.吉林省跃度蝗属一新种(直翅目:网翅蝗科)[J].昆虫分类学报,1992,14(2):87-89.
    [57]任炳忠,张凤岭.大翅跃度蝗雌性的发现[J].东北师范大学学报(自),1993,(3):105-106.
    [58]张凤岭,任炳忠.中国蝗科一新种(直翅目)[J].动物分类学报,1993,18(1):76-77.
    [59] Ren B Z, Zhang F L. A new species of the genus Confusacris from Daxing’ anling area (Orthoptera:Acrididae)[J]. J. Northeast. For. Univ,1994,5(3):49-50.
    [60]张凤岭,任炳忠,郑一平.金色蝗属一新种(直翅目:蝗总科)[J].动物分类学报,1994,19(2):184-186.
    [61]任炳忠,张凤岭,郑一平.黑龙江省跃度蝗属三新种(直翅目:蝗总科)[J].昆虫学报,1994,37(2):199-204.
    [62]梁铬球,贾凤龙.内蒙古蝗虫两新种(直翅目:蝗总科)[J].昆虫学报,1994,37(3):334-337.
    [63]郑一平,张凤岭,任炳忠.黑龙江蝗虫一新种(直翅目:蝗总科)[J].动物分类学报,1995,20(3):351-353.
    [64]任炳忠,张凤岭.翘尾蝗属一新种(直翅目:蝗总科)[J].动物分类学报,1996,21(3):335-337.
    [65]任炳忠,赵卓,郝锡联.黑龙江金色蝗属一新种(直翅目:蝗总科)[J].昆虫学报,2002,45(suppl):22-24.
    [66]郑哲民,石福明.中国东北地区跃度蝗属三新种(直翅目:网翅蝗科)[J].昆虫分类学报,2010,32(3):161-170.
    [67]席碧侠,郑哲民.四种蝗虫前肠形态的比较研究(直翅目:斑腿蝗科)[J].动物分类学报,1999,24(4):380-383.
    [68]马恩波,郭亚平.四种斑腿蝗科昆虫染色体带型的比较[J].昆虫学报,2001,44(3):268-275.
    [69]魏文娟.几种直翅目昆虫的细胞分类学研究—染色体核型及C-带带型的比较分析[D]:[硕士学位论文].长春:东北师范大学,2004.
    [70]李鑫.中国东北蝗虫部分种类染色体研究(蝗总科:斑腿蝗科斑翅蝗科癞蝗科)[D]:[硕士学位论文].西安:陕西师范大学,2009.
    [71]许姝娟.东北蝗虫部分种类(网翅蝗科、槌角蝗科、剑角蝗科)染色体研究[D]:[硕士学位论文].西安:陕西师范大学,2009.
    [72]张陵.基于COI和Cytb基因序列的斑腿蝗科部分种类的分子系统学研究[D]:[硕士学位论文].西安:陕西师范大学,2008.
    [73]孙慧敏.蝗亚目三种昆虫线粒体基因组测序与蝗总科系统发育分析[D]:[博士学位论文].西安:陕西师范大学,2009.
    [74]张小静.基于28SrDNA和COI基因序列的蝗总科部分种类分子系统学研究[D]:[硕士学位论文].西安:陕西师范大学,2009.
    [75]邱忠营.云南卡蝗、斑腿勐腊蝗与柯氏无翅蝗线粒体基因组序列测定与分析[D]:[硕士学位论文].西安:陕西师范大学,2009.
    [76]曹立民,郑哲民,廉振民.东北地区跃度蝗属鸣声结构的比较研究(直翅目:网翅蝗科)[J].昆虫分类学报,1995,17(1):70-74.
    [77]任炳忠.东北蝗虫志[M].长春:吉林科学技术出版社,2001.
    [78]王利明.东北三省蝗亚目昆虫的分类研究[D]:[博士学位论文].哈尔滨:东北林业大学,2007.
    [79] Lu Y, Wang L M, Ren B Z. Review and key of East Palaearctic species of the genus PodismopsisZubovsky (Orthoptera: Acridoidea) with description of a new species from China [J]. EntomologicaFennica,2011,12(22):199-208.
    [80]郭郛,忻介六.昆虫学实验技术[M].北京:科学出版社,1988.
    [81] Tietz H M. The anatomy of the digestive system of the Carolina locust (D. Carolina L.)[J]. Ann. Ent.Soc. Amer.,1923,16:256-273.
    [82] Nenyukov D V, Parfentev I A. Digestive process and structure of intestine in the migratory locust [J].[In Russian] Plant. Prot., Leningrad.,1929,6:21-37.
    [83] Beams H W, King R L. The architeure to the intracellular canaliculi, Golgibodies and mitochondria [J].J. Morph.,1932,75:131-150.
    [84] Woodruff B H. Studies on the epithelium lining the caeca and midgut in the grasshopper [J]. J. Morph.,1933,55:53-80.
    [85] Stuart R R. The anatomy and histology of the Malpighian tubules and the adjacent alimentary canal inMelanoplus differentialis [J]. J. Morph.,1935,58:173-188.
    [86] Atherton R F, Riedel F A. Visceral anatomy of two American lubber grasshoppers, with specialreference to digestive and respiratory systems [J]. Univ. Colo. Stud.,1941, A(26):128-130.
    [87] Judd W W. A comparative study of the proventriculus of orthopteroid insects with reference to its usein taxonomy [J]. Can. J. Res.,1948,26(2):93-161.
    [88] Albrecht F O. The Anatomy of the Migratory Locust [M]. The Athlone Press, University of London,1953.
    [89] Gangwere S K. The structural adaptations of mouthparts in Orthoptera and allies [J]. EOS-RevistaEspanola de Entomologia,1965,41:67-85.
    [90] Muralirangan M C, Ananthakrishan T N. Taxonomical significance of the foregut armaturp insomeIndian Acridoidea [J]. Oriental Insect,1974,8(2):119-145.
    [91] Klein, Applebaum, M. Klein, et al. The surface morphology of locust hindgut cuticle [J]. J. Entomol.(A),1975,50:31–36.
    [92] Wagan M S. Anatomy and histology of the alimentary canal of Chrotogonus. yrachypterus (Blanchard)[J]. Pak. J. Zool.,1986,18(4):411-416.
    [93] Hochuli D F, Roberts B and Sanson G D. Anteriorly directed microspines in the foregut of Locustamigratoria (Orthoptera: Acrididae)[J]. Int. J. Insect Morphol. Embryol.,1992,21:95-97.
    [94] Hochuli D F. Hochuli, Foregut morphology of Locusta migratoria (Orthoptera: Acrididae)[J]. J. Aust.Entomol. Soc.,1994,33:65–69.
    [95] Bentos-Pereira A, Lorier E. Taxonomic value of the cuticular structures of the stomodeum inAcridomorpha (Orthoptera)[J]. J. Orth. Res.,1995,185-195.
    [96] Richard J Elzinga. A comparative study of microspines in the alimentary canal of five families ofOrthoptera [J]. Insect Morphol.&Embryol,1996,25(3):249-260.
    [97] Richard J Elzinga. Microspines in the alimentary canal of Arthropoda [J]. Onychophora, Annelida,1998,27(3):341-349.
    [98] Goudarz M, Angela B Lange. The association of serotonin with the alimentary canal of the Africanmigratory locust, Locusta migratoria: distribution, physiology and pharmacological profile [J]. Journalof Insect Physiology,2003,49:1073-1082.
    [99] Angela B Lange, Kenny Chan. Dopaminergic control of foregut contractions in Locusta migratoria [J].Journal of Insect Physiology,2008,54(1):222-230.
    [100]刘玉素,卢宝廉.亚洲飞蝗消化系统的解剖和组织构造[J].昆虫学报,1955,5(3):245-246.
    [101]荣秀兰,邵明等.棉蝗的形态研究V:消化系统[J].华中农业大学学报,1993,12(6):570-573.
    [102]席碧侠,郑哲民.四种竹蝗前肠形态及其分类学价值的研究(直翅目:网翅蝗科)[J].湖北大学学报(自然科学版),1994,16(4):450-454.
    [103]郑哲民,席碧侠.蝗虫前肠形态及其分类学价值的研究Ⅰ.癞蝗科,瘤锥蝗科,锥头蝗科[J].陕西师范大学学报,1996,24(4):61-67.
    [104]席碧侠,郑哲民.蝗虫前肠形态及其分类学价值的研究Ⅲ.槌角蝗科和剑角蝗科[J].陕西师范大学学报,1998,26(3):82-87.
    [105]席碧侠,郑哲民.蝗虫前肠形态及其分类学上的意义(直翅目:斑腿蝗科)[J].动物分类学报,1998,20(4):238-244.
    [106] Xi B X, Zheng Z M. Foregut armature of grasshoppers and their taxonomic significance (Orthoptera:Arcypteridae)[J]. Acta Zootaxonomica Sinica,1999,24(2):49-54.
    [107]甘雅玲,郭中伟.蝗虫消化系统的超微结构[J].电子显微学报,2002,21(5):582-583.
    [108]张小民,李晓玲,郭亚平等.三种蝗虫消化道贲门瓣形态比较[J].动物分类学报,2005,30(4):692-696.
    [109]张小民,郭亚平,许晶,马恩波.中华稻蝗全消化道内壁显微结构观察[J].昆虫学报,2006,49(2):219-229.
    [110]曾慧花.蝗虫中肠形态结构比较与相关酶活性研究[D]:[硕士学位论文].太原:山西大学,2009.
    [111]白大章,全仁哲.黑腿星翅蝗(Calliptamus barbarus)消化道组织结构观察[J].兵团教育学院学报,2010,20(1):50-52.
    [112]张小民,贾雷坡,崔智芳,等.红腹牧草蝗消化道内壁显微结构观察[J].山西大学学报(自然科学版),2010,33(3):442-452.
    [113]邓就洪,许亚玲,李文楚.越北腹露蝗嗉囊表面结构的电镜观察[J].广东蚕业,2010,44(2):24-27.
    [114]崔智芳,王强,王云丽,申旭燕,张小民.紫胫长夹蝗消化道的形态学观察[J].应用昆虫学报,2011,48(4):877-883.
    [115]李德智.东亚飞蝗消化道形态学观察及三维重建可视化[D]:[硕士学位论文].呼和浩特:内蒙古农业大学,2011.
    [116] Richards O W, Davis R G.伊姆斯普通昆虫学教程.构造、生理和发育(第十版第一卷)[M].北京:高等教育出版社,1987.
    [117]孙虎山.动物学实验教程第二版[M].北京:科学出版社.2010.
    [118]程家安,唐振华.昆虫分子科学[M].北京:科学出版社,2001.
    [119]刘大钧.细胞遗传学[M].北京:中国农业出版社,1998.
    [120] W.比克莫尔,J.克雷格(房德兴译).染色体带:基因组的图形[M].北京:科学出版社,2000.
    [121] Sutton W S. On the morphology of the chromosome group in Braxhystola magna [J]. Biol. Bull,1902,4(1):24-39.
    [122] McClung C E. Cytology and taxonomy [J]. Kansas Univ. Science. Bull.,1908,4(7):199-215.
    [123] McClung C E. The generic conatancy of a particular chromosome in Mecostethus gracilis [M].1928.
    [124] White M J D. A cytological survey of wild populations of Trimerotropos and Circotettix (Orth.Acrididae), The chromosomes of twelve species [J]. Genetics,1948,34:537-563.
    [125] Makino S. An Atlas of the chromosome numbers in Animal Ames [M]. Lowa State College press.1951.
    [126] White M J D. Animal Cytology and Evolution (Third edition)[M]. Cambridge University Press,Camberdge1973.
    [127] Bernard J, Max K. Populaiton Cytogenetics of Atractomorpha similis [J]. Chromosoma (Berl),1983,88:57-68.
    [128] Hewitt G W. Hybrid zones-natural laboretorie for evolutionary studies [J]. Trends in Ecology andEvolution,1988,3(7):158-167.
    [129] Santos J L, Arana P, Giraldez R. Chromosome C-banding patterns in Spanish Acridoidea [J].Genetica,1983,61:65-74.
    [130] Mansueto C, Vitturi R. NORs location and C-banding pattern in spermatogenesis of Pamphagusortolanii (Orthoptera, Acrididae)[J]. Caryologia,1989,42:303-311.
    [131] Mesa A, Fontanetii C S, Costa H. The karyotype of the grasshopper Spathalium helios Rehn1918(Orthoptera, Acridoidea, Ommexechidae)[J]. Revista,1990,13(4):705-710.
    [132] Bugrov A G, Warchalowska-Sliwa E, Maryanska-Nadachowska A. Karyotope evolution andchromosome C-banding patterns in some Podismini grasshoppers (Orthoptera, Acrididae)[J].Caryologia,1994,47:183-191.
    [133] Bugrov A G, Warchalowska-Sliwa E. Chromosome numbers and C-banding patterns in somePamphagidae Grasshoppers (Orthoptera, Acridoidea) from the Causasus, Central Asia, andTransbaikalia [J]. Folia biologica (Krakow),1997,45(3-4):133-138.
    [134] Bugrov A G, Warchalowska-Sliwa E, Vysotslaya L. Karuotypic features of EypropocnemidinaeGrasshoppers from Russia and Central Asia with reference to the B Chromosomes in Eyprepocnemisplorans (Charp.)[J]. Folia biologica (Krakow),1999,47(3-4):97-104.
    [135] Bugrov A G, Warchalowska-Sliwa E, Genlto, et al. C-banded Karyotypes of some PodisminaeGrasshoppers (Orthoptera. Acridoidea) from Japan [J]. Cytologia,2000,65:351-358.
    [136] Bugrov A G, Warchalowska-Sliwa E, Tatsuta H, et al. Chromosome Polymorphism and C-bandingVariation of the Brachypterous Grasshopper Podisma sapporensis Shir.(Orthoptera, Acridoidea) inHokkaido. Northern Japan [J]. Folia bioogica (Krakow),2001,49(3-4):137-152.
    [137] Bugrov A G, Warchalowska-Sliwa E. Chromosome C-banding Patterns in Isolated Population of theGrasshopper Podisma pedestris (L.)(Orthoptera. Acridoidea) from the Altai Mts [J]. Folia biologica(Krakow),2002,50(1-2):101-102.
    [138] Mayya S, Sreepada K S, Hegde M J. Non banded and C-banded karyotypes of ten species of shorthorned grasshoppers (Acrididae) from South India [J]. Cytologia,2004,69(2):167-174.
    [139] Yoshimura A, Obara Y, Andi Y, et al. Comparative karyotype analysis of grasshoppers in the genusOxya (Orthoptera, Catantopidae) by differential staining techniques [J]. Cytologia,2005,70(1):109-117.
    [140] Ferreira A, Mesa A. Cytotaxonomy of the genus dichromatos cigiano2007(Orthoptera, Acridoidea,Melanoplinae)[J]. Journal of Orthoptera Research,2010,19(2):233-237.
    [141] Chadha P, Mehta A. Chromosome complement and C-banding patterns in6species of grasshoppers[J]. International Journal of Genetics and Molecular Biology.2011,3(1):25-30.
    [142]张礼生,张清文,蔡青年.中国昆虫染色体研究现状与展望[J].昆虫学报,2003,46(6):773-782.
    [143]陈世騠.贺兰山疙蝗的染色体研究[J].动物学报,1964,6(1):1-3.
    [144]傅鹏.癞蝗科、锥头蝗科和瘤锥蝗科部分种类染色体C带带型及其在分类学中的应用[D]:[硕士学位论文].西安:陕西师范大学,1987.
    [145]傅鹏,郑哲民.四种蝗虫的染色体C带核型及其所显示的分类学关系[J].陕西师范大学学报,1988,16(增刊):43-48.
    [146]傅鹏,郑哲民.五种短鼻蝗染色体C带带型的比较分析[J].陕西师大学学报,1988,16(增刊):49-55.
    [147]傅鹏,郑哲民.两种华癞蝗染色体C带核型[J].遗传,1989,11(3):26-28.
    [148]欧晓红,郑哲民.中国蝗总科昆虫细胞分类学研究概况[M].昆虫学研究(第一辑),1994.216-227.
    [149]辶帝晓南,刘芳政.新疆蝗虫染色体的研究[J].八一农学院报,1994,17(3):6-13.
    [150]姚世鸿,王佐军.贵州两种黄脊蝗核型和C带的比较研究[J].昆虫学报,1995,38(3):312-316.
    [151]姚世鸿,王景佑,程光中等.棉蝗的染色体组型和C带带型研究[J].遗传,1994,16(5):10-13.
    [152]周江,姚世鸿,王景佑.短角外斑腿蝗核型和C-带的研究[J].贵州师范大学学报(自然科学版),1997,15(2):33-36.
    [153]姚世鸿,王景佑,周江.贵阳地区蝗虫的染色体研究[J].贵州师范大学学报(自然科学学报),1997,15(1):36-38.
    [154]姚世鸿.贵州两种坳蝗核型和C带的比较研究[J].贵州师范大学学报(自然科学版),1996,14(4):1-5.
    [155]傅鹏,石秀,黄建华.两种蹦蝗染色体C-带核型比较[J].湖南教育学院学报,1998,16(5):173-176.
    [156]丹明琳,张贤敏,徐秀霞.青海三种土蝗染色体的核型分析[J].青海草业,1999,8(4):5-9.
    [157]郑哲民,马恩波.胄蝗属一新种及其染色体组型与带型分析(直翅目:蝗总科)[J].昆虫学报,1989,32(3):325-329.
    [158]马恩波,郭亚平,郑哲民.斑腿蝗科10属NOR定位及其细胞分类学意义[J].动物学研究,1993,14(3):271-27
    [159]马恩波,郑哲民.二种黄脊蝗染色体C带核型研究[M].昆虫学研究(第一辑),1994.132-135.
    [160]郑哲民,马恩波.黄条黑纹蝗(直翅目:蝗总科)雄性的发现及染色体C带核型分析[J].陕西师范大学学报(自然科学版),1994,22(1):49-52.
    [161]马恩波.稻蝗属一新种及其染色体C带核型分析[J].动物分类学报,1995,20(2):200-203.
    [162]马恩波,郭亚平.伪稻蝗及其近缘属的细胞学分类[J].昆虫学报,1995,38(1):54-60.
    [163]郑哲民,霍满鹏.四种佛蝗染色体核型与C-带带型研究[J].陕西师范大学学报(自然科学版),1995,23(3):59-64.
    [164]马恩波,姚爱玉.蝗虫染色体分带技术的研究[J].遗传,1999,21(3):28-30.
    [165]龚玉新.中国斑翅蝗科细胞分类学研究[D]:[博士学位论文].西安:陕西师范大学,2004.
    [166]孙继英.蹦蝗属部分种类染色体核型研究[D]:[硕士学位论文].长沙:湖南师范大学,2004.
    [167]冯丽霞.卵翅蝗科部分种类的细胞分类学研究(直翅目:蝗总科)[D]:[硕士学位论文].长沙:湖南师范大学,2005.
    [168]姚世鸿.贵州蝗总科5种蝗虫的核型[J].贵州科学,2004,22(40):56-60.
    [169]姚世鸿,谢爱林,徐萍莉.贵州7种负蝗核型和C带的比较[J].贵州师范大学学报(自然科学版),2004,2(2):17-21.
    [170]姚世鸿.贵州四种稻蝗核型和C带的比较研究[J].贵州科学,2005,23(3):22-27.
    [171]姚世鸿.贵州蝗总科5种蝗虫的核型和C-带[J].贵州师范大学学报(自然科学版),2006,24(2):18-22.
    [172]杨海涛.蝗总科部分种类染色体指标与系统学关系研究[D]:[硕士学位论文].太原:山西大学,2007.
    [173]杨国辉,毛本勇,欧晓红.苍山地区两种短翅型蝗虫染色体研究[J].楚雄师范学院学报,2008,23(9):85-88.
    [174] Ren B Z, Li N, Wei W J, et al. C-banding karyotypes of two species of Primnoa (Orthoptera:Catantopidae) from Northeast China [J]. Zootaxa,2008,1679:63-68.
    [175] Li N, Wei W J, Ren B Z. C-banding karyotypes of two species of Chorthippus (Orthoptera:Arcypteridae) from China [J]. Entomological News,2008,119(1):1-10.
    [176]陶红梅.东亚飞蝗染色体核型、C-带,N-带及G-带的研究[D]:[硕士学位论文].重庆:重庆师范大学,2010.
    [177]吴学芳,何正波,陶红梅,等.东亚飞蝗蝗虫染色体C带和银染带型分析[J].草业科学,2011,28(5):831-835.
    [178]马恩波,欧晓红,乔格侠,等.蝗总科染色体研究及科级综合比较[J].昆虫分类学报,2000,21(1):6-10.
    [179]黄原.分子系统学—原理方法及应用[M].北京:中国农业出版社,1998.
    [180] Berlocher S H. Insect molecular systemactics [J]. Ann. Rev. Entomol,1984,29:403-433.
    [181] Hagedorn H H, Hildebrand J G, Kidwell M G, et al. Molecular Insect Sciences [M]. New York.London: Plenum Press,1990.
    [182] Crampton J M, Eggleston P. Insect Molecular Sciences [M]. London. Acaademic Press,1992.
    [183] Oakeshott J, Whitten M J. Molecular approaches to fundamental and applied entomology [M].Springer-Verlag,1993.
    [184] Hoy M A. Insect Molecular Genetics[M]. Academic Press, INC,1994.
    [185]张青文.昆虫遗传学[M].北京:科学出版社,2000.
    [186] Hillis D M, Moritz C. An overview of application of molecular Systematics [M]. In: Hillis, D. M.,Moritx, C. eds. Molecular Systematics. SinauerAssoc., Sunderland, MA.,1990.502-515.
    [187] Hillis D M, Larson A, Davis S K, et al. Nucleic Acids III: Sequencing [M]. In: Hillis, D. M., Moritx,C. eds. Molecular Systematics. Sinauer Assoc., Sunderland, MA.,1990.318-370.
    [188]吴常信.动物遗传学[M].北京:高等教育出版社,2009.
    [189]彭建新,杨红,洪华珠.昆虫分子遗传学[M].武汉:华中师范大学出版社,2006.
    [190] Sokal R R, Michener C D. A statistical method for evaluating systematic relationship [J]. Sci Bull,1958,38:1409-1438.
    [191] Saitou N, Nei M. The neighbor-joining method: a new method for reconstruction phylogenetic trees[J]. Mol Biol Evol,1987,4:406-425.
    [192] Eck R V, Dayhoff M O. Atlas of protein sequence and structure [J]. National Biomedical ResearchFoundation, Silver Spring, MD,1961,161.
    [193] Fitch W M. Toward defining the course of evolution: minimum change for a specific tree topology[J]. Systematic Zoology,1971,20:406-416.
    [194] Hartigan J A. Minimum evolution fits to a given tree [J]. Biometrics,1973,29:53-65.
    [195] Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis: models and estimation procedures [J].Evolution,1967,21:550-570.
    [196] Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach [J]. Journalof Molecular Evolution,1981,17:368-376.
    [197] Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method ofphylogenetic inference [J]. J. Mol. Evol.,1996,43:304-311.
    [198] Huelsenbeck J P, Bollback J P. Empirical and hierachical Bayesian estimation of ancestral states [J].Syst Biol,2001,50:351-366.
    [199]张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    [200]汪堃仁,薛绍白,柳惠图.细胞生物学[M].北京:北京师范大学出版社,1998.
    [201]翟中和.细胞生物学(第三版)[M].北京:高等教育出版社,1996.
    [202]沈振国,崔德才.细胞生物学[M].北京:中国农业出版社,2003.
    [203] Moritz C, Dowling T E, Brown W M. Evolution of animal mitochondrial DNA: revelance forpopulation biology and systematics [J]. Ann. Rev. Ecol. Syst.,1989,18:269-292
    [204]韩贻仁.分子细胞生物学(第二版)[M].北京:科学出版社,1999.
    [205] Avise J C, Amold J, Ball R M, et al. Intraspecific phylogeography: The mitochondrial DNA bridgebetween population genetics and systematics [J]. Ann. Rev. Ecol. Syst.,1987,18:489-522.
    [206] Chapco W, Ashton N W, Martel R K, et al. A feasibility study of the use of random amplifiedploymorphic DNA in the population genetics and systematics of grasshoppers [J]. Genome,1992,35(4):569-574.
    [207] Chapco W, Martel R K B, Kuperus W R. Molecular Phylogeny of North American band-wingedgrasshoppers (Orthoptera: Acrididae)[J]. Annals of the Entomological Society of American,1997,90(5):555-562.
    [208] Chapco W, Kuperus W R, Litzenberger G. Molecular Phylogeny of Melanopline Grasshoppers(Orthoptera: Acrididae): The Genus Melanoplus [J]. Annals of the Entomological Society ofAmerican,1999,92(4):617-623.
    [209] Flook P K, Klee S, Rowell C H F. Molecular phylogenetic analysis of the Pneumoroidea (Orthoptera,Caelifera): molecular data resolve morphological character conflicts in the basal acridomorpha [J].Mol Phylogenet Evol,2000,15(3):345-354.
    [210] Fries M, Chapco W, Contreras D. A molecular phylogenetic analysis of the Oedipodinae and theirintercontinental relationships [J]. Journal of Orthoptera Research,2007,16(2):115-125.
    [211]任竹梅,马恩波,郭亚平.蝗总科部分种类Cytb基因序列及系统进化研究[J].遗传学报,2002,29(4):314-321.
    [212]任竹梅,马恩波,郭亚平.山稻蝗及相关物种Cytb基因序列及其遗传关系[J].遗传学报,2002,29(6):507-513.
    [213]叶海燕.中国科部分种类线粒体Cytb基因的分子进化与系统学研究[D]:[硕士学位论文].西安:陕西师范大学,2003.
    [214]芦荣胜.中国斑腿蝗科部分种类分子系统学研究[D]:[硕士学位论文].西安:陕西师范大学,2005.
    [215]张宏杰.蝗虫Cytb基因部分序列的多样性和分子系统学研究[J].陕西师范大学(自然科学版),2006,34(Sup):30-36.
    [216]王延峰.网翅蝗科(直翅目:蝗总科)部分种类的分子系统学研究[D]:[博士学位论文].西安:陕西师范大学,2006.
    [217]孙正莉.基于线粒体DNA序列的蝗总科及剑角蝗科的分子系统学研究[D]:[硕士学位论文].南京:南京师范大学,2006.
    [218]霍光明.应用COI和Cytb基因序列研究蝗总科昆虫的系统进化[D]:[硕士学位论文].南京:南京师范大学,2006.
    [219] Wang N X, Feng X, Jiang G F, et al. Molecular phylogenetic analysis of five subfamilies of theAcrididae (Orthoptera: Acridoidea) based on the mitochondrial cytochrome b and cytochrome coxidase subunit I gene sequences [J]. Acta Entomologica Sinica,2008,51(11):1187-1195.
    [220]芦荣胜,黄原,周志军.基于线粒体Cytb,16SrDNA和核28SrDNA的中国斑腿蝗科(直翅目,蝗总科)九亚科间的系统发育关系研究[J].昆虫学报,2010,35(4):782-789.
    [221]叶海燕,黄原.基于线粒体Cytb基因序列探讨中国斑翅蝗科部分种类的系统发育关系[J].生命科学研究,2011,15(3):229-235.
    [222] Flook P K, Rowell C H F. The Phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences [J]. Mol. Phyl. Evol.,1997,8:89-103.
    [223] Flook P K, Klee S, Rowell C H F. Combined molecular analysis of the Orthoptera and implicationsfor their higher systematics [J]. Syst Bio,1999,48(2):233-253.
    [224] Allegrucci G, Todisco V, Sbordoni V. Molecular phylogeography of Dolichopoda cave crickets(Orthoptera, Rhaphidophoridae): A scenario suggested by mitochondrial DNA [J]. MolecularPhylogenetics and Evolution,2005,37:153-164.
    [225] Jost M C, Shaw K L. Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomalloci, withimplications for the evolution of acoustic communication [J]. Molecular Phylogenetics andEvolution,2006,38:510-530.
    [226]印红,张道川,拂智丽等.蝗总科部分种类16SrDNA的分子系统发育关系[J].遗传学报,2003,30(8):766-772.
    [227]李新江.中国癞蝗科Pamphagidae系统学研究(直翅目:蝗总科)[D]:[硕士学位论文].保定:河北大学,2004.
    [228]胡婧,刘艳,黄原.网翅蝗科(Arcypteridae)部分种类全基因组提取及16SrDNA基因和COI基因序列[J].陕西师范大学学报(自然科学版),2004,32(Sup.):30-34.
    [229]刘殿锋.应用18SrDNA和16SrDNA序列研究蝗总科昆虫的系统进化[D]:[硕士学位论文].南京:南京师范大学,2005.
    [230]刘殿锋,蒋国芳,时号,等.应用16SrDNA序列探讨斑腿蝗科的单系性及其亚科的分类地位[J].昆虫学报.2005,48(5):759-769.
    [231]李新江,张道川,王文强,等.基于16S rDNA部分序列的6种短鼻蝗的分子系统学(直翅目:蝗总科)[J].动物学报,2005,51(增刊):138-142.
    [232] Sun Z L, Jiang G F, Huo G M, Liu D F. A phylogenetic analysis of six genera of Acrididae andmonophyly of Acrididae in China using16S rDNA sequences (Orthoptera, Acridoidea)[J]. ActaZoologica Sinica,2006,52(2):302-308.
    [233]郑金玉.中国癞蝗科Pamphagidae部分种类分子系统学研究(直翅目:蝗总科)[D]:[硕士学位论文].保定:河北大学,2007.
    [234]曹成全.中国癞蝗亚科的分类研究(昆虫纲:直翅目:蝗总科:癞蝗科)[D]:[博士学位论文].泰安:山东农业大学,2008.
    [235] Liu D F, Dong Z M, Zhang D Y, et al. Molecular Phylogeny of the Higher Category of Acrididae(Orthoptera: Acridoidea)[J]. Zoological Research,2008,29(6):585-591.
    [236] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual [M]. ColdspringHarbor Laboratory Press, Cold Spring Harbor, NY,1989.
    [237]戴维斯L G,狄伯纳M D,巴蒂J F(张钰等译).分子生物学基本实验方法[M].上海:复旦大学出版社,1989.
    [238] Simmons R B, Weller S J. Utility and evolution of Cytochrome b in insects [J]. MolecularPhylogenetics Evolution.,2001,20(2):196-210.
    [239] Simon C, Frati F, Beckenbach A, et al. Evolution, weightion, and phylogenetics utility ofmitochondrial gene sequences and compilation of conserved polymerase chain reaction primers [J].Ann. Entomol. Soc. Am.,1994,87(6):651-701.
    [240] Kimura M. A simple method for estimating evolutionary rate of base substitutions throughcomparative studies of nucleotide sequences [J]. Journal of Molecular Evolution,1980,16:111-120.
    [241] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis usingMaximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods [J]. MolecularBiology and Evolution,2011.(In Press).
    [242] Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution [J]. Bioinformatics,1998,14:817-818.
    [243] Yang Z, Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov chain MonteCarlo method [J]. J. Mol. Evol.,1997,14:717-724
    [244] Huelsenbeck, J P, Ronquist F, Nielsen R, et al. Bayesian inference of phylogeny and its impact onevolutionary biology [J]. Science,2001,294:2310-2214.
    [245] Swofford D L. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version4[M]. Massachusetts: Sinauer Associates, Sunderland,2002.
    [246] Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequencedata [J]. Mol. Phylog. Evol.1997,14:685-695.
    [247] Huelsenbeck J P, Ronquist F. MRBAYES, Bayesian inference of phylogenetic trees [J]. Bioinformat-ics,2001,17:754-755.
    [248] Desalle R, Freedman T, Prager E M. Tempo and mode of sequence evolution in mitochondrial DNAof Hawaiian Drosophila [J]. J. Mol. Evol.,1997,26:157-164
    [249]寇静.网翅蝗科部分种类线粒体16SrDNA基因的分子进化与系统学研究[D]:[硕士学位论文].西安:陕西师范大学,2006.
    [250] Varga J, Rigo’ K, Te’ren J, et al. Recent advances in ochratoxin research II. Biosynthesis, mode ofaction and control of ochratoxins [J]. Cereal ResearchCommunications.2001,29:93-100.
    [251] Mani M S. Ecology and Biogeography of High Altitude Insects [M]. The Hague: W. Junk.1968,
    [252] Roff D. A The evolution of flightlessness in insects [J]. Ecological Monographs.1990,60(4):389-421.