NOV基因在少突胶质细胞前体细胞发育分化及缺血缺氧性白质损伤中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少突胶质细胞前体细胞(oligodendrocyte precursor cells,OPCs)是成年中枢神经系统中广泛分布的干细胞或干细胞样细胞,体外培养成年OPCs具有自我更新增殖和不对称分化能力,其标记物有NG2、血小板衍化生长因子α受体(platelet derived growth factors receptorα, PDGFR-α)和O4。OPCs与病毒感染、免疫反应、神经退行性疾病、CO等毒性物质作用及营养代谢障碍和缺血缺氧所致的白质损害密切相关。但对OPCs在中枢神经系统发育分化及再生中的作用,尚存在众多有待解决的问题。OPCs是少突胶质细胞的细胞系,但是否仅是少突胶质细胞的后备储存池尚存在众多的质疑。NG2+细胞的分布,在灰质多于髓鞘生成区-白质,在缺氧、缺血、外伤、炎症及毒性物质作用下产生明显的反应性增殖,它区别于星形胶质细胞和小胶质细胞在于其反应为一过性的、而且局限于伤灶周围。在神经退行性疾病如侧束硬化症时NG2+细胞数量增多而且免疫反应显著加强。但至今为止,在整体实验中,OPCs移植有报告能改善髓鞘生成,但未能提供OPC参加损伤修复、增强髓鞘生成的直接实验依据。有关OPCs的细胞生物学及电生理特性特别是发育分化方面的研究,国内少有报告。
     脑缺血缺氧损伤已成为新生儿脑损伤的重要形式,婴幼儿发育中脑对缺血缺氧的易感性,常导致脑室周围白质软化(periventricular leukomalacia, PVL),临床称为小儿脑瘫。尽管当今围产期监测、孕期和新生儿监护等方面的医疗技术取得了长足的发展,但是新生儿缺血缺氧性脑病(hypoxic-ischemic encephalopathy, HIE)的发生率却无明显降低,平均每1000和活产足月儿中,就有3-4个婴儿发病,早产儿的发病率更高,其中10%-60%在新生儿期失望,25%以上的患儿遗留永久的神经心理缺陷,如脑瘫、精神发育迟滞、学习困难和癫痫。少突胶质前体细胞损伤是PWMI形成的主要原因和中心环节。未成熟脑白质中对缺氧缺血高度敏感的OPCs的大量死亡以及分化发育障碍是PWMI形成的关键。因此,深入研究OPCs缺氧缺血性损伤机制,是阐明早产儿脑白质损伤机理,寻找预防和治疗药物,降低早产儿死亡率和致残率的重要途径。迄今为止,对OPCs缺氧缺血损伤机制所知有限,可能与谷氨酸兴奋毒性、炎症介质、氧化应激、细胞内Ca2+超载等多种因素有关。然而针对这些机制的干预措施并未转化为临床治疗成果。
     肾母细胞瘤过度表达基因(Nephroblastoma Overexpression gene, NOV)是一种原癌基因。其所编码产物(NOV蛋白)是一种胰岛素样生长因子(Insulin-like Growth Factor,IGF)结合蛋白(IGF-binding proteins, IGFBPs),属于IGF家族的成员,它通过调节IGF与IGF受体的结合状态而对IGF功能的发挥调控作用,具有影响神经干细胞增殖、分化和存活的功能。IGF-I是属于胰岛素家族成员,是一类多功能多效应的细胞增殖调控因子。目前研究认为IGF-I是神经干细胞增殖所必需,IGF-1可依循受体酪氨酸蛋白激酶途径作用与神经干细胞。缺乏IGF-I的作用,bFGF和EGF都不能有效刺激体外神经干细胞的增殖,同时IGF-I可以促进神经干细胞分化成少突胶质细胞。OPCs属于具干细胞性质的前体细胞,NOV基因对其发育分化的作用如何,尚未见有文献报道,是一个值得探讨的向题。Marian Zaka(2005)及Shuying Lin(2005)先后报告IGF-1具有促OPCs增殖和减少其毒性物质诱发OPCs的凋亡,从而改善缺血缺氧所致的脑白质损伤。既然NOV基因是动物神经系统发育、再生的重要调控因子,IGF系其编码结合蛋白,将其应用于OPCs的研究,可以观察其对OPCs发育分化及缺血、缺氧性白质损伤的作用。
     本实验分为三个部分:
     第一部分:
     运用PDGFaR抗体来分析生后大鼠脑中OPCs的形态、分布和密度等发育规律,同时观察其电生理特征。结合以前的研究报道与NG2+细胞进行比较,同时,对不同发育时期的不同脑区应用相邻切片进行PDGFaR和NG2的免疫荧光染色,比较PDGFaR+和NG2+的细胞密度的变化与脑发育的相关性。期望这些数据能够帮助我们对中枢神经系统中OPCs的生物学特性有进一步的了解。
     主要结果如下:
     1、大鼠中枢神经系统PDGFaR+OPCs在形态、分布、密度的发育规律及电生理学特性等方面与NG2+OPCs高度相似。
     2、老年大鼠脑中有约25%的NG2+OPCs表达PDGFaR阴性,但是在形态上与NG2+/PDGFaR+OPCs相似。
     3、老化对OPCs的形态、数量和发育调控有影响。
     上述结果表明PDGFaR和NG2都是OPCs的标记物。PDGFaR主要在发育的未成熟前体细胞上表达。而在少突胶质细胞成熟前期,PDGFaR的表达已经消失,而NG2还在持续表达。NG2免疫阳性细胞可能不同于传统意义上的少突胶质前体细胞,而是一种成熟的胶质细胞。
     第二部分:
     联合应用耗氧剂和无糖培养基在常氧培养条件下建立新生未成熟大鼠少突胶质前体细胞缺氧缺糖模型,并观察缺氧缺糖对细胞形态和存活率的影响。同时,利用P4大鼠左侧颈总动脉结扎后吸入8%氧气2小时建立新生大鼠脑缺血缺氧模型,观察脑组织病理学改变、MBP和PDGFaR的表达情况。评估离体与在体少突胶质前体细胞缺血缺氧模型是否有效。
     主要结果如下:
     1、联合应用无糖DMEM培养基和连二亚硫酸钠后,培养OPCs出现明显的形态学改变,细胞突起肿胀、变形、断裂,细胞水肿,并随时间延长而加剧。少突胶质前体细胞存活率随缺氧缺糖时间的延长而逐渐下降,30min、60min和90min细胞存活率均明显低于正常对照组,差异有统计学意义(P均<0.05)。
     2、P4大鼠左侧颈总动脉结扎后吸入8%氧2小时,脑组织发生病理学改变;神经细胞凋亡数量增加;MBP、NF200和PDGFaR的表达均下降。
     上述结果表明利用无糖培养基和连二亚硫酸钠可以在常氧培养条件下建立体外培养的少突胶质前体细胞缺氧缺糖模型。利用P4大鼠左侧颈总动脉结扎后吸入8%氧气2小时可建立新生大鼠脑缺血缺氧模型。应用这两种在体与离体模型,可模拟缺氧缺血对新生儿大脑造成的损伤。
     第三部分:
     将NOV cDNA全长序列克隆到pEGFP-N1真核表达质粒上,再将重组质粒转染到COS-7细胞中,用免疫细胞化学技术和Western Blot方法检测NOV的表达。收集培养NOV/COS-7细胞的条件培养液(NOV-CM),观察NOV基因对缺血缺氧脑损伤模型中OPCs增殖和分化的影响以及能否促进神经损伤的修复。
     主要结果如下:
     1、利用RT-PCR的产物,采用定向克隆的方法,成功地将NOV cDNA全长序列克隆到pEGFP-N1真核表达质粒上,对克隆的cDNA片段进行核酸测序,证明获得的重组子完全符合设计要求。在此基础上,将重组质粒转染到COS-7细胞中,用免疫细胞化学技术和Western Blot方法检测到COS-7细胞与COS-7细胞的培养上清液中均有NOV的表达。
     2、在构建了NOV基因真核表达载体的基础上,将载体转染到COS-7细胞中,收集NOV/COS-7细胞上清液(NOV-CM),对少突胶质前体细胞缺血缺氧离体与在体模型进行治疗。结果发现其NOV-CM不仅对OPCs缺血缺氧损伤具有一定的保护作用,并对神经元和髓鞘的损伤修复有促进。结果提示NOV基因有可能具有保护神经损伤后再生和功能重建的作用,为临床治疗缺氧缺血脑损伤提供了线索。
Oligodendrocyte progenitor cells (OPCs) have the capability of self-renewal and unsymmetrical differentiation in vitro, which are identified as multi-potent progenitor cells or intrinsic CNS adult stem cells. OPCs express several markers, such as NG2, the platelet-derived growth factor-a receptor (PDGFaR) and 04. Thus far, studies have provided abundant evidence that OPCs are highly reactive cells that respond to several types of nerve injuries, such as viral infection, immune reaction, nerve degenerative disease, CO-induced demyelination, dysbolism and Hypoxic-ischemic encephalopathy. OPCs belonged to oligodendrocyte lineage. But if the only function of OPCs was differentiated into oligodendrocyte? OPCs was upregulated as a result of physical, viral, excitotoxic and inflammatory insults to the CNS. Following demyelination OPCs number increaseed in the immediate vicinity of the lesion and rapid remyelination ensues, which was different from astrocyte and microglia. The number and immune reaction of OPCs increased after nerve degenerative disease. The direct evidence that OPCs can repair the damage and promote myelogeny was poor. The study of cytobiology and electrophysiological characteristics of OPCs were deficiency too. But the effects of OPCs on the development, differentiation and regenerationon in central nervous system was not clear.
     Perinatal hypoxia-ischemia (HI) is a significant primary cause of brain damage of neonates. Periventricular white matter injury (PWMI) is the predominant form of brain injury underlying this neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and focal, multifocal, or diffuses myelination disturbances. Despite major advances in obstetric and perinatal medicine, there has been little chang in the incidence of hypoxic-ischemic encephalopathy, which has been estimated to occur in approximately 3-4 neonates per 1000 live-born at term, the incidence is higher in small preterm neonates. Depending on the gestational age and the severity of the insult, between 10% and 60% of asphyxiated neonates who have hypoxic-ischemic encephalopathy expire during the neonatal period and 25% or more of the survivors develop permanent neuropsychological deficits such as cerebral palsy, mental retardation and epilepsy. OPCs have been demonstrated to be intrinsically more vulnerable to injury than mature oligodendrocytes under conditions of oxidative stress, oxygen glucose deprivation (OGD) in vitro, hypoxia-ischemia in vivo (Back et al.,2002), and glutamate receptor-mediated excitotoxicity. Perinatal hypoxia-ischemia (HI) is a significant primary cause of PWMI. The fact that OPCs appear coinciding with the high-risk period for PWMI and is selectively targeted by HI suggests that OPCs are the major target cell of injury in PWMI. However, Our understanding of the fundamental mechanisms involved in selective injury of OPCs to HI in the developing brain is still limited.
     Nephroblastoma Overexpression gene, abbreviated as NOV, is a proto-oncogene, which was discovered in 1991. NOV protein, which is encoded by NOV gene, is a kind of insulin-like growth factor (IGF) binding protein (IGFBP), and one of the families of IGF. NOV gene is a multipurpose factor that regulates cell proliferation. IGF-I was necessary for the proliferation of the nerve stem cells, which could affect the nerve stem cells through tyrosine protein kinase pathway. bFGF and EGF couldn't stimulate the proliferation of the nerve stem cells. The effect of NOV on the development and differentiation of OPCs is unknow. Marian Zaka and Shuying Lin found that IGF-1 could promote the proliferation of OPCs and decrease the apoptosis of OPCs induced by Toxic substance. Since NOV was the important regulating factor of nerve system development and regeneration, and IGF was the encode binding protein, we want to see if the NOV have the effects on promoting the regeneration and function recovery of OPCs after OGD. Therefore, this investigate is divided into three part:
     Part 1:
     We use PDGFaR antibody to analyze the developmental regulation of PDGFaR+ cells in the normal postnatal rats CNS from birth to old age, including the morphology, distribution, growth characteristics and the quantity of PDGFaR+ cells population. Meantime, double labelling with antibodies against PDGFaR and NG2 is applied and the results compare to the different developmental stage. It is expected these data will help us to find out the developmental regulation of the PDGFaR+ OPCs and compare to the NG2+ OPCs in the CNS as well as the primary significance of co-localization to the OPCs developmental lineage.
     The main results are as following:
     1. The morphology, distribution, electrophysiological characteristics and developmental regulation of PDGFaR+ cells in rat CNS are similar to that of NG2+ cells.
     2. The number of PDGFαR+ cells at early developmental stages is much more than that at later stages. Specifically at the later postnatal stages,25% of the NG2+ cells do not express PDGFαR and the morphology of PDGFαR-/NG2+ cells is similar to that of NG2+ cells.
     3. Aging has an effect on the morphological feature, number and developmental regulation of OPCs in rat CNS.
     In conclusion, both PDGFαR and NG2 are markers of developing OPCs. PDGFαR expression is seen on the most developing and immature precursors, then the cells acquiring NG2 expression as they mature. At the preoligodendrocyte stage, PDGFαR expression has ceased, whereas NG2 expression persists, at least at the beginning of this stage. NG2+ cells may be a mature glial cell type distinct from conventional OPCs.
     Part 2:
     To establish an oxygen/glucose derived(OGD) model of SD rat's oligodendrocyte precursor cells in a nomaxic environment in vitro with dithionite sodium and DMEM without glucose, and evaluate the model by investigating to the changes of cellular shapes and survival caused by OGD. And 4-day-old SD rats were anesthetized and subjected to a hypoxic/ischemic injury obtained by combination of monolateral carotid ligation and exposure to 8% oxygen for 2h. Histopathologic changes and the express of MBP and PDGFαR were observed to evaluate the model.
     The main results are as following:
     1. When the PDGFaR positive OPCs were cultured with sodium dithonite and DMEM without glucose, the morphologic changes were obvious:cell body swelling and the processes swelling, deformed and collapsed gradually. The survival rate decreases gradually with the time and the rate was about 50% at 60 min while it decreased to a level lower than 50% at 90min.
     2. After a hypoxic/ischemic injury obtained by combination of monolateral carotid ligation and exposure to 8% oxygen for 2h, the histological damage was observed and the numbers of the apoptotic nerve cells increased. The express of MBP、NF200 and PDGFαR decreased.
     The second part revealed that DMEM without glucose and sodium dithionite can be applied to the construction of GOD model in PDGFaR positive oligodendrocytes in a normoxic incubator in vitro. The damages of oligodendrocyte precursor cells caused by hypoxia-ischemia in vitro can be analogized with this model, and similar damages occur in the oligodendrocyte precursor cell in vitro.
     Part 3:
     We built pEGFP-N 1 vector containing NOV gene complete sequence to transfer, and examined its expression by immunohistochemisty and conditioned medium (CM) from cultured NOV/COS-7 cells (NOV-CM) was collected. The effects of NOV on the proliferation and differentiation of OPCs were studied and see if the COS7s engineered by NOV gene have the effects of promoting the regeneration and function recovery of nerve injury.
     The main results are as following:
     1. The NOV gene complete sequence were synthesized by RT-PCR, and ligated into EcoR I and Hind III sites of pEGFP-Nl vector. The nucleotide sequences of the cDNA were determined. The vector was led into cultured COS-7 cells using DOTAP liposomal transfection reagent. The expression of NOV protein was detected by Western blot and immunocytochemistry.
     2. We built pEGFP-N1 vector containing NOV gene complete sequence and conditioned medium (CM) from cultured NOV/COS-7 cells (NOV-CM) was collected. NOV-CM was treated to the OPCs of OGD. Results showed NOV gene promoted the survival of OPCs and the recovery of structure and function of neuron and myelin after injury. Our results indicated that NOV gene probably involved in the processs of repair of nerve injury and rebuilding of function. The results of this study provide some fundmental information for the clinical application of OGD.
引文
1. Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) Synantocytes:the fifth element. J. Anat.207,695-706.418
    2. Nishiyama A (2007) Polydendrocytes:NG2cells with many roles in development and repair of the CNS, Neuroscientist.13,62-75.
    3. Levine JM, Stincone F, Lee YS, (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia.7,307-321.
    4. Shi J, Marinovich A, Barres BA (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci.18,4627-4636.
    5. Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine JM, Trotter J (2001) AN2/NG2 protein-expressing glial progenitor cells in the murine CNS:isolation, differentiation, and association with radial glia. Glia.34(3):213-28.
    6. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences.24,39-47.
    7. Levine JM (1994) Increased expression of the NG2 chondroitin-sulphate proteoglycan after brain injury. J. Neurosci.14,4716-4730.
    8. Keirstead HS, Levine JM, Blakemore WF (1998) Response of oligodendrocyte progenitor cell population (defined by NG2 labeling) to demyelination of the adult spinal cord. Glia.22,161-170.
    9. Nishiyama A, Yu M, Drazba JA, Tuohy VK (1997) Normal and reactive NG2+glial cells are distinct from resting and activated microglia. J. Neurosci. Res.48,299-312.
    10. Di Bello IC, Dawson MRL., Levine JM, Reynolds R (1999) Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is stimulated by demyelination rather than inflammation. J. Neurocytol.28, 366-381.
    11. Levine JM, Enquist LW, Card JP (1998) Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia 23:316-328.
    12. Ong WY, Levine JM (1999) A light and electronmicroscope study of NG2 chondroitin sulphate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate lesioned rat hippocampus. Neuroscience.92,83-95.
    13. Levine JM, Reynolds R (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol.160,333-347.
    14. Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia.54,666-675.
    15. Wigley R, Hamilton N, Nishiyama A, Kirchhoff F, Butt AM (2007) Morphological and physiological interactions of NG2-glia with astrocytes and neurons. J. Anat.6, 661-670.
    16. Pringle NP, Mudhar HS, Collarini EJ, and Richardson WD (1992) PDGF receptors in the rat CNS:During late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development.115:535-551.
    17. Dawson MR, Levine JM, Reynolds R (2000) NG2-expressing Cells in the Central Nervous System:Are They Oligodendroglial Progenitors. J Neurosci Res (S0360-4012),61 (5):471-479.
    18. Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron.44(6):961-75.
    19. Ughrin YM, Chen ZJ, Levine JM (2003) Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J-Neurosci.23(1):175-86.
    20. Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J-Neurosci.22(7):2792-803.
    21. Berry M, Hubbard P, Butt AM (2002) Cytology and lineage of NG2-positive glia. J. Neurocytol.31,457-467.
    22. Butt AM, Kiff J, Hubbard P, Berry M (2002) Synantocytes:new functions for novel NG2 expressing glia. J. Neurocytol.31,551-565.
    23. Greenwood K, Butt AM (2003) Evidence that perinatal and adult NG2-glia are not conventional oligodendrocyte progenitors and do not depend on axons for their survival. Mol. Cell. Neurosci.23,544-558.
    24. Ataliotis P, Mercola M (1997) Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. Int. Rev. Cytol.172:95-127.
    25. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev.79:1283-1316.
    26. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Backstrom G, Hellstrom M, Bostrom H, Li H, Soriano P, Betsholtz C, Heldin CH, Alitalo K, Ostman A, and Eriksson U (2000) PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat. Cell Biol.2:302-309.
    27. Yeh HJ, Silos-Santiago I, Wang YX, George RJ, Snider WD, and Deuel TF (1993) Developmental expression of the platelet derived growth factor alpha-receptor gene in mammalian central nervous system. Proc. Natl. Acad. Sci. USA 90:1952-1956.
    28. Heather CW, Neil JS, Cedric SR (2006) Co-expression of PDGF a receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunology.176:162-173.
    29. Gundersen HJG, Bendtsen TF, Korbo L, et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis, APMIS,96: 379-394.
    30. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2007) Neocortical glial cell numbers in human brains.Neurobiol Aging.
    31. Chen PH, Cai WQ, Wang LY, Wu XG (2008) Morphological localization of NG2 positive cells in the brain of the brain of adult rats. ACTA ACADEMIA EMEDICINAE MILITARIS TERTIAE.30,1,31-34
    32. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells:an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci.,24(2):476-88.
    33. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain.J Neurosci Res.43(3):299-314.
    34. Yasuhisa T, Yilong G, Yasuyoshi, W, Yasky, Kataoka (2007) Region-specifc degeneration of NG2+cells in the cerebral cortex of aged rats. Neuroscience Res,588, S1-S244
    35. Pouly S, Becher B, Blain M, Antel JP (1999) Expression of a homologue of rat NG2 on human microglia. Glia.27,259-268.
    36. Peters A (2004) A fourth type of neuroglial cell in the adult central nervous system. J. .Neurocytol.33,345-357.
    1. Inage YW, Toh M, Takashima S. Correlation between cerebrovaseular maturity and Periveniricular leukomalaeia. Pediatr Neurol,2000,22(3):204-208
    2. Miehael OT, Dammann O. Antecedents of cerebral Palsy in very low-birth Weight infants. ClinPerinatol,2000,27(2):285-301
    3. Cai ZW, Pang Y, Xiao F, et al. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain Res,2001,898:126-135
    4. Michael V, Johnston, William H, et al. Neurobiology of Hypoxic-Ischemic Injury in the Developing Brain. Pediatric Research,2001,49(6):735-741
    5. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature Infant. Pedi Res,2001,5(50):553-562
    6. Volpe JJ. Hypoxic-ischemic encephalopathy. Neurology of the Newborn,4th edi. Philadelphia:W.B. Saunders company,2001,217
    7. Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain.Pediatri Res,49(6):2001,735-741
    8.赵时敏.新生儿缺氧缺血性脑病的防治及研究方向.中华儿科杂志.1997,35(2): 59-60
    9.邵肖梅.新生儿缺氧缺血性脑病的发病机理及治疗评价.中华儿科杂志.1997,35(7):389-391
    10. Nakajima W, Ishida A, Lange MS, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neuros,2000,20(21): 7994
    11. Snyder EY, Wolfe JH. Central nervouse system cell tansplantation:a novel therapy for storage diseases? Curr Opin Neurol,1996,9(2):126-136
    12. Macdonald HM, Mulligan JC, Allen AC, et al. Neonatal asphyxia I:relationship of obstetric and neonatal complications to neonatal mortality in 34,405 consecutive deliveries. J. Pediatr,1980,96(5):898-902
    13. Luo ZC, Karlberg J. Timing of birth and early neonatal mortality in Sweden 1973-95: longitudinal birth register study. BMJ,2001,323(7325):1327-1330
    14. Koenigsberger MR. Advances in neonatal neurology:1950-2000. Rev Neurol,2000, 31(3):202-211
    15. Volpe JJ. Neurology of the Newborn,3rd ed. Philadelphia(PA):WB Saunders Company, 2001,217-396
    16. Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics,1997,100(6):1004-1014
    17. Vannucci RC, Current and potentially new management strategies for perinatal hypoxic-ischemic encephalopathy. Pediatrics,1990,85(6):961-968
    18.殷红兵,丁爱石,吴卫平,等.新生大鼠高纯度少突胶质前体细胞系细胞的培养与鉴定:改良振荡分离纯化法的特点.中国临床康复,2005,9(17):36-37
    19.孙燕,夏春林,孙茂民,等.体外培养获取高纯度O-2A祖细胞.解剖学研究,2002,24(4):258-259
    20.伍亚民,马海涵,廖维宏.大鼠星形胶质细胞和少突胶质细胞的纯化培养与鉴定.创伤外科杂志,2000,2(4):207-209
    21.何平,沈馨亚.少突胶质细胞增殖和分化的研究进展.中国解剖学杂志,2000,16(2):153-188
    22. MeCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J CellBiol,1980,85(3):890-902
    23. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature,1983, 303(5916):390-396
    24. Matthieu JM, Honegger P, TraPP BD, et al. Myelination in rat brain aggregating cell cultures. Neuxoscience,1978,3(6):565-572
    25. Armstrong RC, Kim JG, Hudson LD. ExPression of myelin transeription factor 1 (MyTI), a "zine-finger",DNA-binding protein, in developing oligodendroeytes. Glia, 1995,14(4):303-321
    26. Bogler O, Wren D, Barnett SC, et al. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA.1990; 87(16):6368-72
    27. McKinnon RD, Matsui T, Dubois-Dalcq M, et al. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron.1990; 5(5):603-14
    28. Barres BA, Raff MC, Gaese F,et al. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature.1994; 367(6461):371-5
    29. McMorris FA, Dubois-Dalcq M. Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J NeurosciRes.1988; 21(2-4):199-209
    30. Canoll PD, Musacchio JM, Hardy R, et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron.1996; 17(2):229-43
    31. McKinnon RD, Smith C, Behar T, et al. Distinct effeets of bFGF and PDGF on oligodendroeyte progenitor cells. Glia,1993,7(3):245-254
    32. Ibarrola N, Mayer-Proschel M, Rodriguez-Pena A,Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev Biol. 1996; 180(1):1-21
    33. Fruttiger M, Karlsson L, Hall AC, et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development.1999; 126(3): 457-67
    34. MeKinnon RD, Matsui T, Dubois-Daleq M, et al. FGF modulates the PDGF-driven pathway of oligodendroeyte development. Neuron,1990,5(5):603-614
    35. Bogler O, Wren D, Barnett SC, et al. Cooperation between two growth factors promotes extended self-renewal and inhibits differeniiation of oligodendrocyte-type-2 astroeyte(O-2A) Progenitor cells. Proc Natl Acad Sci USA,1990,87(16):6368-6372
    36.张壮,闰彦芳,韦颖,等.参麦注射液及人参皂普Rb1、 Rgl抗神经、血管内皮、星形胶质细胞缺氧/缺糖损伤的研究.北京中医药大学学报,2005,28(3):27-30
    37.张壮,闰彦芳,韦颖,等.党参皂昔L1抗缺氧缺糖再给氧诱导大鼠皮质神经细胞凋亡的作用.中国中医基础医学杂志,2005,11(5):341-344
    38.张壮,闰彦芳,孙塑伦,等.比较猪去氧胆酸与牛黄熊去氧胆抗神经细胞缺氧缺糖再给氧损伤的作用.中国临床康复,2005,9(17):134-136
    39.刘娜,左萍萍,周帆,等.连二亚硫酸钠致PC12和NG108一巧细胞拟缺血损伤研究.中国药理学通报,1995,14(6):525-529
    40. Otter D, Austin C. HyPoxia,metabolic inhibition,and isolated rat mesenteric tone: influence of arterial diameter. Mierovascular Res,2000,59:107-114
    41.许蜀闽,王培勇,马红英.连二亚硫酸钠在建立培养细胞的无氧环境中的应用.第三军医大学学报,2005,27(4):359-360
    42.刘键,何作云,王培勇.新生大鼠心肌细胞内CaZ十的空间分布及调控的离体研究.第三军医大学学报,2001,23(7):506
    43. Holtaman DM, Sheldon RA, Jaffe W, et al. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury, Ann. Neurol,1996,39(1):114-122
    44. Brucklacher RM, Vannucci RC, Vannucci SJ. Hypoxic preconditioning increases brain glycogen and delays energy depletion from hypoxia-ischemia in the immature rat. Dev Neurosci.2002; 24:411-417
    45. Dienel GA, Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia.2005; 50:362-388
    46. Kimelberg HK. Astrocytic swelling in cerebral ischemia as a cause of injury and a target for therapy. Glia.2005; 50:389-397
    47. Kis B, Abraham CS, Deli MA, et al. Adrenomedullin, an autocrine mediator of blood-brain barrier function. Hypertens Res.2003; 26(suppl):S61-70
    48. Seri B, Garcia-Verdugo JM, McEwen BS, et al. Astrocyte give rise to new neurons in the adult mammalian hippocampus. J Neuro Sci.2001; 21:7153-7160
    49. Wei G, Cao X. Dynamic expression of glial cell line-derived neurotrophic factor after cerebral ischemia. Neuroreport.2000; 11(6):1177-1183
    1. Joliot V, Martinerie C, Dambrine G, et al. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol,1992; 12(1):10
    2. Perbal B. Contribution of MAV-1-induced nephroblastoma to the study of genes involved in human Wilm's tumor development. Crit Rev Oncog,1994; 5(6):589
    3. Perbal B, Brigstock DR, Lau LF. Report on the second international workshop on the CCN family of genes. Mol pathol,2003,56(2):80-85
    4. Perbal B. Nov (nephroblastoma overexp ressed) and CCN family of gene structural and function issues. Mol pathol,2001,54(2):57-79
    5. Brigstock DR. The CCN family:a new stimulecs package. Endovinol,2003,178(2):169-175
    6. Kim HS, Nagalla SR, Oh Y, et al. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs):characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci USA,1997; 94(24):12981
    7. Hansson HA, et al. Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol Scand,1986; 126:609
    8. Nakao Y, Otani H, Yamamura T, et al. Insulin-like growth factor 1 prevents neuronal cell death and paraplegia in the rabbit model of spinal cord ischemia. J Thorac Cardiovasc Surg,2001; 122(1): 136
    9. 李成仁,李巍,蔡文琴等。NOV对人神经干细胞增殖和分化的影响。中国神经科学杂志,2004;20.33-37
    10.梁涛,李淑蓉,邓其跃等。NOV在嗅鞘细胞中的表达及活性检测。第三军医大学学报,2005;27:596-599
    11. RAFF MC,MILL ER RH,NOBL E M. A Glial Progenitor Cell that Develop s in Vitro into an Astrocyte or an Oligodendrocyte Depending on Culture Medium. Nature,1983,303 (5916): 390-396
    12. BELACHEW S,CHITTAJALLU R,AGUIRRE AA, et al. Postnatal NG2 Proteoglycan-expressing Progenitor Cells Are Intrinsically Multipotent and Generate Functional Neurons. J Cell Biol,2003, 161 (1):169-186
    13. UNES MC, ROY NS, KEYOUNG HM, et al. Identification and Isolation of Multipotential Neural Progenitor Cells from the Subcortical White Matter of the Adult Human Brain. Nat Med,2003,9(4): 439-447
    14. WINDREM MS, NUNES MC, RASHBAUM WK, et al. Fetal and Adult Human Oligodendrocyte Progenitor Cell Isolates Myelinate the Congenitally Dysmyelinated Brain. Nat Med,2004,10(1): 93-97
    15. AGUIRRE AA, CHITTAJALLU R, BELACHEW S, et al. NG2-expressing Cells in the Subventricular Zone Are Type C-like Cells and Contribute to Interneuron Generation in the Postnatal Hippocampus. J Cell Biol,2004,165(4):575-589
    16. AGUIRRE A, GALLO V. Postnatal Neurogenesis and Gliogenesis in the Olfactory Bulb from NG2-expressing Progenitors of the Subventricular Zone. J Neurosci,2004,24(46):10530-10541
    17. Fischer I, Liu Y. Gene Therapy strategies in CNS axon regeneration. In:Ingoglia N, Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY 2000
    18. Liu Y, Himes BT, Moul J et al. Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Res,1997,768:19-29
    19.金东雁、黎孟枫等译。分子克隆实验指南。第二版:北京,科学出版社,1999
    20. Snyder EY, Fisher LJ. Gene therapy in neurology. Curr Opin Pediatr.1996, Dec;8(6):558-68.
    21. Fisher LJ, Neural precursor cells:applications for the sutdy and repair of the central nervous system. 1997,4(1):1-22
    22. B.Y.Su, W.Q.Cai, C.G.Zhang, V.Martniez, A.Lambet, B.Perbal. A developmental study of novH gene expression in human central nervous system. C R Acad Sci Ⅲ1998 Nov;321(11):883-92
    23. B.Y.Su, W.Q.Cai, C.G.Zhang, B.Perbal. The expression of ccn3(nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol Pathol 2001 Jun; 54(3):184-91
    24. B.Y.Su, W.Q.Cai, C.G.Zhang, B.Perbal. A developmental study on the immunocytochemical localization of NOV protein-containing neurons in the rat brain. Chinese Science Bulletin,2001 44(15):1397-1401
    1. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor [J]. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Backstrom G, Hellstrom M, Bostrom H, Li H, Soriano P, Betsholtz C, Heldin CH, Alitalo K, Ostman A, Eriksson U. Nat Cell Biol.2000,2(5):E78-9.
    2. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor [J]. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K, Eriksson U. Nat Cell Biol.2001;3(5):512-6.
    3. The PDGF family:four gene products form five dimeric isoforms [J]. Fredriksson L, Li H, Eriksson U. Cytokine Growth Factor Rev.2004; 15(4):197-204.
    4. Structure, organization, and transcription units of the human alpha-platelet-derived growth factor receptor gene, PDGFRA [J]. Kawagishi J, Kumabe T, Yoshimoto T, Yamamoto T.Genomics.199520,30(2):224-32.
    5. PDGF signaling in cells and mice [J]. Tallquist M, Kazlauskas A. Cytokine Growth Factor Rev.2004,15(4):205-13.
    6. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell:the potential for multiplex signalling [J]. Denhardt DT. Biochem J. 199615,318 (Pt3):729-47
    7. Signal transduction via platelet-derived growth factor receptors [J]. Heldin CH, Ostman A, Ronnstrand L.Biochim Biophys Acta.199819,1378(1):F79-113.
    8. Regulation of platelet-derived growth factor receptor expression by cell context overrides regulation by cytokines [J]. Barrett TB, Seifert RA, Bowen-Pope DF. J Cell Physiol.1996,169(1):126-38.
    9. Alveolar macrophages stimulated with titanium dioxide, chrysotile asbestos, and residual oil fly ash upregulate the PDGF receptor-alpha on lung fibroblasts through an IL-1 beta-dependent mechanism [J]. Lindroos PM, Coin PG, Badgett A, Morgan DL, Bonner JC. Am J Respir Cell Mol Biol.1997,16(3):283-92.
    10. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop [J]. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R. Cell.19902,63(3):515-24.
    11. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells [J]. Tallquist MD, Soriano P. Development.2003,130(3):507-18.
    12. Analysis of messenger ribonucleic acid and protein for the ligands and receptors of the platelet-derived growth factor signaling pathway in the placenta, extraembryonic membranes, and uterus during the latter half of murine gestation [J]. Bidwell MC, Eitzman BA, Walmer DK, McLachlan JA, Gray KD. Endocrinology. 1995,136(11):5189-201.
    13. Developmental expression of the alpha receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation [J]. Orr-Urtreger A, Bedford MT, Do MS, Eisenbach L, Lonai P. Development.1992,115(1):289-303.
    14. PDGF receptors in the rat CNS:during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage [J]. Pringle NP, Mudhar HS, Collarini EJ, Richardson WD. Development. 1992,115(2):535-51.
    15. Platelet-derived growth factor receptor-alpha in ventricular zone cells and in developing neurons [J]. Andrae J, Hansson I, Afink GB, Nister M. Mol Cell Neurosci. 2001,17(6):1001-13.
    16. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling [J]. Jackson EL Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A. Neuron.200620,51(2):187-99.
    17. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites [J]. Soriano P. Development.1997,124(14):2691-700.
    18. Specific effects of platelet derived growth factor (PDGF) on fetal rat and human dopaminergic neurons in vitro [J]. Othberg A, Odin P, Ballagi A, Ahgren A, Funa K, Lindvall O. Exp Brain Res.1995,105(1):111-22.
    19. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells [J]. Morrison-Graham K, Schatteman GC, Bork T, Bowen-Pope DF, Weston JA.Development.1992,115(1):133-42.
    20. PDGF mediates a neuron-astrocyte interaction in the developing retina [J]. Fruttiger M, Calver AR, Kruger WH, Mudhar HS, Michalovich D, Takakura N, Nishikawa S, Richardson WD. Neuron.1996,17(6):1117-31.
    21. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature [J]. lino S, Horiguchi K, Horiguchi S, Nojyo Y. Histochem Cell Biol.2009,131(6):691-702.
    22. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia [J]. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM. J Neurosci.20025,22(2):455-63.
    23. Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain [J]. Tanaka K, Nogawa S, Ito D, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y. Neuroreport.200120,12(10):2169-74.
    24. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord [J]. Keirstead HS, Levine JM, Blakemore WF. Glia.1998,22(2):161-70.
    25. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion [J].Watanabe M, Toyama Y, Nishiyama A. J Neurosci Res.2002 15,69(6):826-36.
    26. Fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor AB (PDGF AB) promote adult SVZ-derived oligodendrogenesis in vivo [J]. Lachapelle F, Avellana-Adalid V, Nait-Oumesmar B, Baron-Van Evercooren A. Mol Cell Neurosci. 2002,20(3):390-403.
    27. Platelet-derived growth factor signaling and human cancer [J]. Yu J, Ustach C, Kim HR. J Biochem Mol Biol.200331,36(1):49-59.
    28. Biology of platelet-derived growth factor and its involvement in disease [J]. Alvarez RH, Kantarjian HM, Cortes JE. Mayo Clin Proc.2006,81(9):1241-57.
    29. PDGFR inhibition in brain tumours-Oft expectation fails where most it promises [J]. Raymond E. Eur J Cancer.200918.
    30. PDGFRA activating mutations in gastrointestinal stromal tumors [J]. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA. Science.2003 31,299(5607):708-10.
    31. EGF-R and PDGF-R, but not bcl-2, overexpression predict overall survival in patients with low-grade astrocytomas [J]. Varela M, Ranuncolo SM, Morand A, Lastiri J, De Kier Joffe EB, Puricelli LI, Pallotta MG. J Surg Oncol.20041,86(1):34-40.
    32. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas [J]. Hermanson M, Funa K, Koopmann J, Maintz D, Waha A, Westermark B, Heldin CH, Wiestler OD, Louis DN, von Deimling A, Nister M. Cancer Res.19961,56(1):164-71.
    33. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome [J].Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG. N Engl J Med.200327,348(13):1201-14.
    34. Expression profiling of medulloblastoma:PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease [J]. MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, Packer RJ, Cogen P, Stephan DA. Nat Genet. 2001,29(2):143-52.
    35. Both platelet-derived growth factor receptor (PDGFR)-alpha and PDGFR-beta promote murine fibroblast cell migration [J]. Yu J, Moon A, Kim HR. Biochem Biophys Res Commun.20016,282(3):697-700.
    36. Transgenic overexpression of platelet-derived growth factor-C in the mouse heart induces cardiac fibrosis, hypertrophy, and dilated cardiomyopathy [J]. Ponten A, Li X, Thoren P, Aase K, Sjoblom T, Ostman A, Eriksson U. Am J Pathol. 2003,163(2):673-82.
    37. The role of platelet-derived growth factor signaling in healing myocardial infarcts [J]. Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML, Frangogiannis NG. J Am Coll Cardiol.20065,48(11):2315-23.
    38. PDGF-C and-D and their receptors PDGFR-alpha and PDGFR-beta in atherosclerotic human arteries [J]. Karvinen H, Rutanen J, Leppanen O, Lach R, Levonen AL, Eriksson U, Yla-Herttuala S. Eur J Clin Invest.2009,39(4):320-7.
    39. Transcriptional regulation of the platelet-derived growth factor alpha receptor gene via CCAAT/enhancer-binding protein-delta in vascular smooth muscle cells [J]. Fukuoka T, Kitami Y, Okura T, Hiwada K. J Biol Chem.19993,274(36):25576-82.
    40. Signalling mechanisms in the regulation of vascular cell migration [J]. Abedi H, Zachary I. Cardiovasc Res.1995,30(4):544-56.
    41. Particle-mediated gene transfer of PDGF isoforms promotes wound repair [J]. Eming SA, Whitsitt JS, He L, Krieg T, Morgan JR, Davidson JM. J Invest Dermatol. 1999,112(3):297-302.
    42. Growth factors in wound healing [J]. Hom DB. Otolaryngol Clin North Am. 1995,28(5):933-53.
    43. Growth factors and wound healing:Part II. Role in normal and chronic wound healing [J]. Bennett NT, Schultz GS. Am J Surg.1993,166(1):74-81.
    1. Ataliotis P. and Mercola M.1997. Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. Int. Rev. Cytol.172,95-127.
    2. Berry M., Hubbard P. and Butt A.M.2002. Cytology and lineage of NG2-positive glia. J.Neurocytol.31,457-467.
    3. Butt A. M.2006. Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54,666-675.
    4. Butt A. M., Hamilton N., Hubbard P., et al.2005. Synantocytes:the fifth element. J. Anat.207,695-706.418
    5. Butt A.M., Kiff J., Hubbard P., et al.2002. Synantocytes:new functions for novel NG2 expressing glia. J. Neurocytol.31,551-565.
    6. Chen P. H., Cai W. Q., Wang L. Y., et al.2008. A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain. Brain Res.3;1243,27-37.
    7. Dana M., McTigue, Tripathi, et al.2008. The life, death, and replacement of oligodendrocytes in the adult CNS. J. Neurochem.107,1-19
    8. Dawson M. R., Polito A., Levine J. M., et al.2003. NG2-expressing glial progenitor cells:an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci.24,476-88.
    9. Dayer A. G, Cleaver K. M., Abouantoun T., et al.2005. New gabaergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168,415-427.
    10. Di Bello I. C., Dawson M. R. L., Levine J. M., et al.1999. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is stimulated by demyelination rather than inflammation. J. Neurocytol.28, 366-381.
    11. Diers-Fenger M., Kirchhoff .F, Kettenmann H., et al.2001. AN2/NG2 protein-expressing glial progenitor cells in the murine CNS:isolation, differentiation, and association with radial glia. Glia 34,213-28.
    12. Greenwood K. and Butt A. M.2003. Evidence that perinatal and adult NG2-glia are not conventional oligodendrocyte progenitors and do not depend on axons for their survival. Mol. Cell. Neurosci.23,544-558.
    13. Heldin C. H. and Westermark B.1999. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev.79,1283-1316.
    14. Jones L. L., Yamaguchi Y., Stallcup W. B., et al.2002. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J.Neurosci.22,2792-803.
    15. Kantor D. B., Chivatakarn O., Peer K. L., et al.2004. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44,961-75.
    16. Keirstead H. S., Levine J. M. and Blakemore W. F.1998. Response of oligodendrocyte progenitor cell population (defined by NG2 labeling) to demyelination of the adult spinal cord. Glia 22,161-170.
    17. Kitada M. and Rowitch D. H.2006. Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 54,35-46.
    18. Kukley M., Capetillo-Zarate E. and Dietrich D.2007. Vesicular glutamate release from axons in white matter. Nat. Neurosci.10,311-320.
    19. Levine J. M.1994. Increased expression of the NG2 chondroitin-sulphate proteoglycan after brain injury. J. Neurosci.14,4716-4730.
    20. Levine J. M. and Reynolds R.1999. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol.160,333-347.
    21. Levine J. M., Enquist L. W. and Card J. P.1998. Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia 23, 316-328.
    22. Levine J. M., Reynolds R. and Fawcett J. W.2001. The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences.24,39-47.
    23. Levine J. M., Stincone F. and Lee Y. S.1993. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7,307-321.
    24. Li X., Ponten A., Aase K., et al.2000. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat. Cell Biol.2,302-309.
    25. Lytle J. M., Chittajallu R., Wrathall J. R., et al.2009. NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury. Glia 57,270-85.
    26. Mason J. L. and Goldman J. E.2002. A2B5+and 04+cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol. Cell. Neurosci.20,30-42.
    27. McTigue D. M., Tripathi R. and Wei P.2006. NG2 colocalizes with axons and is expressed by a mixed cell population in spinal cord lesions. J. Neuropathol. Exp. Neurol.65,406-420.
    28. Nishiyama A.2007. Polydendrocytes:NG2cells with many roles in development and repair of the CNS, Neuroscientist 13,62-75.
    29. Nishiyama A., Lin X. H., Giese N., et al.1996. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res.43,299-314.
    30. Nishiyama A., Yu M., Drazba J. A., et al.1997. Normal and reactive NG2+glial cells are distinct from resting and activated microglia. J. Neurosci. Res.48,299-312.
    31. Ong W. Y. and Levine J. M.1999. A light and electronmicroscope study of NG2 chondroitin sulphate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate lesioned rat hippocampus. Neuroscience 92,83-95.
    32. Peters A.2004. A fourth type of neuroglial cell in the adult central nervous system. J. Neurocytol.33,345-357.
    33. Pouly S., Becher B., Blain M., et al.1999. Expression of a homologue of rat NG2 on human microglia. Glia 27,259-268.
    34. Shi J., Marinovich A. and Barres B. A.1998. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci.18,4627-4636.
    35. Ughrin Y M., Chen Z. J. and Levine J. M.2003. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J-Neurosci.23, 175-86.
    36. Wilson H. C., Onischke C., Raine C. S.2003. Human oligodendrocyte precursor cells in vitro:phenotypic analysis and differential response to growth factors. Glia.44, 153-65.
    37. Wilson H. C., Scolding N. J., Raine C. S.2006. Co-expression of PDGF a receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunology.176,162-173.
    38. Wigley R., Hamilton N., Nishiyama A. et al.2007. Morphological and physiological interactions of NG2-glia with astrocytes and neurons. J. Anat.6,661-670.
    39. Yeh H. J., Ruit K. G., Wang Y. X., et al.1991. PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 11;64,209-16
    40. Yeh H. J., Silos-Santiago I., Wang Y. X., et al.1993. Developmental expression of the platelet derived growth factor alpha-receptor gene in mammalian central nervous system. Proc. Natl. Acad. Sci. USA 90,1952-1956.
    41. Ziskin J. L., Nishiyama A., Rubio M., et al.2007. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci.10,321-330.