环境氧化应激诱发蛋白质(多肽)氧化损伤评价新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题是当前最重要的全球性问题之一。环境中的各种污染物对生态环境造成破坏的同时,也严重威胁着人类的健康与生存。外源性环境污染物可以通过呼吸道吸入、由食物链经消化道摄入和皮肤接触等渠道进入生物体内,诱发机体发生环境氧化应激(氧化活性物质(ROS)的过量表达),造成DNA/RNA、蛋白质、多肽、脂类等生物分子的氧化损伤、现已证明环境氧化应激与诸多疾病有关,并且是引起疾病第二位的原因。因此,研究环境污染物诱发机体功能生物大分子的氧化损伤机理,建立其快速、灵敏评价方法有助于人们了解环境污染物的致病机理和全面评价污染物毒性,为相关疾病的早期诊断、预防和治疗提供科学依据。
     蛋白质是生物体各种功能的直接执行者。当其暴露于氧化应激的环境中时,ROS能够诱发机体蛋白质分子结构的氧化性损伤和功能的消弱/丧失,进而导致诸多疾病的发生。因此,研究环境污染物对蛋白质的氧化损伤作用一直是环境污染与健康领域的热门课题。
     本论文以分析化学、环境毒理学为背景,结合电化学、高效液相色谱、质谱等实验技术模拟研究了环境氧化应激诱发氨基酸、多肽、蛋白质的氧化损伤机理,并对氧化损伤的评价方法进行了探讨。论文主要包括以下四部分:
     论文第一章阐述了各类污染物诱发环境氧化应激的途径;归纳了环境氧化应激致氨基酸、多肽、蛋白质生物分子损伤的类型以及蛋白质氧化损伤与相关疾病的相关关系;介绍了蛋白质氧化损伤的分析与评价技术,蛋白质氧化损伤研究进展。在文献综述的基础上分析了目前研究中存在的问题,提出了基于电化学循环伏安、液相色谱-质谱联用技术在模拟研究环境氧化应激诱发氨基酸、多肽、蛋白质的氧化损伤机理的评价方法。
     论文第二章选择氨基酸、多肽、蛋白质作为电化学氧化损伤的靶分子,从分子水平上模拟研究其相应的界面氧化损伤机理,为机体蛋白质氧化损伤机理的深入研究提供了参考。
     1)利用电化学循环伏安技术模拟研究了胱氨酸、半胱氨酸在裸金电极上的氧化还原行为,探讨了半胱氨酸的界面氧化损伤机理。研究结果表明(以金电极表面氧化为例),正扫过程中半胱氨酸有两个特征氧化峰,0.65V附近的氧化峰对应于半胱氨酸氧化生成胱氨酸,0.85V附近的氧化峰对应于胱氨酸、半胱氨酸氧化生成CySOxH(x=2、3);负扫过程半胱氨酸与多晶金形成Au-S键(该过程为失电子过程),还原峰电流明显降低且随半胱氨酸浓度增加而逐步下陷。在此基础上,研究了体系除氧、酸碱度、扫描速率、温度等因素对半胱氨酸在电极上发生电化学氧化损伤过程的影响。该结果对于全面认识氧化应激条件下含硫多肽、蛋白质在生物膜表面的氧化损伤机理及损伤修复提供了新的思路与方法。
     2)利用电化学循环伏安法模拟研究了还原型谷胱甘肽、氧化型谷胱甘肽在金电极上的界面氧化还原行为。相对位阻较小的半胱氨酸、胱氨酸在金电极表面氧化过程,空间位阻比较大的还原型谷胱甘肽并未发生两步的氧化过程,而是直接氧化生成GSOxH(难以生成氧化性的GSSG)。上述现象与普遍报道的GSH在环境氧化应激条件下生成GSSG的情况并不一致。这可能是由于GSH游离巯基两侧各自存在的一个氨基酸,使得巯基在电极表面的氧化过程存在明显的空间位阻作用。游离巯基之间的距离较大,无法形成二硫键(S-S),因而只能生成GSOxH。该过程一定程度上类似于生物体线粒体膜、细胞膜等部位上发生的生物功能分子的氧化损伤过程,因而对于生物体膜上氧化损伤的研究,乃至相关疾病的研究都具有重要的意义。
     3)利用电化学循环伏安技术研究了牛胰岛素在裸金电极上的氧化还原行为。通过与磷酸盐缓冲液、胱氨酸和胰岛素所含的其他氨基酸的电化学特征比较,胰岛素的电化学氧化损伤机理被详细阐明:胰岛素分子中的二硫键是其潜在的损伤位点并且其氧化产物为次磺酸(RSOH)、亚磺酸(RSO2H)以及磺酸(RSO3H)类化合物,但相对胱氨酸而言,由于空间位阻作用胰岛素需要更为严苛的条件才能实现氧化;由于胰岛素分子中二硫键S-SCYS6A,CYS11A和s-sCYS20A,CYS19B具有较小的溶剂接触面积而难以氧化。因此,该研究条件下胰岛素的主要氧化位点应为二硫键s-sCys7A-Cys7B。
     论文的第三章选择多肽、蛋白质氧化损伤生成的羟基、亚砜产物作为准确表述蛋白质(多肽)氧化损伤位点、损伤程度的生物标记物,并利用液相色谱—质谱联用技术及质谱碎片技术(LC-MS、LC-MS/MS)作为主要检测技术,建立其定性、定量研究的新方法。
     1)利用液相色谱-质谱(LC-MS)、二级质谱(MS/MS)等技术研究了UV/H2O诱发多肽氧化损伤位点、损伤程度及损伤机理,并探讨了以多肽氧化损伤位点作为氧化损伤标志物的可行性。研究证实UV/H2O(模拟环境氧化应激条件)对目标多肽中的FMRF存在明显的氧化损伤且损伤程度与时间正相关,并且LC-MS技术能够实现损伤产物与未损伤多肽的快速分离和准确鉴定。因此,以多肽氧化损伤产物作为直接评价氧化损伤的新型标记物具有潜在优势。本研究不仅拓展了多肽和蛋白质氧化损伤生物标记物的范围,也为阐明多肽等功能分子氧化损伤位点、相应位点的氧化损伤程度以及氧化损伤机理的研究提了供一种准确高效评价的新方法。
     2)利用高效液相色谱和串联质谱技术建立了以靶蛋白细胞色素C氧化损伤位点和损伤程度作为氧化损伤标志物评价其氧化损伤机理的新策略。液相色谱-质谱联用(LC/MS)和多肽指纹图谱鉴定(MS/MS)技术分别被用于胰蛋白酶解多肽的分离检测和UV/H2O氧化损伤位点的定位研究。结合LC/MS和MS/MS实验结果,可以确定酶解多肽C14AQC(heme)HTVEKK22、C11AQCHTVEK22、E60ETLMEYLENPKK73、M80IFAGIK86、M80IFAGIKK87中的Cys14、Cy17、Met65、Met80残基是主要的氧化损伤位点。上述位点氧化损伤程度与氧化时间的正相关性证实以蛋白质氧化损伤产物作为评价其氧化损伤机理的可行性。
     3)利用60Co-γ射线辐照牛血红细胞方式,模拟了环境氧化应激条件下过量表达的ROS对牛血红蛋白的氧化损伤作用,通过高效液相色谱和串联质谱技术建立了胞内血红蛋白氧化损伤位点和损伤程度的评价方法。通过比较损伤前后血红蛋白酶解的总离子色谱图及相应组分的MS/MS数据,发现靶分子的氧化损伤位点主要是部分暴露的氨基酸残基(例如α-Phe36、β-Met、β-Trp14)。氧化产物的定量分析表明,各损伤位点的氧化程度与氧化剂量正相关且受到氨基酸残基类型和暴露程度控制。与传统的蛋白羰基标记方法相比,本文所采用的方法为体外模拟条件下以及“体内”氧化应激实际存在时蛋白氧化损伤评价提供有效的技术支持。
     论文的第四章最后对本论文的各研究部分进行了总结,并分析了蛋白、多肽等靶分子氧化损伤评价方法的优势与不足之处,展望了该领域的发展方向。本研究丰富了环境污染物诱发蛋白、多肽等生物功能分子氧化损伤的评价方法,有助于人们从分子水平了解环境污染物的致病机理和全面评价污染物毒性,为相关疾病的早期诊断、预防和治疗提供了科学依据。
Environmental pollution is still one of the most important global problems at present. The environmental contaminants not only create destructions to the world ecology, but also threaten human survival and health seriously. For these contaminants can migrate to organisms through respiratory tract inhalation, digestive tract intake and skin contact, and then induced oxidative stress (forming excess reactive oxygen species, ROS). Under oxidative stress, ROS can destroy the structures of DNA, RNA, proteins, and lipids, hinder their featured functions, subsequently lead to a series of diseases. Therefore, study on the oxidation mechanisms of functional biological macromolecules is very essential for the prevention and treatment of related diseases and the development of related drugs.
     Proteins are essential parts of organisms and participate in virtually every process (signaling, immune responses, cell cycle, and so on) within life phenomenon. When exposed to environmental oxidative stress conditions, the excessively produced ROS can destroy the integrated structures of proteins, and thus hindrance their diverse physiological functions. Overwhelming evidence indicates that oxidative modification of proteins by reactive oxygen species plays a key role in a number of physiological disorders and diseases. Thus, study on the oxidation mechanisms of proteins has been a hot topic in field of environmental pollution and healthy.
     In the research, we studied the oxidation mechanisms of partial typical amino acids, peptides, proteins in molecule level by the methods of electrochemical technique, high performance liquid chromatography and mass spectrometry, and the advantages of these methods was discussed.
     This study has four chapters, just as follows:
     In chapter one, we describe the pathway of oxidative stress induced by the various types of environmental pollutants, the damage types of amino acids, peptides, proteins induced by oxidative stress, and the relationships between protein oxidation and related disease. We also introduce the experiment techniques and the related research for the evaluation of protein oxidation. Based on literature review, we proposed the the researching aims, meanings, methods and content of our work.
     In chapter two, amino acids, peptides, proteins were selected as the target molecules of electrochemical oxidation and the corresponding interface oxidation mechanisms of these molecules were clarified at the molecular level.
     1)A cyclic voltammetry assay was developed for the redox process of cysteine side chain on gold electrode and the oxidative damage mechanisms of cysteine were also proposed. It is demonstrated from the cyclic voltammograms that cysteine has two characteristic oxidative peaks (positive scan). The oxidative peak close-by 0.65V owes to the direct oxidation of -SH in cysteine, forming cystine and the oxidative peak close-by 0.95V owes to the oxidation of cystine and cysteine, forming sulfonic acid and sulfinic acid. The current of reductive peak falls evidently and a current valley expanded with the increase of cysteine (negative scan). The explanation is that cysteine can react with multi-crystal gold, forming Au-S bond and this is an electro-losing process. The influence of soluble oxygen, pH, scan rate, temperature and concentration of cysteine to the oxidative damage of cysteine was also performed. These results will provide a new visual angle for researching on oxidative damage mechanisms of sulfur-containing peptides with proteins and for the control of oxidative damage.
     2) In the present work, the unusual oxidation process of GSH on an Au electrode was probed by cyclic voltammetry (CV) technique. Voltammetric studies showed that -SH in GSH was the unique target of electro-oxidation by excluding the other potential oxidation sites (amido group, carboxyl group and side-chains of glutamic acid and glycine) and the feeble influence of S-Au interaction. As a result of spatial baffle, GSH was directly oxidized to GSOxH (x=2,3) without forming the intermediate of glutathione disulfide (GSSG). The unusual oxidation process differs from the two-step oxidation processes of cysteine-SH on the Au electrode and the oxidation of -SH in dissolved GSH, but is similar to the biological oxidation of GSH in vivo on biomembranes, where the steric hindrance still exists.
     3) By using the technique of cyclic voltammetry (CV), we simulated and investigated the oxidative damage of bovine insulin on Au electrode. The experimental results show that there are two anodic peaks for the oxidative damage of bovine insulin, which arise from the oxidation of the exposed disulfide bond, forming sulfenic acid RSOH (1.20V, vs. SCE), sulfinic acid RSO2H and sulfonic acid RSO3H (1.35V, vs. SCE). But due to steric hindrance, the oxidative damage to insulin requires more stringent conditions than that of cystine (free disulfide). Bovine insulin has three disulfide bonds (S-SCYS7A-CYS7B, S-SCYS6A-CYS11A and S-SCYS20A-CYS19B), implying three candidates that can be oxidized in electrochemical processes. S-SCYS6A-CYS11A or S-SCYS20A-CYS19B has small solvent accesible surface areas and can not be oxidized. Thus the damage site within insulin is only S-SCYS7A-CYS7B. These in vitro findings not only demonstrate the applicability of CV in simulating/evaluating the oxidative damage of non-redox proteins but also find two promising candidates (two anodic peaks) for measuring insulin.
     Biomarkers held both incredible application and significant challenge in probing the oxidation mechanisms of proteins under oxidative stress. In chapter 3, mass spectrometry (MS) coupled with liquid chromatography (LC) was applied to establish a new pipeline to probe the oxidation sites and degrees of peptides and proteins with their oxidative products serving as the biomarkers.
     1) By using the technique of liquid chromatography and mass spectrometry, we established a new method for evaluating the oxidation site and degree of oxidized peptide, with its oxidative product serving as biomarker. In the three model peptides, peptide FMRF (containing a methionine) was prone to undergoing oxygen addition under UV/H2O2 oxidization, forming a sulfoxide (FM(O)RF) with a stable chromatographic peak separate from the model peptides. The oxidation content of FMRF, expressed as SFM(O)RF/(SFM(O)RF+SFMRF), is positively correlated with oxidation time. Based on sequence analysis of FM(O)RF, the oxidation mechanism (site and extent) of FMRF under UV/H2O2 oxidization was explicitly clarified. By comparing the specific injury to each model peptide, we found that the oxidative products of Met-containing peptides are good biomarkers for OS. This research not only expands the range of biomarkers for OS, but also provides an efficient and accurate method for evaluating oxidation damage to peptides and even proteins.
     2) Mass spectrometry (MS) coupled with liquid chromatography (LC) was applied to establish a new pipeline to probe the oxidation sites and degrees of horse cytochrome c (HCC) with its oxidative products serving as the biomarkers. Samples of native and UV/H2O2 oxidized HCCs were digested by trypsin and subjected to biomarker discovery using LC/MS and tandem mass spectrometry (MS/MS). Experiment results proved that the main oxidation sites were located at Cys14, Cys17, Met65 and Met80, residues in peptides C14AQC(heme)HTVEK22. C14AQCHTVEK2. E60TLMEYLENPKK73, M80IFAGIK86 and M80FAGIKK87. Quantitation analysis on the oxidized peptides showed the oxidation degrees of target sites had positive correlations with extended oxidation dose and were controlled by residues types and their accessibility to solvent molecules. Being able to provide plentiful information for the oxidation sites and oxidation degrees, the identified oxidized products were feasibility biomarkers for HCC oxidation, compared with the conventional protein carbonyl assay.
     3) In the work present here, a novel pipeline was established to probe the oxidation mechanisms of bovine hemoglobin (Hb) with its oxidation products served as the biomarkers. Reactive oxygen species generated by 60Coγ-ray source were used as a mimical oxidative stress condition to oxidize Hb in bovine erythrocytes. After Hb extraction and digestion, the oxidized peptides in the tryptic fragments were assigned upon comparison with the total ion chromatography from the control digest. Subsequent tandem mass spectrometry analysis of these peptides proved that oxidations were limited to partial exposed amino acid residues (α-Phe36,β-Met1,β-Trp14, for instance) in Hb. Quantitation analysis on the oxidized peptides showed the oxidation degrees of target sites had positive correlations with the extended oxidation dose and the oxidation processes were controlled by residues types. Compared with the conventional protein carbonyl assay, the identified oxidized products were feasibility biomarkers for Hb oxidation, indicating the proposed biomarker pipeline was able to provide specific and valid information for protein oxidation.
     Finally, we summarized the research findings of above parts and discussed the future development of the evaluation methods for peptide, protein, and other target molecules. This study has enriched the research on protein oxidation, and provided some reference gists for the toxicities and pathogenesis of environmental pollutantst.
引文
[1]Andreoli TE. Free radicals and oxidative stress. The American Journal of Medicine,2000,108.
    [2]Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR. Oxidative stress in humans:Validation of biomarkers of DNA damage. Carcinogenesis,2002, 23:1441-1446.
    [3]Seifried HE. Oxidative stress and antioxidants:A link to disease and prevention? Journal of Nutritional Biochemistry,2007,18:168-171.
    [4]Davies MJ. The oxidative environment and protein damage. Biochimica et Biophysica Acta,2005,17:93-109.
    [5]Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. The Journal of Clinical Investigation,2005,115:500-508.
    【6】吴媚,张遵真,叶丛茂,车望军.60co γ射线对小鼠组织细胞氧化损伤的研究.现代预防医学,2005,32:1267-1269.
    【7】方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002.
    【8】王建英,任引哲,王迎新.氧自由基与人体健康.化学世界,2006,1:61-63.
    [9]Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature,2002,408:239-247.
    [10]Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:A review. Annals of Botany,2003,91:179-194.
    [11】张申,卫涛涛.生物大分子的氧化损伤与疾病.怀化医专学报,2006,5:81-84.
    [12]崔旭海,孔保华.蛋白质氧化及其对乳蛋白结构与功能性的影响.中国乳品工业, 2008,36:44-47.
    [13]Kooter IM. Inventory of biomarkers for oxidative stress. RIVM report, 630111001 2004.
    [14]文镜,张春华,董雨,郭豫.蛋白质羰基含量与蛋白质氧化损伤.食品科学,2003.24:153-157.
    [15]李培峰,方允中.ROS对蛋白质的损伤作用.生命的化学,1994,14:1-3.
    [16]刘宛,李培军,周启星,孙铁珩,许华夏.环境污染条件下生物体内DNA损伤的生物标记物研究进展.应用与环境生物学报,2005,11:251-255.
    [17]Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochemical Journal,1997,324:1-18.
    [18]彭宁,刘俊田.血管紧张素ⅱ诱导ROS簇的产生及其在血管损伤的信号机制.生理科学进展,2006,37:362-365.
    [19]Stadtman ER. Protein oxidation in aging and age-related diseases. Annals of the New York Academy of Sciences,2001,928:22-38.
    [20]郭帅.固相萃取高效液相色谱检测人血浆游离3-硝基酪氨酸方法与应用研究.山东大学硕士学位论文,2009.
    [21]沈同,王镜岩.生物化学(第二版)北京:高等教育出版社,1990,252-279.
    [22]Wang S, Shi X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem,2001,222:3-9.
    [23]王晓峰,楼建林,邢鸣鸾,连灵君,徐立红.六价铬致小鼠DNA损伤及肝肾氧化应激的实验研究.环境科学学报,2006,26:1868-1864.
    [24]叶寒青,杨祥良,周井炎,徐辉碧.环境污染物镉毒性作用机理研究进展.广东微量元素科学,2001,8:9-12.
    [25]Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chemical Research in Toxicology,1997,10:485-494.
    [26]费云芸,刘代成.低剂量汞元素的毒性作用机理.山东师范大学学报(自然科学版夕,2003,18:88-90.
    [27]张清俊,吴可.电磁辐射诱导的生物氧化应激效应.航天医学与医学工程,2004,17:152-156.
    [28]朱茂祥,杨陟华,龚诒芬,陆颖,曹珍山.辐射诱发细胞内ROS增高与DNA氧化损伤研究.辐射研究与辐射工艺学报,2001,19:270-274.
    [29]Robbins MEC, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury:A review. International Journal of Radiation Biology, 2004,80:251-259.
    [30]窦梅,李燕,司征,朱丽,王春波.紫外线对角质形成细胞氧化损伤作用机制研究进展.青岛大学医学学报,2004,4:181-183.
    [31]钟敏,谢燕,张广斌,余争平.微波辐照引起血管内皮细胞氧化损伤及通透性改变.中国组织工程研究与临床康复,2007,11:103-106.
    [32]金银龙,王汉章,程义斌,顾珩.静磁场对人体自由基代谢的影响.卫生研究1998,27:97-99.
    [33]Fiorani M, Biagiarelli B, Vetrano F, Guidi G, Dacha M, Stocchi V. In vitro effects of 50 hz magnetic fields on oxidatively damaged rabbit red blood cell. Bioelectromagnetics,1997,18:125-131.
    [34]Roy S, Noda Y, Eckert V, Traber MG, MorP A, Liburdy R, Packer L. The phorbol 12-myristate 13-acetate (pma)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mt (60hz) magnetic field. FEBSLetters,1995, 376:164-166.
    [35]李冰冰,赵倩,张龙富.ROS与蛋白质氧化损伤.平顶山工学院学报,2005,14:16-18.
    [36]纪靓靓.2,4,6-三氯苯酚诱导鲫鱼肝脏自由基的产生及氧化损伤的研究.辽宁 大学硕士学位论文,2007,1:1-13.
    【37】解静芳,王学峰,孟紫强,徐敏.S02致小鼠肝蛋白质氧化损伤和DNA-蛋白质交联作用.中国环境科学,2007,27:400-403.
    【38】李怡,朱彤.大气颗粒物致机体损伤的·0H自由基机制.生态毒理学报,2007,2:142-149.
    【39】姜薇,赵晓红.大气可吸入颗粒物对肺组织损伤机制的研究进展.生命科学,2007,19:78-82.
    [40]Xiao GG, Nel AE, Loo JA. Nitrotyrosine-modified proteins and oxidative stress induced by diesel exhaust particles. Electrophoresis,2005,26:280-292.
    [41]Risom L, M(?)ller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research.2005,592:119-137.
    [42]伏毅,谭晓荣.植物体内的蛋白质氧化研究进展.河南工业大学学报(自然群学版夕,2008:29:82-85.
    [43]Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radical Biology&Medicine,2002,33:37-44.
    [44]Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Letters,2006,580:2910-2916.
    [45]郝春燕,苏海翔,姚侃.蛋白质氧化性损伤与疾病研究进展.国外医学临床生物化学与检验学分册,2004,25:468-470.
    [46]宋艳红.不同形态的铁对BSA-脂质体体系脂质过氧化以及蛋白质氧化的催化作用研究.华中科技大学硕士学位论文,2006.
    [47]Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews,2000,32:307-326.
    [48]Levine RL, Stadtman ER. Oxidative modification of proteins during aging. Experimental Gerontology,2001,1:1495-1502.
    [49]李飞燕,娄红祥.蛋白质氧化和衰老.中国老年学杂志,2005,25:863-866.
    [50]李国林,印大中.蛋白质羰基化与衰老.中国老年杂志,2008,28:2070-2073.
    [51]Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25:207-218.
    [52]Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta,2003, 329:23-38.
    [53]王云海,罗云敬,钟儒刚.过氧亚硝酸根对蛋白质损伤的研究进展.化学进展,2007,19:893-901.
    [54]Telci A, Cakatay U, Salman S, Satman I, Sivas A. Oxidative protein damage in early stage type 1 diabetic patients. Diabetes research and clinical practice, 2000,50:213-223.
    [55]Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A. Proteins as biomakers of oxidative/nitrosative stress in diseases:The contribution of redox proteomics. Mass Spectrometry Reviews,2005,24:55-99.
    [56]印大中.衰老研究的新纪元.生命科学研究,2002,4:95-101.
    [57]Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Stella AMG, Galli F, Butterfield DA. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress:A nutritional approach. Amino Acids,2003,25:437-444.
    [58]黄金杰,崔明姬.慢性肾功能衰竭患者晚期氧化蛋白与动脉粥样硬化.吉林医学,2008,29:1494-1496.
    [59]龚伟,唐政.氧化应激和抗氧化治疗在慢性肾功能衰竭和高血压中的作用.肾脏病与透析肾移植杂志,2005,14:253257.
    [60]鲁碧楠,许丽娜,韩旭,彭金咏.蛋白质分离分析中的色谱技术新进展.中国现代应勇药学杂志,2009,26:1116-1120.
    [61]汪家政.蛋白质技术手册.科学出版社,2000.
    [62]Ahmed FE. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. Journal of Separation Science, 2009,32:771-798.
    [63]Duncan MW, Hunsucker SW. Proteomics as a tool for clinically relevant biomarker discovery and validation. Experimental Biology and Medicine,2005, 230:808-817.
    [64]Issaq HJ, Blonder J. The role of electrophoresis in disease biomarker discovery. Electrophoresis,2007,28:1980-1988.
    [65]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry,1975,250:4007-4021.
    [66]Lescuyer P, Hochstrasser D, Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery? Journal of Proteome Research,2007, 6:3371-3376.
    [67]Novakova L, Vic kova H. A review of current trends and advances in modern bio-analytical methods:Chromatography and sample preparation. Analytica Chimica Acta,2009,656:8-35.
    [68]Trostchansky A, Batthyany C, Botti H, Radi R, Denicola A, Rubbo H. Formation of lipid-protein adducts in low-density lipoprotein by fluxes of peroxynitrite and its inhibition by nitric oxide. Archives of Biochemistry and Biophysics,2001,395:225-232.
    [69]Servais A-C, Crommen J, Fillet M. Capillary electrophoresis-mass spectrometry, an attractive tool for drug bioanalysis and biomarker discovery. Electrophoresis,2006,27:2616-2629.
    [70]Jin W, Li W, Xu Q. Quantitative determination of glutathione in single human erythrocytes by capillary zone electrophoresis with electrochemical detection. Electrophresis,2000,21:774-779.
    【71】朱晓囡,苏志国.反相液相色谱在蛋白质及多肽分离分析中的应用.分析化学2004,32:248-254.
    [72]Mason DE, Liebler DC. Quantitative analysis of modified proteins by lc-ms/ms of peptides labeled with phenyl isocyanate. Journal of Proteome Research,2003,2:265-272.
    [73]Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houf ek T, Mitchell T, Miller P, Dean RA, Gerstein M, M. Snyder. Global analysis of protein activities using proteome chips. Science,2001, 293:2101-2105.
    【74】黄啸.蛋白质芯片的研究与应用.临沂师范学院学报,2007,29:49-5,1.
    [75】孙平,张逢春,张影.蛋白质芯片技术的研究及应用现状.北华大学学报(自然科学版),2009,10:115-120.
    [76]Keller RJ, Halmes NC, Hinson JA, Pumford NR. Immunochemical detection of oxidized proteins. Chemical Research in Toxicology,1993,6:430-433.
    [77]张婕.蛋白质组学多维色谱质谱平台新技术新方法研究.复旦大学博士学位论文,2006.
    [78]Bauer SH, Wiechers SF, Bruns K, Przybylski M, Stuermer CA. Isolation and identification of the plasma membrane-associated intracellular protein reggie-2 from goldfish brain by chromatography and fourier-transform ion cyclotron resonance mass spectrometry. Anal Biochem,2001,298:25-31.
    [79]Kachman MT, Wang H, Schwartz DR, Cho KR, Lubman DM. A 2-d liquid separations/mass mapping method for interlysate comparison of ovarian cancers. Analytical Chemistry,2002,74:1779-1791.
    [80]Massip C, Riollet P, Quemener E, Bayle C, Salvayre R, Couderc F, Causse E. Choice of different dyes to label tyrosine and nitrotyrosine. Journal of Chromatography A,2002,979:209-215.
    [81]Reddy S, Bradley J. Immunohistochemical demonstration of nitrotyrosine, a biomarker of oxidative stress, in islet cells of the nod mouse. Annals of the New York Academy of Sciences,2004,1037:199-202.
    [82]Schey KL, Finley EL. Identification of peptide oxidation by tandem mass spectrometry. Accounts of Chemical Research,2000,33:299-306.
    [83]罗国安,王义明,朱瑛.质谱在肽和蛋白分析中的应用.药学学报,2000,35:316~320.
    [84]Theodorescu D, Mischak H. Mass spectrometry based proteomics in urine biomarker discovery. World Journal of Urology,2007,25:435-443.
    [85]王希,朱友林.现代质谱技术在蛋白质组学中的应用及其最新进展.生物技术通讯,2006,17:465-467.
    [86]金晓明,林秀明.蛋白质芯片一飞行质谱技术及其在临床医学中的应用.福建医药杂志,2004,26:140-145.
    [87]Nagrath S, Sequist LV, Maheswaran S, Rell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature,2007,450:1235-1239.
    [88]池泉.硝化对胰岛素结构、功能影响的研究.华中科技大学博士学位论文,2006.
    [89]曲晓峰.微流控芯片的制备方法及应用研究.上海交通大学硕士学位论文,2006.
    [90]Sodum RS, Akerkar SA, Fiala ES. Determination of 3-Nitrotyrosine by High-Pressure Liquid Chromatography with a Dual-Mode Electrochemical Detector. Analytical Biochemistry,20002,80:278-285.
    [91]陈燕,黄泽玉,王雅杰,王苏平,康熙雄.全自动多通道毛细管区带电泳法在血清蛋白分析中的临床应用.中华检验医学杂志,2006,29:420-426.
    [92]Ilyin SE, Belkowski SM, Plata-Salaman CR. Biomarker discovery and validation:Technologies and integrative approaches. Trends in biotechnology, 2004,22:411-416.
    [93]Ekegren T, Hanrieder J, Bergquist J. Clinical perspectives of high resolution mass spectrometry-based proteomics in neuroscience:Exemplified in amyotrophic lateral sclerosis biomarker discovery research. Journal of Mass Spectrometry,2008,43:559-571.
    [94]吴志贤,薛耀明.蛋白质氧化的研究进展.临床检验杂志,2007,25:476-477.
    [95]Berlett BS, Stadtman ER:Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry,1997,272:20313-20316.
    [96]Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney International,2003, 84:11-14.
    [97]孟紫强.环境毒理学.中国环境科学出版社,2000.
    [98]曹兆进,张洪桥,陶勇,刘景兰,李双黎,徐培基,陈健.微波辐射对小白鼠脂质过氧化作用及神经递质含量的影响.卫生研究,2000,29:28-32.
    [99]Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A,2003,24,66(20):1909-1926.
    [100]Hong Ying Jia, Yang Liu, Xue Ji Zhang, Lu Han, Li Bo Du, Qiu Tian and Yuan Chao Xu. Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum.J. Am. Chew. Soc.,2009,131(1):40-41.
    [101]燕国梁,华兆哲,堵国成,陈坚.不同ROS胁迫下basiluss sp.F26以抗氧化物酶合成为特征的应激响应.生物工程学报,2008,24:627—634.
    [102]Derick Han, Raffael]a Canali, Jerome Garcia, Rodrigo Aguilera, Timothy K. Gallaher, and Enrique Cadenas. Sites and Mechanisms of Aconitase Inactivation by Peroxynitrite:Modulation by Citrate and Glutathione. Biochemistry,2005, 44:11986-11996.
    [103]刘慧宏,庞代文.氧化还原蛋白质电化学研究.化学进展,2002,14:425-432.
    [104]Armstrong FA, Hill HAO, Walton NJ. Direct electrochemistry of redox proteins. Accounts of Chemical Research,1988,21 407-413.
    [105]Le'ger C, Bertrand P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chemical Reviews,2008,108:2379-2438.
    [106]周波,孙润光,王丽华,宋世平,樊春海.蛋白质直接电化学研究及其应用.化学进展,2006,18:1009-1013.
    [107]Buss IH, Senthilmohan R, Darlow BA, Mogridge N, Kettle AJ, Winterbourn CC.3-chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants:Association with adverse respiratory outcome. Pediatric Research,2003,53:455-462.
    [108]Orhan H, Coolen S, Meerman JHN. Quantification of urinary o, o-dityrosine, a biomarker for oxidative damage to proteins, by high performance liquid chromatography with triple quadrupole tandem mass spectrometry a comparison with ion-trap tandem mass spectrometry. Journal of Chromatography B,2005,827:104-108.
    [109]Xu G, Chance MR. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Analytical Chemistry,2005,77:4549-4555.
    [110]Xu G, Chance MR. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chemical Reviews,2007,107:3514-3543.
    [111]Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids,2003,25:221-226.
    [112]Berna M, Ackermann B. Increased throughput for low-abundance protein biomarker verification by liquid chromatography/tandem mass spectrometry. Analytical Chemistry,2009,81:3950-3956.
    [113]Gazit V, Ben-Abraham R, Coleman R, A. Weizman YK. Cysteine-induced hypoglycemic brain damage:An alternative mechanism to excitotoxicity. Amino Acids,2004,26:163-168.
    [114]Hammermeister DE, Serrano J, Schmieder P, Kuehl DW. Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Communication in Mass Spectrometry,2000,14:503-508.
    [115]Wang F, Yang J, Wu X, Wang F, Liu S. Fluorescence enhancement of the protein-curcumin-sodium dodecyl benzene sulfonate system and protein determination. Analytical and Bioanalytical Chemistry,2006,385:139-145.
    [116]Nolin TD, McMenamin ME, Himmelfarb J. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography:Application to studies of oxidative stress. Journal of Chromatography B,2007,852:554-561.
    [117]冯春梁,李言,佟永纯.金表面的清洗方法与电化学表征.辽宁师范大学学报(自然科学版),2004.27:440-443.
    [118]傅崇岗,苏昌华,单瑞峰.L-半胱氨酸白组装膜修饰金电极的电化学特性.物理化笋学报,2004,20:207-210.
    [119]Tudos AJ, Johnson DC. Dissolution of gold electrodes in alkaline media containing cysteine. Analytical Chemistry,1995,67:557-560.
    [120]Kuhnle A, Linderoth TR, Besenbacher F. Self-assembly of monodispersed, chiral nanoclusters of cysteine on the au(110)(1×2) surface. Journal of American Chemical Society,2003,125:14680-14681.
    [121]Nazmutdinov RR, Zhang J, Zinkicheva TT, Manyurov IR, Ulstrup J. Adsorption and in situ scanning tunneling microscopy of cysteine on au(Ⅲ): Structure, energy, and tunneling contrasts. Langmuir,2006,22:7556-7567.
    [122]Zen J-M, Kumar AS, Chen. J-C. Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Analytical Chemistry,2001,73:1169-1175.
    [123]Zhou M, Ding J, Guo L-p, Shang QK. Electrochemical behavior of 1-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry,2007,79:5328-5335.
    [124]Liu Z, Wu G. The electro-oxidative activity of cysteine on the au electrode as evidenced by surface enhanced raman scattering. Spectrochimica Acta Part A,2006,64:251-254.
    [125]Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stohs SJ. The glutathione defense system in the pathogenesis of rheumatoid arthritis. Journal of Applied Toxicology,2001,21:69-73.
    [126]Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochemical Pharmacology,2002,64:1019-1026.
    [127]Huang J, Philbert MA. Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Research,1996,711:184-192.
    [128]Weber GF. Final common pathways in neurodegenerative diseases: Regulatory role of the glutathione cycle. Neuroscience and Biobehavioral Reviews,1999,23:1079-1086.
    [129]Galli F, Rossi R, Simplicio PD, Floridi A, Canestrari F. Protein thiols and glutathione influence the nitric oxide-dependent regulation of the red blood cell metabolism. Biology and Chemistry,2002,6:186-199.
    [130]Tirmenstein MA, Grzemski FAN, Zhang JG, Fariss MW. Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chemico-Biological Interactions,2000,127:201-217.
    [131]Shaik IH, Mehvar R. Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method:Application to the rat liver and bile samples. Analytical and Bioanalytical Chemistry,2006,385:105-113.
    [132]Hiraku Y, Murata M, Kawanishi. S. Determination of intracellular glutathione and thiols by high performance liquid chromatography with a gold electrode at the femtomole level:Comparison with a spectroscopic assay. Biochimica et Biophysica Acta,2002,1570:47-52.
    [133]Loughlin AF, Skiles GL, Alberts DW, Schaefer WH. An ion exchange liquid chromatography/mass spectrometry method for the determination of reduced and oxidized glutathione and glutathione conjugates in hepatocytes. Journal of Pharmaceutical and Biomedical Analysis,2001,26:131-142.
    [134]Zhang W, Wan F, Zhu W, Xu H, Ye X, Cheng R, Jin L-T. Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. Journal of Chromatography B,2005,818:227-232.
    [135]Vacek J, Petrek J, Kizek R, Havel L, Klejdus B, Trnkovd L, Jelen F, Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry,2004,63:347-351.
    [136]孙伟,韩军英,尚智美,焦奎,陆路德.蛋白质的电化学分析研究进展.化学 研究与应用,2005,17:151-153.
    [137]黄菲,曾百肇,赵发琼,杨玉霞.桑色素在l-半胱氨酸自组装膜修饰金电极上的电化学行为研究.分析科学学报,2004,20:125-128.
    [138]王俊,曾百肇,方程,周性尧.表面活性剂作用下谷胱甘肽单分子膜的离子门响应.高等学校化学报,2000,21:1552-1554.
    [139]Zong W, Liu R, Zhao L, Tian Y, Yuan D, Gao C. Side-chain oxidative damage to cysteine on a glassy carbon electrode. Amino Acids,2009,37:559-564.
    [140]Naganathan AN, Doshi U, Fung A, Sadqi M, Muoz. V. Dynamics, energetics, and structure in protein folding. Biochemistry,2006,45:8466-8475.
    [141]Prentiss MC, Hardin C, Eastwood MP, Zong C, Wolynes PG. Protein structure prediction:The next generation. Journal of Chemical Theory,2006,2:705-716.
    [142]Liu R, Sun F, Zhang L, Zong W, Zhao X, Wang L, Wu R, Hao X. Evaluation on the toxicity of nanoag to bovine serum albumin. Science of the Total Environment,2009,407:4184-4188.
    [143]Privett BJ, Shin JH, Schoenfisch MH. Electrochemical sensors. Analytical Chemistry,2008,80:4499-4517.
    [144]Marx-Tibbon S, Katz E, Willner I. Chiral recognition in mediated electron transfer in redox proteins. Journal of the American Chemical Society, 1995,117:9925-9926.
    [145]Zeng X, Bruckenstein S. Polycrystalline gold electrode redox behavior in an ammoniacal electrolyte part i. A parallel rrde, eqcm, xps and tof-sims study of supporting electrolyte phenomena. Journal of Electroanalytical Chemistry,1999,461:131-142.
    [146]Mendes RK, Ferreira DCM, Carvalhal RF, Peroni LA, Stach-Machadob DR, Kubota LT. Development of an electrochemical immunosensor for phakopsora pachyrhizi detection in the early diagnosis of soybean rust. Journal of Brazilian Chemical Society,2009,20:795-801.
    [147]Bryant C, Spencer DB, Miller A, Bakaysa DL, McCune KS, Maple SR, Pekar AH, Brems DN. Acid stabilization of insulin. Biochemistry,1993,32:8075-8082.
    [148]Giger K, Vanam RP, Seyrek E, Dubin PL. Suppression of insulin aggregation by heparin. Biomacromolecules,2008,9:2338-2344.
    [149]Xu G, Chance MR. Radiolytic modification of sulfur-containing amino acid residues in model peptides:Fundamental studies for protein footprinting. Analytical Chemistry,2005,77:2437-2449.
    [150]Tkac J, Davis JJ. An optimised electrode pre-treatment for sam formation on polycrystalline gold. Journal of Electroanalytical Chemistry,2008, 621·117-120.
    [151]Halling KB, Ellison GW, Armstrong D, Aoyagi K, Detrisac CJ, Graham JP, Newell SP, Martin FG, Gilder JMV. Evaluation of oxidative stress markers for the early diagnosis of allograft rejection in feline renal, allotransplant recipients with normal renal function. Canadian Veterinary Journal,2004, 45:831-837.
    [152]Facheris M, Beretta S, Ferrarese C. Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders:Tools for diagnosis and therapy? Journal of Alzheimer's Disease,2004,6:177-184.
    [153]Blumberg J. Use of biomarkers of oxidative stress in research studies. Journal of Nutrition,2004,134:3188-3189.
    [154]Glass RS, Hug GL, Schneich C, Wilson GS, Kuznetsova L, Lee T-m, Ammam M, Lorance E, Nauser T, Nichol GS, Yamamoto T. Neighboring amide participation in thioether oxidation:Relevance to biological oxidation. Journal of American Chemical Society,2009,131:13791-13805.
    [155]Peskin AV, Turner R, Maghzal GJ, Winterbourn CC, Kettle AJ. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry,2009,48:10175-10182.
    [156]Sarathy SR, Mohseni M. The impact of uv/h2o2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environmental Science Technology,2007,41:8315-8320.
    [157]Tian Y, Liu R, Zong W, Sun F, Wang M, Zhang P:A new biomarker of protein oxidation degree and site using angiotensin as the target by ms. Spectrochimica Acta Part A,2010,75:908-911.
    [158]Lu H, Guo Y, Yang P. Using amino acids for probing structural information of cytochrome c by electrospray ionization mass spectrometry. Journal of American Society for Mass Spectrometry,2004,15:1612-1615.
    [159]Zong W, Liu R, Wang M, Zhang P, Sun F, Tian Y. The oxidative products of methionine as site and content biomarkers for peptide oxidation. Journal of Peptide Science,2010,16:148-152.
    [160]Villar-Garea A, Griese M, Imhof. A. Biomarker discovery from body fluids using mass spectrometry. Journal of Chromatography B,2007,849:105-114.
    [161]Nukuna BN, Sun G, Anderson VE. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis. Free Radical Biology & Medicine,2004,37:1203.
    [162]Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nature Biotechnology,2006, 24:971-983.
    [163]Rifai N, Gerszten RE. Biomarker discovery and validation. Clinical Chemistry,2006,52:1635-1637.
    [164]Griffiths HR. Antioxidants and protein oxidation. Free Radical Research, 2000,33:47-58.
    [165]Sun F, Liu R, Zong W, Tian Y, Wang M, Zhang P. A unique approach to the mobile proton model:Influence of charge distribution on peptide fragmentation. Journal of Chromatography B,2010,114:6350-6353.
    [166]Dawidowicz AL, Fornal E. The advantages of cell lysis before blood sample preparation by extraction for hplc propofol analysis. Biomedical Chromatography,2000,14:493-497.
    [167]Thevis M, Loo RRO, Loo JA, Schalnzer W. Doping control analysis of bovine hemoglobin-based oxygen therapeutics in human plasma by lc-electrospray ionization-ms/ms. Analytical Chemistry,2003,75:3287-3293.
    [168]Lima M, Moloney C, Ames JM. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal. Amino Acids,2009,36:475-481.