皮层扩散性抑制诱导大鼠脑缺血耐受的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分在体研究皮层扩散性抑制动物模型的建立
     目的:用KCl和针刺分别在鼠皮层诱导皮层扩散性抑制(Cortical SpreadingDepression,CSD),建立大鼠CSD动物模型,并评价其光学特性和电生理特性,为进一步的研究奠定基础。
     方法:采用Spangue-Dawley大鼠25只,随机分为针刺诱导组(n=10)、KCl诱导组(n=10)和NaCl对照组(n=5),用牙科钻在大鼠颅骨上分别钻磨出诱导窗口和观测窗口,分别在诱导窗口用针刺和滴加KCl棉片浸敷大鼠皮层的方法诱导大鼠脑CSD,对照组在诱导窗口滴加NaCl,并用电生理记录和光学成像的方法来描记CSD的产生与传播,分析其特点。
     结果:在针刺诱导组和KCl诱导组,均可以在观测窗口观察到向外周扩散的明暗相间的弧形波,针刺诱导的CSD波成典型的同心圆样向四周均匀扩散,KCl诱导的CSD波则是呈不规则的圆弧形波向外周扩散,针刺组每次只诱发一次CSD波,而KCl组则可以诱导多次CSD波。在产生CSD波的同时,伴随着去极化电位的产生。而在NaCl对照组没有发现以上现象的发生。
     结论:用本方法制作CSD动物模型,方法简单易行,可以用光学成像的方法直观观测CSD的产生、发展和传播,并结合电生理观测到一直结果,适于在体研究CSD,为进一步研究CSD的发生机制及其可能的作用提供了一种有效手段。
     第二部分皮层扩散性抑制预处理对大鼠脑缺血性损伤的保护作用的在体研究
     目的:研究KCl诱导皮层扩散性抑制(CSD)预处理对鼠大脑中动脉阻塞后脑血流灌注和梗死体积的影响,验证CSD对脑缺血性损伤的保护作用。
     方法:24只SD大鼠分为实验组和对照组,各12只,试验组用5mKCl棉片敷于大鼠颅骨小孔上,每20min更换一次,持续2h,在大鼠大脑皮层诱发CSD,3d后插线法栓塞大脑中动脉制备大鼠局灶性脑缺血模型,利用激光散斑衬比光学成像技术监测缺血2h大脑血流动力学变化,并测定大脑梗死病灶体积。对照组用NaCl代替KCl,其余相同。比较血流动力学变化和大脑梗死灶体积的大小。
     结果:经CSD预处理后3d再缺血时,实验组缺血病灶血液灌注水平高于对照组,实验组总梗死体积及皮层梗死体积均小于对照组,皮层下梗死体积与对照组无明显差异。
     结论:利用激光散斑衬比光学成像技术可以在体检测脑血流的变化,同时验证了CSD预处理可提高缺血病灶皮层的血液灌注水平,减少总梗死体积和皮层梗死体积,可以减轻脑缺血后的脑功能损害程度。
     第三部分皮层扩散性抑制预处理对大鼠脑缺血性损伤后神经再生的影响
     目的:研究皮层扩散性抑制(cortical spreading depression,CSD)对成年大鼠脑缺血后缺血侧神经再生的影响。探讨CSD对缺血性脑损伤保护作用的机制。
     方法:用KCl诱导鼠皮层扩散性抑制,采用线栓法制作大脑中动脉阻塞(MCAO)模型。72只S-D大鼠动物分为6组:1)正常鼠诱导CSD组;2) KCl诱导CSD预处理缺血组;3) N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂MK-801阻断CSD缺血组;4) NaCl预处理缺血组;5)非预处理缺血组;6)空白对照组:即非CSD、非缺血假手术组。采用免疫组化法观察脑缺血后1,3,7,与14d四个不同时相BrdU免疫阳性细胞的表达情况。
     结果:空白对照组少见BrdU免疫阳性细胞表达,组1及脑缺血后各组不同时相缺血侧皮质、海马齿状回和纹状体均有BrdU免疫阳性细胞表达,其中7d时的阳性细胞数量明显增加;且组2与组3、4、5、6有显著性差异(p<0.05)。组1在d7和d14均较组6比较有显著性差异(p<0.05)。
     结论:CSD可诱导正常大鼠脑和脑缺血相关脑区BrdU免疫阳性细胞表达,且CSD可进一步激发脑缺血后神经再生的潜能,提示CSD激发鼠脑神经再生可能是其诱导脑缺血保护的主要机制之一。
Part I
    Establishment of cortical spreading depression model in cats
    for study in vivo
    Objective: To establish an animal model of cortical spreading depression(CSD) in rats by application of kcl and needling and valuate the opticalintrinsic signal imaging
    (OIIS ) and electrophysiological characteristics in vivo and for the father study.
    Methods: 25 Spangue-Dawley rats were divided into three groups. Inducing and obervating windows were drilled by bur drill and CSD was evoked by needling (group 1, n=10) and applying 5M KC1 cotton dap (group 2, n=10) in cortex. Five rats (group 3, n=5) were served as controls with applying 0.9% saline solution in the cortex. CSD waves were recorded by optical images and electrophysiology and analysised.
    Results: CSD waves were observed to spread out, in all dirctions, from the region stumulated by Optical Imaging with the characteristics of interval shading bracket-shaped waves and depolarizational potential were recored with the CSD waves both in group 1 and group 2. However, this phenomenon was not found in group 3. The multiple CSD waves induced - kcl were extending away, while the single CSD wave was spreading away when acupuncturing the cortex of the rats once.
    Conclusion: The rat CSD model was made easily using this technic.The course of the CSD waves was obersved directly by the OIIS Systems In accordence with the depolarizational potential recorded by recording apparatus. This animal model is suitable to study in vivo and for the farther study of the mechanism and the possible function of the CSD.
    
    Part II
    Study of cortical spreading depression preconditioning protecting against brain ischemic injury in vivo in rat
    Objective: To study cortical spreading depression (CSD) induced-kcl preconditioning affecting cerebral blood flow and infarct volume after middle cerebral artery occlusion (MCAO) in rat and examine wether CSD can protect brain agaist ischemic injury.
    Methods: 24 Sprague-Dawley rats were divided into experimental group(n=12) and control group group(n=12).CSD was induced by applying 5mKCl cotton pad on the cortex thrugh the pinhole of rats' skull, replacing one time every 20 min and contuning 2 hours. The rat cerebral focal ischemic model after middle cerebral artery occlusion was made by the intraluminal suture method three days later in the CSD preconditioning rats. Opitcal imaging technology of laser speckle imaging was used to monitor the cerebral blood flow (CBF) for 2h after MACO and cortical and subcortical infarct volumes were measured 7 days later. Control group was treated as the experimental group only applying Nacl instead of kcl. To compare infarct volume and the hemodynamic changes of the experimental group with control group.
    Results: CSD preconditioning group significantly improved CBF during MCAO than control group. CSD preconditioning group reduced the hemispheric and neocortical volume of infarction than control group group. There was no difference between the two groups in the subcortical infarct volume. Conclusion: Opitcal imaging technology of laser speckle imaging can be used to monitor the cerebral blood flow (CBF) in vivo. CSD preconditioning can improve the cortical cerebral blood flow significantly and reduced the hemispheric and neocortical volume of infarction. We conclude that CSD preconditioning can protect ischemic brain impairment.
    
    Part III
    Effects of Neurogenesis after focal cerebral ischemia with cortical spreading depression preconditioning in rats
    Objective: To study the influence of Neurogenesis after focal cerebral ischemia with cortical spreading depression preconditioning in rats and to explore the mechanism of CSD preconditioning inducing brain protection after ischemic brain injury.
    Methods: CSD was induced by kcl and the model of the middle cerebral artery occlusion (MCOA)was made by the intraluminal suture method in 72 major Spangue-Dawley rats, who were divided averagely randomly into six group: group I: noischemic rats with only CSD; group II: ischemic rats with CSD preconditioning by kcl; group III: MCOA with vehicle(saline) preconditioning; group IV: ischemic rats with CSD abolished by the NMDA receptor antagonist, MK-801, which inhibits the propagation of CSD; group V: Only ischemic rats; group VI: blank control: no CSD and no ischemic rats with sham operation. Immunohistochemistry method was used to observe the number of BrdU expression positive cells on the 1st, 3th, 7th and 14th days after ischemia.
    Results:There were BrdU positive cells in the cortex, hippocampal dentate gyrus (DG)and striatum at different time points after cerebral ischemia, and the number of BrdU positive cells in various brain regions were increased significantly on the 7th day (p < 0. 05 ) .It was also found that the number of BrdU positive cells in group II was significantly more than that in the other model groups and the number of BrdU positive cells in group I was increased significantly compared with the groupVI on d7 and d14 (p < 0. 05).
    Conclusion: CSD could induce BrdU expression positive cells in some brain regions in normal rats and in rats suffering focal cerebral ischemia and could stimulate the potency of neurogenesis after focal cerebral ischemia. It reveals that CSD stimulating neurofenesis could be the important mechanisms of CSD inducing focal cerebral ischeimic protect.
引文
1. Leao APR Spreading depression activity in the cerebral cortex. J Neurophysiol, 1944, 7: 359-390.
    2. Somjen GG, Aitken PG, Czeh GL, Herreras O, et al. Mechanisms of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharmacol, 1992, 70: 248-254.
    3. Fujimoto M, Tomita T. The spreading depression potential and the ERG B-wave in retinas of the frog and chick. Neurosci Res Suppl. 1986; 4:S197~208.
    4. Peixotoa NLV, Fernandes VM, Hanke W. Correlation of the electrical and intrinsic optical signals in the chicken spreading depression phenomenon. Neuroscience Letters, 2001, 299: 89-92.
    5. Katharina B, Florian W, Herbert S, et al. Intrinsic optical imaging reveals regionally different manifestation of spreading depression in hippocampal and entrohinal structures in vitro. Experimental Neurology, 2002,175: 76~86.
    6. Muller M, Somjen GG. Intrinsic optical signals in rat hippocampal slice during hypoxia-induced spreading depression-like depolarization. J Neruophysiol, 1999, 82: 311-324.
    7. Bahar S, Fayuk D, Somjen GG, et al. Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. J Neurophysiol, 2000, 84:311-324.
    8. Lian T, Dainel M, Sabina H, et al. Light scattering in rat neocortical slices differs during spreading depression and ischemia. Brain Research, 2002, 952:290-300.
    9. Ildiko V, Nicole K, Heiko JL. Optical recording of spreading depression in rat neocortical slices. Brain Research, 2001, 898: 288-296.
    10. Frostig RD, Lieke EE, Ts'o DY, et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA, 1990, 87: 6082-6085.
    11. Vanzetta I, Grinvald A. Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging. Neuroimage, 2001,13: 959-967.
    12. LI Peng-cheng, CHEN Shang-bin, LUO Wei-hua, et al. Correlation between in vivo intrinsic optical signals and cerebral vessel response during cortical spreading depression in rat. Prog Nat Sci, 2003,13 (12): 45-49.
    13. LI Peng-cheng, CHEN Shang-bin, LUO Wei-hua, et al. In vivo optical imaging of intrinsic signal during cortical spreading depression in rats. Prog Biochem Biophys, 2003, 30 (4): 605-611.
    14. Villringer A. and Chance B. Noninvasive optical spectroscopy and imaging of human brain function. Trends in Neuroscience, 1997, 20 : 435-442.
    15. Muller M, Somjen G G. Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression like depolarization. J Neurophysiol, 1999, 82:1818-1831.
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74: 1124~1136.
    2. Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R et al. 'Ischemic tolerance' phenomenon detected in various brain regions. Brain Res 1991, 561: 203~211.
    3. Richard P. Kraig, Phillip E. Kunkler, Spreading depression: a teleological means for self-protection from brain ischemia. Cambridge University Press, Cerebrovascular Disease: 22nd Princeton Conference, 2001, 142~157.
    4. Longa EI, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery: Occlusion without cranietomy in rats. Stroke, 1989, 20: 84~91.
    5. Tamura A., Graham D. I., McCulloch J., et al. Focal cerebral ischemia in the rat, Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cerebral Blood Flow Metab, 1981, 1(1): 53~60.
    6. Watson B. D., Dietrich W. D., Busto R., et al. Induction of reproducible brain infarction by photochemically initiated thrombsis. Ann Neurol, 1985, 17(5): 497~504.
    7. Kudo M., Aoyama A., Ichimori S., et al. An animal model of cerebral infarction: Homologous blood clot emboli in rats. Stroke,1982, 13 (4): 505~508
    8. Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemic brain edema: A new experimental model of cerebral embdish in rats in which recirculation can be introduced in the ischemic area. Stroke, 1986, 8: 1~9.
    9.王耀明,童萼塘,肖学宏,MRI评介改进大量可逆性局灶性脑缺血模型。卒中与神经疾病,1999,6(3):171.
    10. Otori T, Greenberg JH, Welsh FA. Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J Cereb Blood Flow Metab, 2003, 23:43~50.
    11. Gold L, Back T, Arnold G, et al. Cortical spreading depression-associated hyperemia in rats: involvement of serotonin. Brain Res. 1998, 9, 783: 188-193.
    12. Yamamoto H, Hashimoto N, Nagata I, et al. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain Brain Res, 1998; 784(1-2): 239-249.
    13. Chen S, Li P, Luo W, et al. Time-varying spreading depression waves in rat cortex revealed by optical intrinsic signal imaging. Neurosci Lett, 396(2):132-136. Epub 2005 Dec 13.
    14.李鹏程,陈尚宾,骆卫华,等。大鼠皮层扩散抑制过程中在体内源性光信号与脑血管形态变化的相关性。自然科学进展。2003,13(12):1320~1324.
    15. Tomita M, Schiszler I, Tomita Y, Initial oligemia with capillary flow stop followed by hyperemia during K~+-induced cortical spreading depression in rats. J Cereb Blood Flow Metab. 2005 Jun; 25(6): 742-747.
    16. Matsushima K, Hogan MJ, Hakim AM. Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1996, 16: 221~226.
    17. Matsushima K, Schmidt-Kastner R, Hogan MJ, et al. Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res. 1998, 5, 807: 47~60.
    18. Horiguchi T, Kis B, Rajapakse N, et al. Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res. 2005 Nov 16; 1062(1-2): 127~133.
    19. Horiguchi T, Snipes JA, Kis B, et al. The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res. 2005 Mar 28; 1039(1-2): 84~89.
    20. Zhang Feng, Zhou Liang-fu, Sun Feng-yan, et al. Effect of cortical spreading depression on apoptosis following focal cerebral ischemia in rats. Chin J Clin Neurosci. 2001,9: 243~245.
    21. Wiggins AKShen PJ, Gundlach AL, et al. Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance. Brain Res Mol Brain Res. 2003, 26; 114(1):20-30.
    22. Yanamoto H, Xue J H, Miyamoto S, et al. spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res, 2004,3,1019:178-188.
    23. Dietrich WD, Truettner J, Prado R, et al.Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood Flow Metab. 2000 Jan; 20(1): 103-111.
    24. Iqbal Chowdhury GM, Liu Y, Tanaka M, et al.Cortical spreading depression affects Fos expression in the hypothalamic paraventricular nucleus and the cerebral cortex of both hemispheres. Neurosci Res. 2003 Feb; 45(2): 149-155.
    25. Mancuso A, Derugin N, Hara K, Cyclooxygenase-2 mRNA expression is associated with c-fos mRNA expression and transient water ADC reduction detected with diffusion MRI during acute focal ischemia in rats. Brain Res. 2003 Jan 24; 961(1):121-30.
    26. Plumier J, David J, Robertson HA, et al. Cortical application of potassiumchloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. J Cereb Blood Flow Metab.1997,17: 781-790.
    27. Avoli M, Drapeau C, Louvel J, et al. Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Annals of Neurology, 1991, 30:589-596.
    1. Hiroji Yanamoto, Susumu Miyamoto, et al. Committed Neurons in the Caudate Putamen and Cortex Subventricular Zone, Generating Cells With Markers for Divided and Early Induced Spreading Depression Activates Persistent Neurogenesis in the Caudate Putamen and Cortex. Stroke, 2005, 36(2), 1544-1550.
    2. Longa EI, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery: Occlusion without cranietomy in rats. Stroke, 1989, 20: 84~91.
    3.王卫东,王洪典,王冰,等。反映成年大鼠脑组织神经发生水平显示方法的灵敏性和可靠性评价.中国临床康复,2002,6(13):1902~1904。
    4.王洪典,郭照江,王卫东,等。神经科学领域百年教条被打破引发的思考与启示. 医学与哲学,2002,23(1):16~17。
    5. Hoehn BD, Palmer TD, Steinberg GK. Et al. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke. 2005 ; 36(12): 2718~2724.
    6. Wang WD, Jiang W, Wang HD, et allThe study of neurogenesis in the dentate gyrus after global ischemia reperfusion in rats. J Fourth Mil Med Univ, 2002, 23 (8): 673.
    7.程祖珏,王卫东,徐江平,等。成年大鼠弥漫性脑损伤后海马神经发生与神经生长因子的表达.中华急诊医学杂志,2003,12(9):606~609.
    8. Matsumori Y, Hong SM, Fan Y, et al. Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia. Neurobiol Dis. 2006; 22(1): 187~98. Epub 2005 Dec 19.
    9. Popa-Wagner A, Dinca I, Yalikun S, et al. Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr Neurovasc Res. 2006 Feb; 3(1):3~13.
    10. Gould E, Gross CG1 Neurogenesis in adult mammals: some progress and problems. J Neurosci, 2002, 22: 619~623.
    11.王卫东,王洪典,王津存,等.康复训练对成年大鼠脑梗死后海马齿状回神 经前体细胞增殖的影响。中华物理医学与康复杂志, 2003 ,25 (7) :386-389.
    12. Charrier C, Coronas V, Fombonne J, et al. Characterization of neural stem cells in the dorsal vagal complex of adult rat by in vivo proliferation labeling and in vitro neurosphere assay. Neuroscience. 2006; 138(1):5-16. Epub 2005 Dec 7.
    13. Taupin P. Adult neurogenesis and neuroplasticity. Restor Neurol Neurosci. 2006; 24(1):9-15.
    14. Takemura S, Kayama T, Kuge A, et al. Correlation between copper/zinc superoxide dismutase and the proliferation of neural stem cells in aging and following focal cerebral ischemia. J Neurosurg. 2006 ; 104(1): 129-36.
    15. Chu K, Park KI, Lee ST, et al. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res. 2005; 53(4):384-90.
    16. Zhu W, Mao Y, Zhao Y, et al. Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery. 2005; 57(2):325-33.
    17. Chu K, Kim M, Park KI, et al. Human neural stem cells improve sensor motor deficits in the adult rat brain with experimental focal ischemia. Brain Res. 2004 ,6; 1016(2):145-53.
    18. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophsiol, 1944,7: 359-390,
    19. Kawahara N, Croll SD, Wiegand SJ,Cortical spreading depression induces long-term alterations of BDNF levels in cortex and hippocampus distinct from lesion effects: implications for ischemic tolerance. Neurosci Res. 1997; 29(1):37-47.
    20. Gu W. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000,20 (8):1166-1173.
    21. Jiang W, Gu W, Brannstrom T, et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke, 2001, 32 (5): 1201-1207.
    22. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002, 8 (9):963-970.
    23. Zhang RL, Zhang ZG, Zhang L ,et al. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 2001,105 (1):33-41.
    24. Parent JM, Vexler ZS, Gong C, et al. Ratforebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neural, 2002, 52 (6):802-813.
    25. Shen PJ, Yuan CG, Ma J, et al. Galanin in neuro(glio)genesis: expression of galanin and receptors by progenitor cells in vivo and in vitro and effects of galanin on neurosphere proliferation. Neuropeptides. 2005 Jun; 39(3):201-205. Epub 2005 Jan 28.
    1. KitagawaK. Matsumoto M, TagayaM, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res, 1990, 528(1): 21-24.
    2. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol, 1944, 7: 359-390.
    3. Tauskela JS, Chakravarthy BR, Murray CL, et al. Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res 1999; 827 (1-2): 143-145.
    4. Balestrino M. Studies on anoxic depolarization. In: Brain Slices in Basic and Clinical Research, edited by Schurr A, and Rigor BM. Boca Raton, FL: CRC, 1995, p. 273-293.
    5. Balestrino M, Young J, and Aitken PG. Block of (Na~+, K~+) ATPase with ouabain induced spreading depression-like depolarization in hippocampal slices. Brain Res, 1999 838:37-44.
    6. Bure(?) J, Bure(?)ova O, and K(?)ivanek J. The Mechanism and Applications of Leao's Spreading Depression of Electroencephalographic Acivtity. Prague: Academia, 1974.
    7. Chebabo SR, Hester MA, Aitken PG, and Somjen GG. Hypotonic exposure enhances synaptic transmission and triggers spreading depression in hippocampal tissue slices. Brain Res, 1995, 695: 203-216.
    8. El-Bacha RS, De Lima-Filho JL, and Guedes RCA. Dietary antioxidant deficiency facilitates cortical spreading depression induced by photoactivated riboflavin. Nutr Neurosci, 1998,1: 205-212.
    9. Guedes RCA, and Do Carmo RJ. Influence of ionic disturbances produced by gastric washing on cortical spreading depression. Exp Brain Res, 1980, 39: 341-349.
    10. Lauritzen M, Rice ME, Okada Y, and Nicholson C. Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res, 1988, 475: 317-327.
    11. Marshall WH. Spreading cortical depression of Leao. Physiol Rev, 1959, 39: 239-279.
    12. Ochs S. The nature of spreading depression in neural networks. Int Rev Neurobiol, 1962,4:1-70.
    13. Reid KH, Marrannes R, and Wauquier A. Spreading depression and central nervous system pharmacology. J Pharmacol Methods, 1988,19: 1-21.
    14. Roitbak AI and Bobrov AV. Spreading depression resulting from cortical punctures. Acta Neurobiol Exp, 1975,35: 761-768.
    15. Longa EI, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery: Occlusion without cranietomy in rats. Stroke, 1989, 20: 84-91.
    16. Somjen GG, Aitken PG, Czeh GL, Herreras O, et al. Mechanisms of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharmacol, 1992, 70: 248-254
    17. NEDERGAARD M, ASTRUP J. Infarct rim: effect of hyperglycemia on direct current potential and [~(14)C] 2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab, 1986, 6(5): 607-615.
    18. Takanashi Y, Chopp M, Nakajima K. Magnetoencephalographic observation of cortical spreading depression elicited by experimental focal brain ischemia in rats. No to Shinkei. 1994 Mar; 46(3):245-250.
    19. TAKANO K, LATOUR L L, FORMATO J E, et al. The role of spreading depression in focal ischemia evaluated by diffusion mapping Ann Neurol, 1996, 39(3): 308-318.
    20. Bramanti P, Grugno R, Vitetta A, et al. Migraine with and without aura: electrophysiological and functional neuroimaging evidence. Funct Neurol. 2005 Jan-Mar; 20(1):29-32.
    21. ZHANG Feng, ZHOU Liang-fu, SUN Feng-yan, et al. Effect of cortical spreading depression on apoptosis following focal cerebral ischemia in rats. Chin J Clin Neurosci, 2001,9(3): 243-245 (in Chinese)
    22. Hermann DM, Mies G, Hossmann KA. Expression of c-fos, junB, c-jun, MKP-1 and hsp72 following traumatic neocortical lesions in rats—relation to spreading depression. Neuroscience. 1999 Jan; 88(2):599-608.
    23. Otori T, Greenberg J H, Welsh F A. Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J Cereb Blood Flow Metab, 2003, 23 (1): 43-50.
    24. Culver J P, Durduran T, Furuya D, et al. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J Cereb Blood Flow Metab, 2003,23: 911-924.
    25. Ayata C, Dunn A K, Gursoy-Ozdemir Y. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab, 2004,24: 744-755.
    26. Yoon RS, Tsang PW, Lenz FA, et al. Characterization of cortical spreading depression by imaging of intrinsic optical signals. Neuroreport, 1996, 7: 2671-2674.
    27. O'farrel AM, Rex DE , Muthialu A, et al. Characterization of optical intrinsic signals and blood volume during cortical spreading depression. Neuroreport, 2000, 11: 2121-2125.
    28. Ba AM, Guiou M, Pouratian N, et al. Multiwavelength optical intrinsic signal imaging of cortical spreading depression. J Neurophysiol, 2002, 88: 2726-2735.
    29. Back T, Kohno K, Hossmann KA. Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab. 1994; 14(1): 12-19.
    30. Lorenz Gold, Tobias Back, Guy Arnold, et al. Cortical spreading depression-associated hyperemia in rats: involvement of serotonin. Brain Re, 783(2):188-193.
    31. Kazushi Matsushima, Rainald Schmidt-Kastner, et al.Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia Brain Res1998;807(1-2): 47-60.
    32. Otori T, Greenberg JH, Welsh FA. Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J Cereb Blood Flow Metab. 2003 Jan; 23(1): 4-50.
    33. Yamamoto H, Hashimoto N, Nagata I, et al. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain Brain Res, 1998; 784(1-2): 239~249.
    34. Chen S, Li P, Luo W, et al. Time-varying spreading depression waves in rat cortex revealed by optical intrinsic signal imaging. Neurosci Lett, 396(2):132-136. Epub 2005 Dec 13.
    35.李鹏程,陈尚宾,骆卫华,等。大鼠皮层扩散抑制过程中在体内源性光信号与脑血管形态变化的相关性。自然科学进展。2003,13(12):1320~1324.
    36. Tomita M, Schiszler I, Tomita Y, Initial oligemia with capillary flow stop followed by hyperemia during K~+-induced cortical spreading depression in rats. J Cereb Blood Flow Metab. 2005 Jun; 25(6): 742~747.
    37. Kazushi Matsushima, Matthew J Hogan, Antoine M Hakim, et al. Cortical Spreading Depression Protects Against Subsequent Focal Cerebral Ischemia in Rats. J Cereb Blood Flow Metab 1996, 16(2): 221~226.
    38. Hodguchi T, Kis B, Rajapakse N, et al. Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res. 2005 Nov 16; 1062(1~2): 127~133.
    39. Horiguchi T, Snipes JA, Kis B, et al. The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res. 2005 Mar 28; 1039(1~2): 84~89.
    40. Kobayasbi S. et al. J Cereb Blood Flow Metab. 1995; 15, 721.
    41. Yanamoto H, Miyamoto S, Tohnai N, et al. Induced spreading depression activates persistent neurogenesis in the subventricular zone, generating cells with markers for divided and early committed neurons in the caudate putamen and cortex. Stroke. 2005 Jul; 36(7): 1544~1550.
    42. Chang RC, Hudson PM, Wilson BC, High concentrations of extracellular potassium enhance bacterial endotoxin lipopolysaccharide-induced neurotoxicity in glia-neuron mixed cultures. Neuroscience. 2000; 97(4): 757~764.
    43. Kawahara N, Croll SD, Wiegand SJ, et al. Cortical spreading depression induces long-term alterations of BDNF levels in cortex and hippocampus distinct from lesion effects: implications for ischemic tolerance. Neurosci Res. 1997 Sep; 29(1):37-47.
    44. Scharfman HE. Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. J Neurophysiol. 1997, Aug; 78(2): 1082-1095.
    45. Rangel YM, Kariko K, Harris VA, et al.Dose-dependent induction of mRNAs encoding brain-derived neurotrophic factor and heat-shock protein-72 after cortical spreading depression in the rat. Brain Res Mol Brain Res. 2001, Mar 31; 8812):103-112.
    46. Yanamoto H, Xue JH, Miyamoto S, et al. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res, 2004 Sep 3; 1019(1-2):178-188.
    47. Dietrich WD, Truettner J, Prado R, et al.Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood How Metab. 2000 Jan; 20(1):103-111.
    48. Iqbal Chowdhury GM, Liu Y, Tanaka M, et al.Cortical spreading depression affects Fos expression in the hypothalamic paraventricular nucleus and the cerebral cortex of both hemispheres. Neurosci Res. 2003 Feb; 45(2): 149-155.
    49. Mancuso A, Derugin N, Hara K, Cyclooxygenase-2 mRNA expression is associated with c-fos mRNA expression and transient water ADC reduction detected with diffusion MRI during acute focal ischemia in rats. Brain Res. 2003 Jan 24; 961(1):121-130.
    50. Kelley MS, Steward O. The role of postlesion seizures and spreading depression in the upregulation of glial fibrillary acidic protein mRNA after entorhinal cortex lesions.Exp Neurol. 1996 May; 139(1):83-94.
    51. Bonthius DJ, Lothman EW, Steward O. he role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Res. 1995 Mar 20; 674(2):314-328.
    52. Bonthius DJ, Stringer JL, Lothman EW, Steward O. Spreading depression and reverberatory seizures induce the upregulation of mRNA for glial fibrillary acidic protein.Brain Res. 1994 May 9;645(1-2):215-224.
    53. Bonthius DJ, Steward O. Induction of cortical spreading depression with potassium chloride upregulates levels of messenger RNA for glial fibrillary acidic protein in cortex and hippocampus: inhibition by MK-801. Brain Res. 1993 Jul 30;618(1):83-94.
    54. Kraig RP, Dong LM, Trusted R, Jaeger CB. Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein.J Neurosci. 1991 Jul; 11(7):2187-2198.
    55. Koistinaho J, Pasonen S, Yrjanheikki J, Chan PH. Spreading depression-induced gene expression is regulated by plasma glucose.Stroke. 1999 Jan; 30(1):114-119.
    56. Shen PJ, Gundlach AL. Prolonged induction of neuronal NOS expression and activity following cortical spreading depression (SD): implications for SD- and NO-mediated neuroprotection. Exp Neurol. 1999 Dec; 160(2):317-332.
    57. Arabia AM, Shen PJ, Gundlach AL. Increased striatal proenkephalin mRNA subsequent to production of spreading depression in rat cerebral cortex: activation of corticostriatal pathways? Brain Res Mol Brain Res. 1998 Oct 30; 61(1-2):195-202.
    58. Douen AG, Akiyama K, Hogan MJ, et al. DoPreconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes.J Neurochem. 2000 Aug; 75(2):812-818.
    59. Pei-Juan Shen, Andrew L, Gundlach. Differential Spatiotemporal Alterations in Adrenoceptor mRNAs and Binding Sites in Cerebral Cortex Following Spreading Depression: Selective and Prolonged Up-Regulation of a_(1B)-Adrenoceptors. Exper Neurol Neurol, 1998,154(2):612-627.
    1. Moonen CTW, Bandettini PA. Functional MRI. Berlin : Springer-Verlag, 1999.
    2. Orrison J r. WW. Neuroimaging, Volume 1. Philadelphia: W.B. Saunders Company, 2000. 60-170.
    3. Logothetis NK, Guggenberger H, Peled S, et al. Functional imaging of the monkey brain. Nature Neuroscience, 1999, 2 (6): 555-562.
    4. Kim DS, Duong TQ, Kim SG. High - resolution mapping of isoorientation columns by fMRI. Nature Neuroscience, 2000, 3 (2): 164-169.
    5. Zhang Z , Andersen AH , Avison MJ , et al. Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkey .Brain Research , 2000 , 852: 290-296.
    6. Brown TR, Kincaid BM, U gurbil K. NMR chemical shift imaging in three dimensions. Proceedings of the National Academy (USA), 1982; 79 : 3523
    7. M audsley AA, Hilal SK, Perman WH, et al. Spatially resolved high resolution spectroscopy by "four-dimensional"NMR. Journal of Magnetic Resonance Imaging, 1983; 51:147.
    8. Obrig H. and Villringer A. Beyond the visible-imaging the human brain with light. Journal of Cerebral Blood Flow & Metabolism, 2003,23:1-18.
    9. Cohen L.B. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev., 1973, 53: 373-418.
    10. Kelin D. On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. R.Soc.B, 1925, 98: 312-339.
    11. Millikan G.A. Experiments on muscle hemoglobin in vivo: the instantaneous measurement of muscle metabolism. Proc. R.Soc.B, 1937,123: 218-241.
    12. Hill D.K., Keyknes R.D. Opacity changes in stimulated nerve. J. Physiol.1949, 108: 278-281.
    13. Chance B., Cohen P., Jobsis F., Schoener B. Intracellular oxidation-reduction states in vivo. Science, 1962,137: 499-508.
    14. Mayevsky A., Chance B. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science, 1982,217: 537-540.
    15. Jobsis F.F., Keizer J.H., LaManna J.C., Rosental M.J. Reflectance spectrophotometry of cytochrome aa_3 in vivo. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1977, 43: 858-872.
    16. Jobsis F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977,198:1264-1266.
    17. Grinvald A., Lieke E., Frosig R D., et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 1986,324: 361-364.
    18. Frostig R.D., Liekee E.E., Ts' o Dan, et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in-vivo high resolution optical imaging of intrinsic signals. Proc Natl Acad Sci. USA, 1990,87: 6082-6086.
    19. 刘培森, 散斑统计光学基础,北京,科学出版社, 1937, 1-50.
    20. Bries J.D., Webster S., Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow. J Biomed Opt, 1996, 1: 174-179.
    21. Briers J.D., Richards G, He, X.W. Capillary bloods flow monitoring using laser speckle contrast analysis (LASCA). J.Biomed Opt, 1999,4:164-175.
    22. Dunn A. K., Bolay H., Moskowitz M, et al. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb Blood F low Metab, 2001, 21:195-201.
    23. Catalan MJ, Honda M, Weeks RA, et al. The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain, 1998, 121: 253-264.
    24. Kandel ER, Schwartz J H, Jessell TM. Principles of Neural Science [M] 14th edition. New York: McGraw - Hill, 2000. 756-781.
    25. Giraux P, Sirigu A, Schneider F, et al. Cortical reorganization in motor cortex after graft of both hands. Nature Neuroscience, 2001, 4(7): 691-692.
    26. Li SJ , Biswal B , Li Z , et al. Cocain administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI [J]. Magnetic Resonance in Medicine, 2000,43:45-51.
    27. Miki A, Liu GT, Raz J, et al. Visual activation in functional magnetic resonance imaging at very high field (4 Tesla). J Neuroophthalmol, 2001, 21 (1): 8-11.
    28. Ohnishi T, Matsuda H , Asada T, et al. Functional anatomy of musical perception in musicians . Cerebral Cortex, 2001,11 (8): 754-760.
    29. Hesselmann V, Wedekind C, Kugel H , et al. Functional magnetic resonance imaging of human pontine auditory pathway. Hear Res, 2001, 158(1-2): 160-164.
    30. Sobel N, Prabhakaran V, Desmond J E, et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature, 1998,392: 282-286.
    31. Sobel N, Prabhakaran V, Zhao Z, et al. Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology, 2000, 83 (1): 537-551.
    32. Prabhakaran V , Narayanan K, Zhao Z , et al. Integration of diverse information in working memory within the frontal lobe . Nature Neuroscience , 2000 , 3 (1): 85-90.
    33. Fulbright RK, Jenner AR, Mend WE, et al. The cerebellum's role in reading : a functional MR imaging study. Am J Neuroradiol, 1999, 20 :1925-1930.
    34. Wise RJ S, Scott SK, Blank SC, et al. Separate neural subsystems within 'Wernicke's area'. Brain, 2001,124: 83-95.
    35. Biella G, Sotgiu ML, Pellegata G, et al. Acupuncture produces central activations in pain regions. Neuroimage, 2001,14 (1 Ptl):60-66.
    36. Chen YI, Brownell AL, Galpern W, et al. Detection of dopaminergic cell loss and neuraltransplantation using pharmacological MRI, PET and behavioral assessment. Neuroreport, 1999,10: 2881-2886.