钙离子在异氟烷神经细胞毒性和预处理保护机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统电生理学特性变化决定了人类意识状态,而基础是离子通道和神经递质受体系统的功能状态。异氟烷发挥全麻作用机制是使神经细胞超极化,已有研究证实异氟烷在不同神经细胞可诱导产生毒性,但异氟烷预处理神经细胞却可产生保护作用,其机制目前不清。Ca~(2+)作为一个广泛意义上的信号分子在神经细胞活动中起重要作用,钙离子稳态失衡而导致钙超载是神经细胞损伤的最后通路。内质网作为细胞内钙储备的主要场所,Ca~(2+)与内质网凋亡途径有着不可分割的关系,1,4,5-三磷酸肌醇受体(IP_3R)是位于细胞内质网上的Ca~(2+)释放的主要调节因子。因此我们假设内质网膜IP_3R通道在异氟烷的神经毒性和神经保护作用中起重要作用。因此本课题首先研究不同浓度和作用时间的异氟烷对新生大鼠皮层神经细胞的影响,通过观察细胞生长形态和检测细胞活性,并检测[Ca~(2+)]_i的变化,明确异氟烷对新生大鼠皮层神经细胞产生神经毒性的浓度与时间;其次,通过加入IP_3R拮抗剂,观察异氟烷神经毒性作用的变化和细胞[Ca~(2+)]_i的变化,探讨其作用机制可能是通过内质网IP_3R钙通道引起神经细胞凋亡损伤,并于七氟烷进行对比研究;之后,研究了Ca~(2+)在异氟烷诱导IP_3R易感性增强的PS-1突变型PC12细胞凋亡中的机制,进一步证实异氟烷是通过内质网IP_3R钙通道引起神经细胞凋亡损伤;最后,异氟烷预处理新生大鼠皮层神经细胞,进一步观察[Ca~(2+)]_i变化,同时应用IP_3R体拮抗剂,证实Ca~(2+)-IP_3R通道是否在异氟烷预处理保护作用中起到重要作用。结果证实:异氟烷对新生大鼠皮层神经细胞随着浓度和作用时间不同而影响不同,1MAC异氟烷12h可能通过Ca~(2+)-神经细胞凋亡过程引起新生大鼠皮层神经细胞损害,神经细胞内[Ca~(2+)]_i快速增加主要通过内质网上IP_3R介导,而相同浓度和时间的七氟烷不产生细胞毒性,且七氟烷对神经细胞[Ca~(2+)]_i影响不显著,提示相同剂量异氟烷对神经细胞的毒性大于七氟烷。异氟烷预处理原代培养新生大鼠皮层神经细胞,可通过抑制细胞膜Ca~(2+)内流和诱导内质网IP_3R通道Ca~(2+)的泄漏,降低谷氨酸诱发的[Ca~(2+)]_i升高,减少细胞凋亡。提示异氟烷预处理对神经细胞具有一定的保护效应。
     第一部分不同浓度和时间异氟烷对新生大鼠皮层神经细胞存活率及钙离子浓度的影响
     目的观察不同浓度和时间异氟醚对原代培养大鼠皮层神经细胞的存活率,以及与细胞内钙离子稳态失衡的关系,探讨异氟烷的神经细胞毒性及机制。方法取新生24 h内的Wistar大鼠,通过分离、纯化、原代接种培养皮层神经细胞12d后,分别采用相当0.5、1、2MAC浓度的异氟醚对大鼠皮层神经细胞处理1、2、4、8、12、24h后,噻唑兰(MTT)及乳酸脱氢酶(LDH)法检测细胞的存活率。应用激光共聚焦显微镜动态观察异氟醚处理后,活细胞内Ca~(2+)浓度([Ca~(2+)]_i)的变化。结果0.5MAC异氟烷24h,LDH与对照组百分比显著降低,而MTT与对照组比百分比显著升高(P<0.01),细胞外液有钙条件下[Ca~(2+)]_i升高(P<0.01),1MAC浓度异氟烷12、24h和2MAC8、12、24h,LDH与对照组百分比显著升高,而MTT与对照组比百分比显著降低(P<0.001),降低了细胞存活率,并使[Ca~(2+)]_i大量快速升高(P<0.001)。结论0.5MAC异氟烷24h内不引起原代培养大鼠皮层神经细胞毒性,而提高了其细胞存活率,这可能与细胞内钙离子快速负反馈有关;1MAC异氟烷12h后,2MAC异氟烷8h后,可引起原代培养大鼠皮层神经细胞毒性,且呈浓度和时间依赖性,这可能与细胞内钙离子稳态失衡引起神经细胞钙超载有关。
     第二部分异氟烷和七氟烷诱导原代培养大鼠皮层神经细胞损伤中钙离子浓度的变化的比较研究
     目的观察异氟烷和七氟烷对原代培养大鼠皮层神经细胞的损伤,以及与细胞内质网应激导致钙离子稳态失衡的关系,探讨异氟烷的神经细胞损伤机制。方法取新生24 h内的Wistar大鼠皮层神经细胞,原代培养12d后,分别采用相当1MAC浓度的异氟烷或七氟烷对大鼠皮层神经细胞处理12h,噻唑兰(MTT)及乳酸脱氢酶(LDH)法检测细胞的存活率。应用激光共聚焦显微镜动态观察加入异氟烷或七氟烷处理后,活细胞内Ca~2浓度([Ca~(2+)]_i)的变化,同时检测肌醇三磷酸受体(IP3)的拮抗剂光溜海绵素(Xestospongin C)对异氟烷诱导细胞毒性和[Ca~(2+)]_i变化的影响。结果1MAC浓度的异氟烷12h对原代培养大鼠皮层神经细胞产生毒性,LDH与对照组百分比显著升高,而MTT与对照组比百分比显著降低(P<0.01),降低了细胞存活率,并使[Ca~(2+)]_i大量快速升高,[Ca~(2+)]_i峰值与基础值的百分比和对照组比较显著增加(P<0.01),XC显著抑制异氟烷细胞毒性,LDH和MTT与对照组百分比无显著变化,[Ca~(2+)]_i峰值与基础值的百分比和异氟烷组比较显著降低(P<0.01)。相同浓度的七氟烷不引起新生大鼠皮层神经细胞类似的细胞毒性和[Ca~(2+)]_i峰值的升高。结论异氟烷通过内质网应激激活IP_3R引起[Ca~(2+)]_i升高,从而可能导致神经细胞损伤;相同浓度的七氟烷不引起类似的细胞毒性和[Ca~(2+)]_i峰值的升高。提示相同浓度的异氟烷神经毒性大于七氟烷。
     第三部分异氟烷诱发PS-1突变型PC12细胞凋亡对钙离子浓度的影响机制
     目的研究异氟烷对野生型和PS-1突变型小鼠PC12细胞凋亡以及其对细胞内钙离子稳态失衡的影响,探讨其作用机制。方法分别用1MAC异氟烷对野生型和PS-1突变型基因转染的小鼠PC12细胞处理12h后,用乳酸脱氢酶(LDH)法检测细胞的存活率,碘化丙啶(PI)检测法测定细胞凋亡的数量及免疫印迹(Western-blot)技术,检测细胞凋亡相关蛋白:Bcl-2和Bax蛋白的变化。观察1MAC异氟烷对PS-1突变PC12细胞中[Ca~(2+)]_i的影响。同时检测IP3R的抑制剂XC对异氟烷诱导PC12细胞凋亡和[Ca~(2+)]_i的影响。结果1MAC浓度的异氟烷12h诱导PS-1突变PC12细胞存活率下降,LDH与对照组百分比显著升高,PI染色与对照比明显增高(P<0.01),凋亡细胞数量增多,凋亡蛋白Bcl-2表达减少和Bax表达增多(P<0.01),并使[Ca~(2+)]_i大量快速升高,[Ca~(2+)]_i峰值与基础值的百分比和对照组比较显著增加(P<0.01);同时XC显著抑制异氟烷诱导的细胞凋亡和凋亡蛋白变化,并显著抑制[Ca~(2+)]_i大量升高。而相同浓度的异氟烷不引起野生型(WT)PC12细胞凋亡和[Ca~(2+)]_i峰值的升高。结论异氟烷通过IP_3R途径,使Ca~(2+)从储存的内质网中快速释放,促使[Ca~(2+)]_i的快速增高,从而导致PS-1突变型PC12细胞凋亡增加。这可能是异氟烷神经毒性的可能机制。
     第四部分异氟烷预处理对谷氨酸诱导大鼠皮层神经细胞凋亡的影响和钙离子浓度的变化
     目的研究异氟烷预处理对谷氨酸诱导大鼠皮层神经细胞凋亡的影响,以及对细胞内钙离子稳态失衡的影响,探讨其神经细胞保护作用机制。方法新生24 h内的Wistar大鼠皮层神经细胞,原代培养12d后,采用1MAC异氟烷2h预处理新生大鼠皮层神经细胞后,进行低浓度谷氨酸细胞凋亡的诱导,用MTT法检测细胞的存活率,用碘化丙啶(PI)检测法测定细胞凋亡的数量,并观察异氟烷预处理后,对谷氨酸产生的[Ca~(2+)]_i的快速大量升高的影响。同时采用IP3R的抑制剂XC,观察其对异氟烷预处理谷氨酸诱导细胞凋亡的影响和[Ca~(2+)]_i的变化。结果1MAC异氟烷2h预处理显著提高谷氨酸处理后神经细胞的存活率,MTT与对照组百分比无显著改变,PI染色与对照比无显著改变(P>0.05),[Ca~(2+)]_i峰值与基础值的百分比和对照组比较显著降低(P<0.01),并抑制[Ca~(2+)]_i大量快速升高;同时加入XC的异氟烷预处理降低单纯异氟烷预处理对谷氨酸诱导神经细胞凋亡的改善,且在细胞外液无钙条件下,并不能改变[Ca~(2+)]_i峰值的升高。结论异氟烷预处理原代培养新生大鼠皮层神经细胞,可通过抑制细胞膜Ca~(2+)内流和内质网IP_3R通道降低谷氨酸诱发的[Ca~(2+)]_i升高,减少细胞凋亡。提示1MAC异氟烷预处理对神经细胞具有一定的保护作用。
PartⅠEffect of different concentration isoflurane exposure for different time on viability and intracellular calcium in rat primarycortical neurons
     Objective This study examined and compared the viability effects of different concentration isoflurane exposure for different time on rat primary cortical neurons and their relationship with disruption of intracellular calcium homeostasis. Methods Primary rat cortical neurons were treated constantly with the equivalent of 0.5, 1 or 2 minimal alveolar concentration (MAC) of isoflurane exposure for 1,2,4,8,12,24 hours respectively. MTT reduction and LDH release assays were performed to evaluate cell viability. Changes of calcium concentration in cytosolic space ([Ca~(2+)]i) were imaged using real-time confocal microscopy after exposing rat primary cortical neurons to different concentration isoflurane. Results Isoflurane at 0.5 MAC exposure for 24 hours increased cell viability in primary rat cortical neurons, which was associated with a elevation of peak [Ca~(2+)]_i. Isoflurane at 1 MAC exposure for 12 or 24 hours and 2MAC exposure for 8,12, or 24 hours induced cytotoxicity in primary rat cortical neurons, which was also associated with a high and fast elevation of peak [Ca~(2+)]_i. Conclusion Isoflurahe at 0.5MAC exposure within 24 hours did not induce neurotoxicity and elevations of [Ca~(2+)]_i in primary cortical neurons of rat.This effects mybe induced by Ca~(2+) negative feedback . Isoflurane at 1MAC exposure for longer than 12 hours and 2MAC exposure for longer than 8 hours induced neurotoxicity and decreased cell viability in primary cortical neurons of rat. This cytotoxic effects of isoflurane mybe induced by calcium overload in primary cortical neurons of rat.
     PartⅡIsoflurane and sevoflurane induce cytotoxicity and change intracellular calcium concentration in rat primary cortical neurons
     Objective This study examined and compared the cytotoxic effects of isoflurane and sevoflurane on rat primary cortical neurons and their relationship with disruption of intracellular calcium homeostasis .Methods Primary rat cortical neurons were treated with the equivalent of 1 minimal alveolar concentration (MAC) of isoflurane and sevoflurane for 12 hours. MTT reduction and LDH release assays were performed to evaluate cell viability. Changes of calcium concentration in the cytosolic space, [Ca~(2+)]_i, were determined after exposing primary rat cortical neurons to isoflurane and sevoflurane. We also determined the effects of IP_3 receptor antagonist xestospongin C on isoflurane-induced cytotoxicity and calcium release from the ER in primary rat cortical neurons. Results Isoflurane at 1 MAC for 12 hours induced cytotoxicity in primary rat cortical neurons, which was also associated with a high and fast elevation of peak [Ca~(2+)]_i. Xestospongin C significantly ameliorated isoflurane cytotoxicity in primary cortical neurons, as well as inhibited the calcium release from the ER in primary cortical neurons. Sevoflurane, at equivalent exposure to isoflurane, did not induce similar cytotoxicity or elevation of peak [Ca~(2+)]_i in primary rat cortical neurons. Conclusion These results suggested that isoflurane induced elevation in [Ca~(2+)]i, partially via elevated activity of IP3 receptors, which rendered cells vulnerable to isoflurane neurotoxicity. Sevoflurane, at an equivalent exposure to isoflurane, did not induce similar elevations of [Ca~(2+)]_i or neurotoxicity in primary cortical neurons of rat.
     PartⅢEffect of isoflurane on apoptosis and intracellular calcium in Rat Pheochromocytoma Cells (PC12)
     Objective This study examined and compared the apoptosis effects of isoflurane on different types of rat pheochromocytoma neurosecretory cells (PC12) and their relationship with disruption of intracellular calcium homeostasis. Methods PC12 cells transfected with wild type (WT) or the Alzheimer's muted PS1 (L286V) were treated with equivalent of 1 MAC of isoflurane for 12 hr. LDH release assays were performed to evaluate cell viability. Changes of calcium concentration in cytosolic space ([Ca~(2+)]_i) were imaged using real-time confocal microscopy after exposing different types of cells to isoflurane.We also determined the effects of IP3 receptor antagonist xestospongin C on isoflurane-induced apoptosis and calcium release from the ER in L286V PC12 cells. Results Isoflurane at 1 MAC for 12 hr induced apoptosis in L286V but not WT PC12 cells, which was also associated with greater and faster elevation of peak [Ca~(2+)]_i in L286V than in the WT PC12 cells. Xestospongin C significantly ameliorated isoflurane cytotoxicity in both L286V cells , as well as inhibited the calcium release from the ER in L286V cells. Conclusion These results suggest that the Alzheimer's PS1 mutation augments the isoflurane-induced elevation in [Ca~(2+)]i partially via elevated activity of IP3 receptors, which renders cells vulnerable to isoflurane neurotoxicity.
     PartⅣEffects of isoflurane on Glutamate Induced apoptosii and Intracellular Calcium Change in rat primary cortical neurons
     Objective To study the effects of isoflurane on glutamate induced apoptosis and intracellular calcium change in rat primary cortical neurons and its probable mechanism. Methods Rat primary cortical neurons were primarily cultured by using neonatal rat brains Primary rat cortical neurons were preconditioning with the equivalent of 1 MAC of isoflurane for 2 hours.Then low concentration glutamate induced neurons apoptosis . MTT reduction and LDH release assays were performed to evaluate cell viability. Using microfluorescent technique to detect the calcium signal and the effect of glutamate and sevoflurane on hippocampal neurons. We also determined the effects of IP3 receptor antagonist xestospongin C on isoflurane preconditioning in rat primary cortical neurons. Results Glutamate could increase apoptosis neurons and the intracellular free Ca concentration([Ca~(2+)]_i) obviously. 1.0 MAC isoflurane preconditioning decreased apoptosis neurons and inhibited the increase [Ca~(2+)]i induced by glutamate. Xestospongin C significantly ameliorated isoflurane neuroprotection in Rat primary cortical neurons, as well as inhibited the calcium release from the ER. Conclusion It is suggested that isoflurane preconditioning inhibites apoptosis and calcium overload induced by glutamate in rat primary cortical neurons.
引文
1. Preckel B, Bolten J.Pharmacology of modern volatile anaesthetics.Best Pract Res Clin Anaesthesiol. 2005 Sep;19(3):331-348.
    
    2. Reichle FM, Conzen PF.Halogenated inhalational anaesthetics.Best Pract Res Clin Anaesthesiol. 2003 Mar;17(1):29-46.
    
    3. Black GW.Clinical features of halothane and enflurane.Acta Anaesthesiol Belg.1980;31(3):207-214.
    
    4. Loscar M, Conzen P. Volatile anesthetics.Anaesthesist. 2004 Feb;53(2):183-198
    
    5. Feiss P.New halogenated agents: should I change my practice?Minerva Anestesiol.2000 May;66(5):264-267.
    
    6. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia [J] . Nature, 1994, 367: 607—614.
    
    7. Komatsu H, Nogaya J, Ogli K.Volatile anaesthetics as central nervous system excitants.Ann Acad Med Singapore. 1994 Nov;23(6 Suppl):130-138
    
    8. Perouansky M, Pearce RA.Is anesthesia caused by potentiation of synaptic or intrinsic inhibition? Recent insights into the mechanisms of volatile anestheticsJ Basic Clin Physiol Pharmacol. 2000;11(2):83-107.
    
    9. Sekine S, Matsumoto S, Issiki A, et al.Changes in expression of GABAA alpha4 subunit mRNA in the brain under anesthesia induced by volatile and intravenous anesthetics.Neurochem Res. 2006 Mar;31(3):439-448.
    
    10. Sugimura M, Kitayama S, Morita K, et al.Effects of GABAergic agents on anesthesia induced by halothane, isoflurane, and thiamylal in mice.Pharmacol Biochem Behav.2002 May;72(1-2):111-116.
    
    11. Rowley TJ, Flood P.Isoflurane prevents nicotine-evoked norepinephrine release from the mouse spinal cord at low clinical concentrations.Anesth Analg. 2008 Sep;107(3):885-889
    12. Galligan JJ.Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil. 2002 Dec;14(6):611-623.
    
    13. Smart TG.Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation.Curr Opin Neurobiol. 1997 Jun;7(3):358-367.
    
    14. Antkiewicz-Michaluk L.Receptor and voltage-operated ion channels in the central nervous system.Pol J Pharmacol. 1995 May-Jun;47(3):253-264.
    
    15. Kress HG. Molecular and cellular actions of inhalation anesthetics.Anasthesiol Intensivmed Notfallmed Schmerzther. 1992 Apr;27(2):93-100.
    
    16. Felisberti F, Antkowiak B, Kirschfeld K.Effects of volatile anaesthetics on the membrane potential and ion channels of cultured neocortical astrocytes.Brain Res.1997 Aug 22;766(1-2):56-65.
    
    17. Wei H, Kang B, Wei W, et al. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005;1037:139-147.
    
    18. Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004;101:703-709.
    
    19. Kim H, Oh E, Im H, et al. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 2006;220:169-178.
    
    20. Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005;101:651-657.
    
    21. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent,mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 2005;102:1147-1157.
    
    22. Matsuoka H, Kurosawa S, Horinouchi T, et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001;95:1467-1472.
    
    23. Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces
    ??apoptosis and increases amyloid beta protein levels. Anesthesiology 2006;104: 988-994.
    
    24. Liang Ge,Wang Qiujun,Li Yujuan,et al.A presenilin-1 mutation renders neurons vulnerable to isoflurane toxicity. Anesth Analg. 2008 Feb;106(2):492-500
    
    25. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003;23:876-882.
    
    26. Jevtovic-Todorovic V, Hartman RE, et al.Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits.J Neurosci. 2003 Feb l;23(3):876.-882.
    
    27. Wise-Faberowski L, Zhang H, Ing R, et al.Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures.Anesth Analg. 2005 Sep;101(3):651-657
    
    28. Bekker A, Shah R, Quartermain D,et al. Isoflurane preserves spatial working memory in adult mice after moderate hypoxia. Anesth Analg. 2006 Apr;102(4):1134-1138.
    
    29. Wang C, Jin Lee J, Jung HH, et al. Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia. Brain Res. 2007 Jun 4;1152:201-208.
    
    30. Blanck TJ,Haile M,Xu F,et al.Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model.Anesthesiology. 2000 Nov;93(5): 1285-1293.
    
    31. Wise-Faberowski L,Raizada MK,Sumners C.Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg. 2001 Nov;93(5):1281-1287.
    
    32. 熊利泽,朱正华,董海龙,等.异氟烷预处理对大鼠局灶性脑缺血损伤的保护作??用.中华麻醉学杂志,2000,20(12):730-732.
    
    33. 李继春,张联峰,王彦松,等。异氟烷预处理对大鼠全脑缺血再灌注损伤的保 护作用.中华麻醉学杂志,2003,23(7):584-586.
    
    34. Strasser A, O'Connor L, Dixit VMApoptosis signaling.Annu Rev Biochem. 2000;69:217-245.
    
    35. Wang X.The expanding role of mitochondria in apoptosis.Genes Dev. 2001 Nov 15;15(22):2922-2933
    
    36. Desagher S, Martinou JC.Mitochondria as the central control point of apoptosis.Trends Cell Biol. 2000 Sep;10(9):369-377.
    
    37. Ashkenazi A, Dixit VM.Death receptors: signaling and modulation.Science. 1998 Aug 28;281(5381):1305-1308.
    
    38. Sun XM, MacFarlane M, Zhuang J,et al.Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosisJ Biol Chem. 1999 Feb 19;274(8):5053-5060.
    
    39. Nakamura K, Bossy-Wetzel E, Burns K,et al.Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis.J Cell Biol. 2000 Aug 21;150(4):731-740
    
    40. Mignery GA,Newton CL,Archer BT 3rd,et al.Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Jul 25;265(21):12679-12685
    
    41. Rao RV,Poksay KS,Castro Obregon S,et al.Molecular components of a cell death pathway activated by endoplasmic reticulum stressJ Biol Chem,2004,279:177-187.
    
    42. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. [Review]. Nat Rev Mol Cell Bio 2003;4:552-565.
    
    43. Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca~((2+)) homeostasis and neuronal death. [Review] J Cell Mol Med 2003;7:351-361.
    1. Wei H, Kang B, Wei W, et al. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005;1037:139-147.
    
    2. Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004;101:703-709.
    
    3. Kim H, Oh E, Im H, et al. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 2006;220:169-178.
    
    4. Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration:an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005;101:651-657.
    
    5. Kvolik S, Glavas-Obrovac L, Bares V, et al.Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci 2005;77:2369-2383.
    
    6. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent,mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 2005;102:1147-1157.
    
    7. Matsuoka H, Kurosawa S, Horinouchi T, et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001;95:1467-1472.
    
    8. Chang YC, Chou MY. Cytotoxicity of halothane on human gingival fibroblast cultures in vitro. J Endod 2001;27:82-84.
    
    9. Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology 2006;104:988-994.
    
    10. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003;23:876-882.
    
    11. Culley DJ, Baxter MG, Yukhananov R,et al.Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthe siology 2004;100:309-314.
    
    12. Culley DJ, Baxter M, Yukhananov R, et al.The memory effects of general anesthesia persist for weeks in young and aged rats.[see comment]. Anesth Analg 2003;96:1004-1009.
    
    13. Bianchi SL, Tran T, Liu C, et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 2007.
    
    14. Braun K, Bogerts B.[Experience guided neuronal plasticity. Significance for pathogenesis and therapy of psychiatric diseases.Nervenarzt. 2001 Jan;72(1):3-10.
    
    15. Swann JW, Hablitz JJ.Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system.Ment Retard Dev Disabil Res Rev. 2000;6(4):258-267.
    
    16. Salokorpi T, Rajantie I, Kivikko I, et al.Predicting neurological disorders in infants with extremely low birth weight using the movement assessment of infants. Pediatr Phys Ther. 2001 Fall;13(3):106-109.
    
    17. Rabinowicz T, de Courten-Myers GM, Petetot JM, et al.Human cortex development:estimates of neuronal numbers indicate major loss late during gestation.J Neuropathol Exp Neurol. 1996 Mar;55(3):320-328.
    
    18. Shankle WR, Landing BH, Rafii MS,et al. Evidence for a postnatal doubling of neuron number in the developing human cerebral cortex between 15 months and 6 years. J Theor Biol. 1998 Mar 21;191(2):115-140.
    
    19. Landing BH, Shankle WR, Hara J. Constructing the human cerebral cortex during infancy and childhood: types and numbers of cortical columns and numbers of neurons in such columns at different age-points. Acta Paediatr Jpn. 1998 Dec;40(6):530-543.
    
    20. Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. [Review] J Cell Mol Med 2003;7:351-361.
    
    21. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link.NatRevMolCellBiol,2003,4:552-565
    
    22. Rao RV,Poksay KS,Castro Obregon S,et al.Molecular components of a cell death pathway activated by endoplasmic reticulum stress.J Biol Chem,2004,279:177-187.
    
    23. Bleakman D, Jones MV, Harrison NL.The effects of four general anesthetics on intracellular [Ca2+] in cultured rat hippocampal neurons.Neuropharmacology. 1995 May;34(5):541-551.
    
    24. Xie Z, Zheng Q, Guo X, Yi C, Wu Y.Isolation, culture and identification of neural stem cells in new-born rats.J Huazhong Univ Sci Technolog Med Sci. 2004;24(l):75-8.
    
    25. Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays .Int J Pharm. 2005;288:369-376.
    
    26. Tinari A, Giammarioli AM, Manganelli V,et al.Analyzing morphological and ultrastructural features in cell death.Methods Enzymol. 2008;442:l-26.
    
    27. Thomas G, Guning IS, Killeen MJ, et al. Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome. J Physiol, 2007,578:85-97.
    
    28. Ogata S, Kubota Y, Satoh S, et al. Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochem Biophys Res Commun, 2006,351:808-814.
    
    29. Prakriya M, Lewis RS. Potentiation and inhibition of Ca~(2+) release-activated Ca~(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol, 2001, 536: 3-19.
    
    30.Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol, 1993, 465: 359-386.
    
    31. Parekh AB, Putney JW. Store-operated calcium channels. Physiol Rev, 2005, 85:757-810.
    
    32. Parekh AB, Penner R . Store depletion and calcium influx. Physiol Rev, 1997, 77: 901-930.
    
    33. Tong O, Zhang W, Conrad K, et al.Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin.J Biol Chem. 2006 Apr 7;281(14):9076-9085.
    34. Bergh JJ, Xu Y, Farach-Carson MC.Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel.Endocrinology. 2004 Jan;145(1):426-436..
    
    35. Rottingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand, 2000,169: 203-219.
    
    36. Koerner IP,Brambrink AM.Brain protection by anesthetic agents.Curr Opin Anaesthesiol. 2006 Oct;19:481-486.
    
    37. Bickler PE,Zhan X,Fahlman CS.Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling.Anesthesiology. 2005 Sep;103:532-539.
    1 Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics [.J]. N Eng J Med, 2003, 348: 2110-2124
    
    2 Mellon RD, Simone AF, Rappaport BA.Use of anesthetic agents in neonates and young children.Anesth Analg. 2007 Mar;104(3):509-20.
    
    3 Venkatesh BG, Mehta Y, Kumar A, et al.Comparison of sevoflurane and isoflurane in OPCAB surgery.Ann Card Anaesth. 2007 Jan;10(1):46-50.
    
    4 Wei H, Kang B, Wei W, et al. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005;1037:139-147.
    
    5 Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004;101:703-709.
    
    6 Kim H, Oh E, Im H, et al. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 2006;220:169-178.
    
    7 Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005;101:651-657.
    
    8 Kvolik S, Glavas-Obrovac L, Bares V, et al.Effects of inhalation anesthetics halothane,sevoflurane, and isoflurane on human cell lines. Life Sci 2005;77:2369-2383.
    
    9 Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent,mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 2005;102:1147-1157.
    
    10 Matsuoka H, Kurosawa S, Horinouchi T, et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001;95:1467-1472.
    
    11 Chang YC, Chou MY. Cytotoxicity of halothane on human gingival fibroblast cultures in vitro. J Endod 2001;27:82-84.
    
    12 Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology 2006;104:988-94.
    
    13 Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003;23:876-882.
    
    14 Culley DJ, Baxter MG, Yukhananov R,et al.Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats.Anesthesiology 2004;100:309-314.
    
    15 Culley DJ, Baxter M, Yukhananov R, et al.The memory effects of general anesthesia persist for weeks in young and aged rats.[see comment]. Anesth Analg 2003;96:1004-1009.
    
    16 Bianchi SL,Tran T, Liu C, et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 2007.
    
    17 Rao RV,Poksay KS,Castro Obregon S,et al.MoIecular components of a cell death pathway activated by endoplasmic reticulum stress.J Biol Chem,2004,279:177-187.
    
    18 Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. [Review]. Nat Rev Mol Cell Bio 2003;4:552-565.
    
    19 Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. [Review] J Cell Mol Med 2003;7:351-361.
    
    20 Parekh AB, Putney JW. Store-operated calcium channels. Physiol Rev, 2005, 85:757-810.
    
    21 Parekh AB, Penner R . Store depletion and calcium influx. Physiol Rev, 1997, 77: 901-930.
    
    22 Semenova SB, Kiselev KI, Mozhaeva GN. Low-conductivity calcium channels in the macrophage plasma membrane: activation by inositol-l,4,5-triphosphate. Neurosci Behav Physiol, 1999, 29: 339-345.
    
    23 Rottingen J, Iversen JG Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand, 2000,169: 203-219.
    24 Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays .Int J Pharm. 2005;288:369-376.
    
    25 Groenendyk J, Lynch J, MichalakM. Calreticulin, Ca~(2+), and cal-cineurin-signaling from the endoplasmic reticulum.MolCells,2004,7:383-389
    
    26 BardoS, CavazziniMG, EmptageN. The role of the endoplasmic re-ticulum Ca~(2+)store in the plasticity of central neurons.Trends Pharmacol Sci,2006,27:78-84.
    
    27 RizzutoR, Pinton P, FerrariD, et a.l Calcium and apoptosis: facts and hypotheses.Oncogene,2003,22:8619-8627.
    
    28 DemaurexN, DistelhorstC. Apoptosis~the calcium connection.Science,2003,300:65-67.
    
    29 Broad LM, Braun FJ, Lievremont JP, et al. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem, 2001, 276:15945-15952.
    
    30 Prakriya M, Lewis RS. Potentiation and inhibition of Ca~(2+) release-activated Ca~(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol, 2001, 536: 3-19.
    
    31 Mikoshiba K.IP3 receptor/Ca2+ channel: from discovery to new signaling concepts.J Neurochem. 2007 Sep;102(5):1426-46
    
    32 Szlufcik K,Missiaen L,Parys JB,et al. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences.Biol Cell. 2006 Jan;98(1):1-14.
    
    33 Bosanac I,Michikawa T,Mikoshiba K,et al.Structural insights into the regulatory mechanism of IP3 receptor.Biochim Biophys Acta. 2004 Dec 6;1742(1-3):89-102.
    1. Fodale V, Quattrone D, Trecroci C,et al.Alzheimer's disease and anaesthesia: implications for the central cholinergic system.Br J Anaesth. 2006 Oct;97(4):445-452.
    
    2. Kosik KS,Presenilin interactions and Alzheimer's disease, Science., 1998,23;279(5350):463-465
    
    3. Culley DJ, Baxter M, Yukhananov R,et al. The memory effects of general anesthesia persist for weeks in young and aged rats.[see comment]. Anesth Analg 2003;96:1004-1009.
    
    4. Bianchi SL, Tran T, Liu C, et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 2007.
    
    5. Weihl CC, Ghadge GD, Miller RJ,et al.Processing of wild-type and mutant familial Alzheimer's disease-associated presenilin-1 in cultured neurons.J Neurochem. 1999 Jul;73(1):31-40
    
    6. Kasri NN , Kocks SL, Verbert L, et al. Up-regulation of inositol 1,4,5-trisphosphate receptor type 1 is responsible for a decreased endoplasmic-reticulum Ca2+ content in presenilin double knock-out cells. Cell Calcium,2006 ,40:41-51.
    
    7. Terro F, Czech C, Esclaire FN,et al.eurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J Neurosci Res. 2002 Aug 15;69(4):530-539
    
    8. Mattson MP,Guo Q,Furukawa K,et al.Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem. 1998 ,70:1-14.
    
    9. Nelson O,Tu H,Lei T,et al.Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest. 2007,117:1230-1239.
    
    10. Van Broeck B,Van Broeckhoven C,et al. Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodeg- ener Dis.2007;4(5):349-365. Epub 2007 Jul 6.
    
    11. Dewji NN.Presenilin structure in mechanisms leading to Alzheimer's disease. J Alzheimers Dis. 2006 Nov;10(2-3):277-290.
    
    12. Furukawa K, Guo Q, Schellenberg GD,et al.Presenilin-1 mutation alters NGF-induced neurite outgrowth, calcium homeostasis, and transcription factor (AP-1) activation in PC12 cells.J Neurosci Res. 1998 Jun l;52(5):618-624.
    
    13. Ikeda K, Urakami K, Arai H, et al.The expression of presenilin 1 mRNA in skin fibroblasts and brains from sporadic Alzheimer's disease.Dement Geriatr Cogn Disord. 2000 Sep-Oct;11(5):245-250
    
    14. Xie J, Chang X, Zhang X, et al.Aberrant induction of Par-4 is involved in apoptosis of hippocampal neurons in presenilin-1 M146V mutant knock-in mice.Brain Res.2001 Oct 5;915(1):1-10.
    
    15. Dewji NN,Singer SJ.Specific intercellular binding of the beta-amyloid precursor protein to the presenilins induces intercellular signaling: its significance for Alzheimer's disease.. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15055-15060.
    
    16. Kubis AM,Janusz M.Alzheimer's disease: new prospects in therapy and applied experimental models.Postepy Hig Med Dosw (Online). 2008 Aug 5;62:372-92
    
    17. Wei H, Kang B, Wei W, et al. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005;1037:139-147.
    
    18. Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004;101:703-709.
    
    19. Kim H, Oh E, Im H, et al. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 2006;220:169-178.
    
    20. Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005;101:651-657.
    
    21. Kvolik S, Glavas-Obrovac L, Bares V,et al. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci 2005;77:2369-2383.
    
    22. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent,mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 2005;102:1147-1157.
    
    23. Matsuoka H, Kurosawa S, Horinouchi T, et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001;95:1467-1472.
    
    24. Chang YC, Chou MY. Cytotoxicity of halothane on human gingival fibroblast cultures in vitro. J Endod 2001;27:82-84.
    
    25. Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology 2006;104:988-994.
    
    26. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003;23:876-882.
    
    27. Culley DJ, Baxter MG, Yukhananov R, Crosby G Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology 2004;100:309-314.
    
    28. Wiltfang J,Esselmann H,Cupers P,et al.Elevation of beta-amyloid peptide 2-42 in sporadic and familial Alzheimer's disease and its generation in PS1 knockout cells. J Biol Chem. 2001 Nov 16;276(46):42645-42657.
    
    29. Eckert A,Marques CA,Keil U,et al. Increased apoptotic cell death in sporadic and genetic Alzheimer's disease.Ann NY Acad Sci. 2003 Dec;1010:604-609.
    
    30. Mattson MP,Chan SL.Neuronal and glial calcium signaling in Alzheimer's disease.Cell Calcium. 2003 Oct-Nov;34(4-5):385-397.
    
    31. Bezprozvanny Z,Mattson MP.Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci..2008 Jul 31.
    
    32. Katayama T,Imaizumi K,Manabe T,et al.Induction of neuronal death by ER stress in Alzheimer's disease.J Chem Neuroanat. 2004 Sep;28(1-2):67-78. Review.
    
    33. Mattson MP,Gary DS,Chan SL,et al.Perturbed endoplasmic reticulum function,synaptic apoptosis and the pathogenesis of Alzheimer's disease. Biochem Soc Symp.2001;(67):151-162
    
    34. Schapansky J,Olson K,Van Der Ploeg R,et al.NF-kappaB activated by ER calcium release inhibits Abeta-mediated expression of CHOP protein: enhancement by AD-linked mutant presenilin 1.Exp Neurol. 2007 Dec;208(2):169-176.
    
    35. Terro F,Czech C,Esclaire F,et al.Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J Neurosci Res. 2002 Aug 15;69(4):530-539.
    
    36. Gorlach A,Klappa P,Kietzmann T.The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control.Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1391-1418.
    
    37. Lin JH,Walter P,Yen TS.Endoplasmic reticulum stress in disease pathogenesis.Annu Rev Pathol. 2008;3:399-425.
    
    38. Verkhratsky A,Toescu EC.Endoplasmic reticulum Ca(2+) homeostasis and neuronal death.J Cell Mol Med. 2003 Oct-Dec;7(4):351-361.
    
    39. Kudo T,Katayama T,Imaizumi K,et al.The unfolded protein response is involved in the pathology of Alzheimer's disease.Ann N Y Acad Sci. 2002 Nov;977:349
    
    
    1 Antkowiak B,Kirschfeld K.Neural mechanisms of anesthesia.Anasthesiol Intensivmed Notfallmed Schmerzther. 2000 Dec;35(12):731-743.
    
    2 Blanck TJ,Haile M,Xu F,et al.Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model.Anesthesiology. 2000 Nov;93(5): 1285-1293.
    
    3 3.. Kapinya KJ,Press K,Dirnagl U.Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism?Neuroreport. 2002 Aug 7;13(11):1431-1435
    
    4 Wise-Faberowski L,Raizada MK,Sumners C.Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurancAnesth Analg. 2001 Nov;93(5):1281-1287.
    
    5 熊利泽,朱正华,董海龙,等.异氟烷预处理对大鼠局灶性脑缺血损伤的保护作用. 中华麻醉学杂志,2000,20(12):730-732.
    
    6 李继春,张联峰,王彦松,等。异氟烷预处理对大鼠全脑缺血再灌注损伤的保护 作用.中华麻醉学杂志,2003,23(7):584-586.
    
    7 吴明春,熊利泽,朱正华,等.异氟烷预处理脑保护作用的剂量-效应关系.第四军 医大学学报,2002,23:1357-1359.
    
    8 Heresco-Levyu.Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality.Prog Neuropsychopharmacol Biol Psychiatry. 2003 Oct;27(7): 1113-1123.
    
    9 Olney JW.New mechanisms of excitatory transmitter neurotoxicity. J Neural Transm Suppl. 1994;43:47-51
    
    10 Hynd MR,Scott HL,Dodd PR.Glutamate-mediated excitotoxicity and neurodegenera-M tion in Alzheimer's disease.Neurochem Int. 2004 Oct;45(5):583-595.
    
    11 Hara MR,Snyder SH.Cell signaling and neuronal death.. Annu Rev Pharmacol Toxicol. 2007;47:117-141
    
    12 Aarts MM,Tymianski M.Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004 Mar;4(2):137-147.
    
    13 Arundine M,Tymianski M.Molecular mechanisms of calcium-dependent neurodegener- ation in excitotoxicity. Cell Calcium. 2003 Oct-Nov;34(4-5):325-337.
    
    14 Urushitani M,Nakamizo T,Inoue R,et al.N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res. 2001 Mar 1;63(5):377-387
    
    15 Martin LJ,A1-Abdulla NA,Brambrink AM,et al.Neurodegeneration in excitotoxicity,global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis.Brain Res Bull. 1998 Jul 1;46(4):281-309
    
    16 Limbrick DD Jr,Sombati S,Delorenzo R.Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death.Cell Calcium. 2003 Feb;33(2):69-81
    
    17 Vergun O, Keelan J, Khodorov BI, et al. Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol, 1999,519:451-466.
    
    18 Houillier P,Eladari D,Maruani G,et al.Calcium-sensing receptors: physiology and pathology.Arch Pediatr. 2001 May;8(5):516-524.
    
    19 Msaouel P,Nixon AM,Bramos AP,et al.Extracellular calcium sensing receptor: an overview of physiology, pathophysiology and clinical perspectives.In Vivo. 2004 Nov-Dec;18(6):739-753.
    
    20 Chattopadhyay N,Brown EM.Cellular "sensing" of extracellular calcium (Ca(2+)(o)):emerging roles in regulating diverse physiological functions.Cell Signal. 2000 Jun;12(6):361-366.
    
    21 Kaplan DR,Miller FD.Neurotrophin signal transduction in the nervous system.Curr Opin Neurobiol. 2000 Jun;10:381-391.
    22 Slikker W Jr,Paule MG, Wright LK,et al.Systems biology approaches for toxicologyJ Appl Toxicol. 2007 May-Jun;27:201-217.
    
    23 Mikoshiba K.IP3 receptor/Ca2+ channel: from discovery to new signaling concepts.J Neurochem. 2007 Sep;102(5):1426-1446
    
    24 Szlufcik K,Missiaen L,Parys JB,et al. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences.Biol Cell. 2006 Jan;98(1):1-14.
    
    25 Bosanac I,Michikawa T,Mikoshiba K,et al.Structural insights into the regulatory mechanism of IP3 receptor.Biochim Biophys Acta. 2004 Dec 6;1742(1-3):89-102.
    
    26 Jacintho JD,Kovacic P.Neurotransmission and neurotoxicity by nitric oxide,catecholamines, and glutamate: unifying themes of reactive oxygen species and electron transfer.Curr Med Chem. 2003 Dec;10:2693-2703..
    
    27 Rojas H,Colina C,Ramos M,et al. Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytesJ Neurochem. 2007 Mar;100(5):1188-1202.
    
    28 Caldwell JH,Herin GA,Nagel G,et al.Increases in Intracellular Calcium Triggered by Channelrhodopsin-2 Potentiate the Response of Metabotropic Glutamate Receptor mGluR7.J Biol Chem. 2008 Sep 5;283(36):24300-24307.
    
    29 Pin JP,Kniazeff J,Goudet C,et al.The activation mechanism of class-C G-protein coupled receptors.Biol Cell. 2004 Jun;96:335-342.
    
    30 Koerner IP,Brambrink AM.Brain protection by anesthetic agents.Curr Opin Anaesthesiol. 2006 Oct;19:481-486.
    
    31 Bickler PE,Zhan X,Fahlman CS.Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca~(2+) and mitogen-activated protein kinase signaling.Anesthesiology. 2005 Sep;103:532-539.
    
    32 Pinheiro AC,Gomez RS,Guatimosim C,et al.The effect of sevoflurane on intracellular calcium concentration from cholinergic cells.Brain Res Bull. 2006 Mar 31;69:147-152.
    1. Reichle FM, Conzen PF.Halogenated inhalational anaesthetics.Best Pract Res Clin Anaesthesiol. 2003 Mar;17(1):29-46.
    
    2. Black GW.Clinical features of halothane and enflurane.Acta Anaesthesiol Belg.1980;31(3):207-214.
    
    3. Kharasch ED .Adverse drug reactions with halogenated anesthetics.Clin Pharmacol Ther. 2008 Jul;84(1):1581-62.
    
    4. Loscar M, Conzen P. Volatile anesthetics.Anaesthesist. 2004 Feb;53(2):183-198
    
    5. Feiss P.New halogenated agents: should I change my practice?Minerva Anestesiol.2000 May;66(5):264-267.
    
    6. Preckel B, Bolten J.Pharmacology of modern volatile anaesthetics.Best Pract Res Clin Anaesthesiol. 2005 Sep;19(3):331-348.
    
    7. Mashour GA, Forman SA, Campagna JA.Mechanisms of general anesthesia: from molecules to mind.Best Pract Res Clin Anaesthesiol. 2005 Sep;19(3):349-364.
    
    8. Ishizawa Y.Mechanisms of anesthetic actions and the brain.J Anesth. 2007;21(2):187-199.
    
    9. Mashour GAToward a general theory of unconscious processes in psychoanalysis and anesthesiology.J Am Psychoanal Assoc. 2008 Mar;56(1):203-222.
    
    10. Mashour GAJntegrating the science of consciousness and anesthesia.Anesth Analg.2006 Oct;103(4):975-982.
    
    11. Cariani P.Anesthesia, neural information processing, and conscious awareness.Conscious Cogn. 2000 Sep;9(3):387-395.
    
    12. Franks NP, Lieb WR.Molecular and cellular mechanisms of general anaesthesia.Nature.1994 Feb 17;367(6464):607-614.
    
    13. Komatsu H, Nogaya J, Ogli K.Volatile anaesthetics as central nervous system excitants.Ann Acad Med Singapore. 1994 Nov;23(6 Suppl):130-138
    14. Perouansky M, Pearce RA.Is anesthesia caused by potentiation of synaptic or intrinsic inhibition? Recent insights into the mechanisms of volatile anesthetics.J Basic Clin Physiol Pharmacol. 2000;11(2):83-107.
    
    15. Sekine S, Matsumoto S, Issiki A, et al.Changes in expression of GABAA alpha4 subunit mRNA in the brain under anesthesia induced by volatile and intravenous anesthetics.Neurochem Res. 2006 Mar;31(3):439-448.
    
    16. Sugimura M, Kitayama S, Morita K, et al.Effects of GABAergic agents on anesthesia induced by halothane, isoflurane, and thiamylal in mice.Pharmacol Biochem Behav.2002 May;72(1-2):111-116.
    
    17. McRoberts JA, Coutinho SV, Marviz6n JC,et al.Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats.Gastroenterology. 2001 Jun;120(7):1737-1748.
    
    18. Petrenko AB, Yamakura T, Baba H,et al.The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review.Anesth Analg. 2003 Oct;97(4):1108-1116.
    
    19. Rowley TJ, Flood P.Isoflurane prevents nicotine-evoked norepinephrine release from the mouse spinal cord at low clinical concentrations.Anesth Analg. 2008 Sep;107(3):885-889
    
    20. Galligan JJ.Ligand-gated ion channels in the enteric nervous system.Neurogastroenterol Motil. 2002 Dec;14(6):6116-23.
    
    21. Smart TG.Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation.Curr Opin Neurobiol. 1997 Jun;7(3):358-367.
    
    22. Antkiewicz-Michaluk L.Receptor and voltage-operated ion channels in the central nervous system.Pol J Pharmacol. 1995 May-Jun;47(3):253-264.
    
    23. Kress HG. Molecular and cellular actions of inhalation anesthetics.Anasthesiol Intensivmed Notfallmed Schmerzther. 1992 Apr;27(2):93-100.
    
    24. Felisberti F, Antkowiak B, Kirschfeld K.Effects of volatile anaesthetics on the membrane potential and ion channels of cultured neocortical astrocytes.Brain Res. 1997 Aug 22;766(1-2):56-65.
    
    25. Algotsson L, Messeter K, Nordstrom CH,et al.Cerebral blood flow and oxygen consumption during isoflurane and halothane anesthesia in man.Acta Anaesthesiol Scand. 1988 Jan;32(1):15-20.
    
    26. Kuroda Y, Murakami M, Tsuruta J,et al.Preservation of the ration of cerebral blood flow/metabolic rate for oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans.Anesthesiology. 1996 Mar;84(3):555-561.
    
    27. Young WL.Effects of desflurane on the central nervous system.Anesth Analg. 1992 Oct;75(4 Suppl):S32-37.
    
    28. Thiel A, Zickmann B, Zimmermann R,et al.Transcranial Doppler sonography: effects of halothane, enflurane and isoflurane on blood flow velocity in the middle cerebral artery.Br J Anaesth. 1992 Apr;68(4):388-393.
    
    29. Kadoi Y, Saito S, Takahashi K.The comparative effects of sevoflurane versus isoflurane on cerebrovascular carbon dioxide reactivity in patients with previous stroke.J Anesth. 2008;22(2):135-139.
    
    30. Pearce WJ, Scremin OU, Sonnenschein RR,The electroencephalogram, blood flow,and oxygen uptake in rabbit cerebrum.J Cereb Blood Flow Metab. 1981;1(4):419-28.
    
    31. Stullken EH Jr, Milde JH, Michenfelder JD,et al. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane, and thiopental.Anesthesiology. 1977 Jan;46(l):28-34
    
    32. Kochs E, Hoffman WE, Werner C,et al.Cerebral blood flow velocity in relation to cerebral blood flow, cerebral metabolic rate for oxygen, and electroencephalogram analysis during isoflurane anesthesia in dogs.Anesth Analg. 1993 Jun;76(6):1222-1226.
    
    33. Ball C, Westhorpe RN.Enflurane.Anaesth Intensive Care. 2007 Jun;35(3):325.
    
    34. Artru AA.Effects of enflurane and isoflurane on resistance to reabsorption of cerebrospinal fluid in dogs.Anesthesiology. 1984 Nov;61(5):529-533.
    
    35. Artru AA, Nugent M, Michenfelder JD.Enflurane causes a prolonged and reversible increase in the rate of CSF production in the dog.Anesthesiology. 1982 Oct;57(4):255-260.
    
    36. Kitaguchi K, Ohsumi H, Kuro M,et al.Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology.1993 Oct;79(4):704-709.
    
    37. Kuroda Y, Murakami M, Tsuruta J,et al.Preservation of the ration of cerebral blood flow/metabolic rate for oxygen during prolonged anesthesia with isoflurane,sevoflurane, and halothane in humans.Anesthesiology. 1996 Mar;84(3):555-561.
    
    38. Voss LJ, Ludbrook G, Grant C,et al. Cerebral cortical effects of desflurane in sheep:comparison with isoflurane, sevoflurane and enflurane.Acta Anaesthesiol Scand. 2006 Mar;50(3):313-319.
    
    39. Mielck F, Stephan H, Buhre W,et al.Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans.Br J Anaesth. 1998 Aug;81(2):155-160.
    
    40. Lutz LJ, Milde JH, Milde LN.The response of the canine cerebral circulation to hyperventilation during anesthesia with desflurane.Anesthesiology. 1991 Mar;74(3):504-507.
    
    41. Figurov A, Pozzo-Miller LD, Olafsson P,et al.Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus.Nature.1996 Jun 20;381(6584):706-709.
    
    42. Lu B, Chow A.Neurotrophins and hippocampal synaptic transmission and plasticity.J Neurosci Res. 1999 Oct 1;58(1):76-87.
    
    43. Spedding M, Gressens P.Neurotrophins and cytokines in neuronal plasticity.Novartis Found Symp. 2008;289:222-33; discussion 233-240.
    
    44. Sacktor TC.PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage.Prog Brain Res. 2008;169:27-40.
    
    45. Kelleher RJ 3rd, Govindarajan A, Tonegawa S.Translational regulatory mechanisms in persistent forms of synaptic plasticity.Neuron. 2004 Sep 30;44(1):59-73.
    
    46. Davis S, Bozon B, Laroche S.How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning?Behav Brain Res. 2003 Jun 16;142(1-2):17-30.
    
    47. Komatsu H, Nogaya J, Anabuki D, et al.Memory facilitation by posttraining exposure to halothane, enflurane, and isoflurane in ddN mice.Anesth Analg. 1993 Mar;76(3):609-612.
    
    48. Komatsu H, Nogaya J, Kuratani N, et al.Repetitive post-training exposure to enflurane modifies spatial memory in mice.Anesthesiology. 1998 Nov;89(5):1184-1190.
    
    49. Wakasugi M, Hirota K, Roth SH, et al.The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CA1 of the rat hippocampus in vitro.Anesth Analg. 1999 Mar;88(3):676-680
    
    50. Jevtovic-Todorovic V, Hartman RE, Izumi Y,et al.Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits.J Neurosci. 2003 Feb 1;23(3):876-82.
    
    51. Simon W, Hapfelmeier G, Kochs E,et al.Isoflurane blocks synaptic plasticity in the mouse hippocampus.Anesthesiology. 2001 Jun;94(6):1058-1065.
    
    52. Culley DJ, Baxter M, Yukhananov R, et al.The memory effects of general anesthesia persist for weeks in young and aged rats.Anesth Analg. 2003 Apr;96(4):1004-1009,table of contents.
    
    53. Culley DJ, Baxter MG, Yukhananov R,et al.Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004 Feb;100(2):309-314.
    
    54. Alkire MT, Nathan SV, McReynolds JR.Memory enhancing effect of low-dose sevoflurane does not occur in basolateral amygdala-lesioned rats.Anesthesiology. 2005 Dec;103(6):1167-1173.
    
    55. Futterer CD, Maurer MH, Schmitt A,et al.Alterations in rat brain proteins after desflurane anesthesia.Anesthesiology. 2004 Feb;100(2):302-308.
    
    56. Head BP, Patel P.Anesthetics and brain protection.Curr Opin Anaesthesiol. 2007 Oct;20(5):395-399.
    
    57. Sanders RD, Ma D, Maze M.Anaesthesia induced neuroprotection.Best Pract Res Clin Anaesthesiol.2005 Sep;19(3):461-474
    
    58. Kim JU, Lee HJ, Kang HH,et al.Protective effect of isoflurane anesthesia on noise-induced hearing loss in mice.Laryngoscope. 2005 Nov;115(11):1996-1999.
    
    59. Blanck TJ, Haile M, Xu F,et al.Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model.Anesthesiology. 2000 Nov;93(5):1285-1293.
    
    60. Kapinya KJ, Lowl D, Futterer C, et al.Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent.Stroke.2002 Jul;33(7):1889-1898
    
    61. Strasser A, O'Connor L, Dixit VM.Apoptosis signaling.Annu Rev Biochem.2000;69:217-245.
    
    62. Wang X.The expanding role of mitochondria in apoptosis.Genes Dev. 2001 Nov 15;15(22):2922-2933
    
    63. Desagher S, Martinou JC.Mitochondria as the central control point of apoptosis.Trends Cell Biol. 2000 Sep;10(9):369-77.
    
    64. Ashkenazi A, Dixit VM.Death receptors: signaling and modulation.Science. 1998 Aug 28;281(5381):1305-1308.
    
    65. Sun XM, MacFarlane M, Zhuang J,et al.Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis.J Biol Chem. 1999 Feb 19;274(8):5053-5060.
    
    66. Nakamura K, Bossy-Wetzel E, Burns K,et al.Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis.J Cell Biol. 2000 Aug 21;150(4):731-740
    
    67. Conforti L, Adalbert R, Coleman MP.Neuronal death: where does the end begin?Trends Neurosci. 2007 Apr;30(4):159-66
    
    68. Eldadah BA, Faden Al.Caspase pathways, neuronal apoptosis, and CNS injury.J Neurotrauma. 2000 Oct;17(10):811-829.
    
    69. Houillier P,Eladari D,Maruani G,et al.Calcium-sensing receptors: physiology and pathology.Arch Pediatr. 2001 May;8(5):516-524.
    
    70. Msaouel P,Nixon AM,Bramos AP,et al.Extracellular calcium sensing receptor: an overview of physiology, pathophysiology and clinical perspectives.In Vivo. 2004 Nov-Dec;18(6):739-753.
    
    71. Chattopadhyay N,Brown EM.Cellular "sensing" of extracellular calcium (Ca(2+)(o)):emerging roles in regulating diverse physiological functions.Cell Signal. 2000 Jun;12(6):361-366.
    
    72. Kaplan DR,Miller FD.Neurotrophin signal transduction in the nervous system.Curr Opin Neurobiol. 2000 Jun;10:381-391.
    
    73. Slikker W Jr,Paule MG,Wright LK,et al.Systems biology approaches for toxicology.J Appl Toxicol. 2007 May-Jun;27:201-217.
    
    74. Mikoshiba K.IP3 receptor/Ca2+ channel: from discovery to new signaling concepts.J Neurochem. 2007 Sep;102(5):1426-1446
    
    75. Szlufcik K,Missiaen L,Parys JB,et al. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences.Biol Cell. 2006 Jan;98(1):1-14.
    
    76. Bosanac I,Michikawa T,Mikoshiba K,et al.Structural insights into the regulatory mechanism of IP3 receptor.Biochim Biophys Acta. 2004 Dec 6;1742(1-3):89-102.
    
    77. Annunziato L, Amoroso S, Pannaccione A,Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions.Toxicol Lett.2003 Apr 4;139(2-3):125-133.
    78. Murphy AN, Fiskum G.Bcl-2 and Ca(2+)-mediated mitochondrial dysfunction in neural cell death.Biochem Soc Symp. 1999;66:33-41
    
    79. Ichimiya M, Chang SH, Liu H,Effect of Bcl-2 on oxidant-induced cell death and intracellular Ca2+ mobilization.Am J Physiol. 1998 Sep;275(3 Pt 1):C832-839.
    
    80. Zhu L, Ling S, Yu XD, Venkatesh LK, et al.Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2.J Biol Chem. 1999 Nov 19;274(47):33267-33273.
    
    81. Nutt LK, Chandra J, Pataer A,et al.Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosisJ Biol Chem. 2002 Jun 7;277(23):20301-20308.
    
    82. Scorrano L, Oakes SA, Opferman JT, et al.BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis.Science. 2003 Apr 4;300(5616):135-139.
    
    83. Nutt LK, Pataer A, Pahler J,et al.Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores.J Biol Chem. 2002 Mar 15;277(11):9219-9125
    
    84. Pan Z, Bhat MB, Nieminen AL,et al.Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosisJ Biol Chem. 2001 Aug 24;276(34):32257-32263
    
    85. Oakes SA, Scorrano L, Opferman JT, et al.Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum.Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):105-110.
    
    86. Wei H, Kang B, Wei W, et al. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005;1037:139-147.
    
    87. Eckenhoff RG, Johansson JS, Wei H, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004;101:703-709.
    
    88. Kim H, Oh E, Im H, et al. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 2006;220:169-178.
    
    89. Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronal degeneration:an evaluation in organotypic hippocampal slice cultures. Anesth Analg 2005;101:651-657.
    90. Kvolik S, Glavas-Obrovac L, Bares V, Karner I. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci 2005;77:2369-2383.
    
    91. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent,mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 2005;102:1147-1157.
    
    92. Matsuoka H, Kurosawa S, Horinouchi T, et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001;95:1467-1472.
    
    93. Chang YC, Chou MY. Cytotoxicity of halothane on human gingival fibroblast cultures in vitro. J Endod 2001;27:82-84.
    
    94. Xie Z, Dong Y, Maeda U, et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology 2006;104:988-994.
    
    95. Liang Ge,Wang Qiujun,Li Yujuan,et al.A presenilin-1 mutation renders neurons vulnerable to isoflurane toxicity. Anesth Analg. 2008 Feb;106(2):492-500
    
    96. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003;23:876-882.
    
    97. Culley DJ, Baxter MG, Yukhananov R, Crosby G. Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology 2004;100:309-314.
    
    98. Culley DJ, Baxter M, Yukhananov R, Crosby G. The memory effects of general anesthesia persist for weeks in young and aged rats.[see comment]. Anesth Analg 2003;96:1004-1009.
    
    99. Bianchi SL, Tran T, Liu C, et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 2007.
    
    100.Jevtovic-Todorovic V, Hartman RE, et al.Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits.J Neurosci. 2003 Feb 1;23(3):876-882.
    101.Wise-Faberowski L, Zhang H, Ing R, et al.Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures.Anesth Analg. 2005 Sep;101(3):651-657
    102.Wise-Faberowski L, Raizada MK, Sumners C.Desflurane and sevoflurane attenuate oxygen and glucose deprivation-induced neuronal cell death.J Neurosurg Anesthesiol.2003 Jul;15(3):193-199.
    
    103.Wise-Faberowski L, Raizada MK, Sumners C.Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg.2001 Nov;93(5):1281-1287.
    
    104.Kawaguchi M, Drummond JC, Cole DJ, et al.Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia.Anesth Analg. 2004 Mar;98(3):798-805,
    
    105.Huang Y, Zuo Z.Effects of isoflurane on oxygen-glucose deprivation-induced changes of gene expression profiling in glial-neuronal cocultures.Acta Anaesthesiol Scand.2005 Nov;49(10):1544-1551
    
    106.Canas PT, Velly LJ, Labrande CN,et al.Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.Anesthesiology. 2006 Nov;105(5):990-998.
    
    107.De Deyne C, Joly LM, Ravussin P. Newer inhalation anaesthetics and neuro-anaesthesia: what is the place for sevoflurane or desflurane.Ann Fr Anesth Reanim.2004 Apr;23(4):367-374.
    
    108.Zhan X, Fahlman CS, Bickler PE. Isoflurane neuroprotection in rat hippocampal slices decreases with aging: changes in intracellular Ca2+ regulation and N-methyl-D-aspartate receptor-mediated Ca2+ influx.Anesthesiology. 2006 May;104(5):995-1003
    109.Wise-Faberowski L, Aono M, Pearlstein RD,et alApoptosis is not enhanced in primary mixed neuronal/glial cultures protected by isoflurane against N-methyl-D-aspartate excitotoxicity.Anesth Analg. 2004 Dec;99(6):1708-1714,
    
    110.Kaneko T, Yokoyama K, Makita K.Late preconditioning with isoflurane in cultured rat cortical neurones.Br J Anaesth. 2005 Nov;95(5):662-668
    
    111.Li L, Peng L, Zuo Z.Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain.Eur J Pharmacol. 2008 May 31;586(1-3):106-113
    
    112.Wei H, Liang G, Yang H.Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity.Neurosci Lett. 2007 Sep 20;425(1):59-62.