光学相干层析术理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析术(Optical Coherence Tomography, OCT)技术是一种全新的成像模式,它可以对生物组织等实现非侵入式、高分辨率、高灵敏度和实时的截面层析成像,因而有希望在生物医学研究及临床诊断方面实现“光学活检”的功能。本论文就OCT系统的设计、成像性能的拓展及其在生物医学领域的应用等方面开展了研究。
     首先,设计搭建了一套光纤型OCT成像实验系统,并结合该系统详细分析了OCT技术的成像分辨率、成像时间、探测灵敏度、成像深度等性能参数,同时给出了系统设计时需要注意的相关事项。实际测得该系统的纵向分辨率为16μm,系统灵敏度为-90dB。然后利用该系统对人体多个部位的皮肤进行了活体成像研究。从获得的图像可以清晰的分辨出角质层(掌趾部位)、表皮层、真皮上层等皮肤结构,从而验证了OCT用于表层皮肤形态结构研究的可行性。
     其次,提出了一种利用OCT纵向扫描信号的衰减特性提取生物组织的散射特性参数的方案,该方法是利用OCT模型对不同区域内的纵向扫描信号进行曲线拟合来实现的。在定态聚焦情况下,在对已知散射特性的组织模拟液进行OCT成像之后,对比分析了OCT单次散射模型和多次散射模型在描述不同散射强度样品的OCT信号方面的适用性。根据分析结果对OCT模型进行了修正。最后,利用上述方法获得了老鼠肝脏和人体皮肤各组织层的散射系数,实现了OCT技术的功能性扩展。
     再次,提出了利用随机相幅矢量和模型分析对数表示下OCT信号的散斑统计特性,并在不同的聚焦状态下对具有不同散射特性的组织模拟液进行了OCT成像的实验。实验结果与理论分析相吻合,采用对数的形式表示OCT信号以及采用较高数值孔径的显微物镜具有抑制散斑噪声的作用。另外,对数形式下的散斑特性与介质的散射特性之间存在一定的相关性,该相关性为提取生物组织的散射特性提供了一种新的途径。
     最后,提出了一种基于Fourier变换以及多项式拟合的方法从OCT信号中的色散项获得生物组织结构与功能的信息。该方法通过对OCT的干涉包络进行Fourier变换,再将得到的相位谱进行多项式拟合以实现色散信息的提取。数值模拟以及相关实验均证明了该方法的可行性。该研究结果不仅有助于实现动态的色散补偿,而且可以用来区分不同的生物组织,以及同一生物组织的不同生理状态等。
Optical coherence tomography (OCT) is a fundamentally new type of optical imaging modality, which performs non-invasive, high-resolution, high sensitivity, high speed, cross-sectional tomographic imaging, and enables "optical biopsy". The work is focused on the design of OCT system, the analysis of its performance, and the exploration of OCT application in biomedical areas.
     First of all, an experimental OCT system was designed. The fundamental laws governing the resolution, imaging time, sensitivity, and imaging depth of OCT were analyzed in detail, and the related design notes were given out. Finally,16μm axial resolution and-90 dB detection sensitivity was obtained. With the OCT system, we investigated the morphologic structure of in vivo skin in several locations. Structures of the stratum corneum (plamoplantar), the epidermis, and the upper dermis can be distinguished from the obtained cross-sectional images. Therefore, it was demonstrated that OCT is a feasible method for investigation of morphologic structure of superficial layers of human skin.
     Second, it was shown that the optical properties of biological tissue can be determined with OCT by fitting a model to the OCT signal from a region of interest. The validity of the single-scattering and multiple-scattering model for both the highly scattering and weakly scattering media was studied using calibrated samples in the fixed focus geometry. According to the experiment results, a proper correction for the confocal properties of the sample arm was presented. Finally, scattering properties of in vitro rat liver and in vivo human skin were obtained.
     Third, it was proposed that the statistics properties of the speckle can be discussed theoretically for the OCT signals in the logarithmic scale with the random phasor sum theorem. In the experiments, OCT signals of tissue phantoms with different scattering properties were analyzed under two different focusing conditions. It was found that the effect of the speckle noise can be suppressed by displaying OCT images in the logarithmic scale and using the objective lens with higher numerical aperture. It was also demonstrated that the speckle properties is correlated with the scattering properties of the tested sample, which may provide a new way to characterize the scattering properties of biological tissue.
     Finally, it was found that a method based on the Fourier transform and the polynomial fit can be used to extract the information about the structure and function of bio-tissues from the dispersion signal in OCT. The interferogram envelope in OCT was Fourier transformed to the frequency domain, and then the second order dispersion information was obtained by performing a polynomial fit to the phase spectrum. Theoretical simulation and experimental data validated the method. The obtained results in this work not only can be used for the dynamical dispersion compensation, but also provide a way to characterize different tissues, and different physiological conditions.
引文
[1]P. N. Prasad. Introduction to biophotonics. Hoboken, NJ:Wiley-Interscience,2003
    [2]T. Vo-Dinh. Biomedical photonics handbook. Boca Raton, Fla.:CRC Press,2003
    [3]J. G. Fujimoto, D. L. Farkas. Biomedical optical imaging. Oxford; New York:Oxford University Press,2009
    [4]W. R. Hedrick, D. L. Hykes, D. E. Starchman. Ultrasound physics and instrumentation. St. Louis, Mo.:Elsevier Mosby,2005
    [5]T. L. Szabo. Diagnostic ultrasound imaging:inside out. Amsterdam; Boston:Elsevier Academic Press,2004
    [6]S. Engel, X. Zhang, B. Wandell. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature,1997,388(6637):68-71
    [7]C. T. Moonen, P. C. van Zijl, J. A. Frank, et al. Functional magnetic resonance imaging in medicine and physiology. Science,1990,250(4977):53-61
    [8]R. B. Tootell, J. B. Reppas, A. M. Dale, et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature,1995,375(6527): 139-141
    [9]L. V. Wang, H.-i. Wu. Biomedical optics:principles and imaging. Hoboken, N.J.: Wiley-Interscience,2007
    [10]D. Huang, E. A. Swanson, C. P. Lin, et al. Optical coherence tomography. Science,1991, 254(5035):1178-1181
    [11]W. Drexler, J. G. Fujimoto. Optical coherence tomography:technology and applications. Berlin:Springer,2008
    [12]S. A. Boppart, B. E. Bouma, C. Pitris, et al. In vivo cellular optical coherence tomography imaging. Nat Med,1998,4(7):861-865
    [13]W. Drexler, U. Morgner, R. K. Ghanta, et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med,2001,7(4):502-507
    [14]E. M. Frohman, J. G. Fujimoto, T. C. Frohman, et al. Optical coherence tomography:a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol.2008,4(12): 664-675
    [15]J. G. Fujimoto. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol,2003,21(11):1361-1367
    [16]A. Diaspro. Confocal and two-photon microscopy:foundations, applications, and advances. New York:Wiley-Liss,2002
    [17]R. Juskaitis, T. Wilson, M. A. Neil, et al. Efficient real-time confocal microscopy with white light sources. Nature,1996,383(6603):804-806
    [18]J. B. Pawley. Handbook of biological confocal microscopy. New York, NY:Springer, 2006
    [19]W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science,1990,248(4951):73-76
    [20]S. Maiti, J. B. Shear, R. M. Williams, et al. Measuring serotonin distribution in live cells with three-photon excitation. Science,1997,275(5299):530-532
    [21]E. Betzig, J. K. Trautman. Near-Field Optics:Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit. Science,1992,257(5067):189-195
    [22]E. Betzig, J. K. Trautman, T. D. Harris, et al. Breaking the Diffraction Barrier:Optical Microscopy on a Nanometric Scale. Science,1991,251(5000):1468-1470
    [23]M. A. O'Leary, D. A. Boas, B. Chance, et al. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography. Opt Lett,1995,20(5): 426-428
    [24]B. Bailey, D. L. Farkas, D. L. Taylor, et al. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature,1993,366(6450):44-48
    [25]W. A. Carrington, R. M. Lynch, E. D. Moore, et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science,1995,268(5216): 1483-1487
    [26]孟婕,丁志华,周琳.光学相干层析成像轴向超分辨研究.光子学报,2008,37(3):533-536
    [27]G. J. Tearney, B. E. Bouma, J. G. Fujimoto. High-speed phase-and group-delay scanning with a grating-based phase control delay line. Opt Lett,1997,22(23):1811-1813
    [28]黄丽娜,俞晓峰,丁志华.光学相干层析成像系统中双通快速扫描光学延迟线的数值分析.光子学报,2005,34(11):1663-1665
    [29]王玲,丁志华,史国华,等.基于快速扫描延迟线相位调制的光纤型光学相干层析系统.中国激光,2008,35(3):472-476
    [30]A. Kowalevicz, T. Ko, I. Hartl, et al. Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt. Express,2002,10(7):349-353
    [31]E. M. Anger, A. Unterhuber, B. Hermann, et al. Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res,2004,78(6):1117-1125
    [32]T. Ko, D. Adler, J. Fujimoto, et al. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Opt Express,2004,12(10): 2112-2119
    [33]A. J. Witkin, J. S. Duker, T. H. Ko, et al. Ultrahigh resolution optical coherence tomography of birdshot retinochoroidopathy. Br J Ophthalmol,2005,89(12):1660-1661
    [34]Y. Chen, A. D. Aguirre, P. L. Hsiung, et al. Ultrahigh resolution optical coherence tomography of Barrett's esophagus:preliminary descriptive clinical study correlating images with histology. Endoscopy,2007,39(7):599-605
    [35]Y. Chen, L. N. Vuong, J. Liu, et al. Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration. Opt Express,2009, 17(5):4046-4060
    [36]R. Leitgeb, C. Hitzenberger, A. Fercher. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express,2003,11(8):889-894
    [37]M. V. Sarunic, B. E. Applegate, J. A. Izatt. Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography. Opt. Lett.,2006,31(16): 2426-2428
    [38]R. Huber, D. C. Adler, V. J. Srinivasan, et al. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett.,2007,32(14):2049-2051
    [39]B. Liu, M. E. Brezinski. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt,2007,12(4):044007
    [40]M. Wojtkowski, B. L. Sikorski, I. Gorczynska, et al. Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography. Opt Express,2009,17(5):4189-4207
    [41]S. Yun, G. Tearney, J. de Boer, et al. High-speed optical frequency-domain imaging. Opt. Express,2003,11(22):2953-2963
    [42]S. M. Motaghian Nezam, B. J. Vakoc, A. E. Desjardins, et al. Increased ranging depth in optical frequency domain imaging by frequency encoding. Opt Lett,2007,32(19):2768-2770
    [43]W. Y. Oh, S. H. Yun, B. J. Vakoc, et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt. Express,2008,16(2): 1096-1103
    [44]B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med,2009, 15(10):1219-1223
    [45]步鹏,王向朝,佐佐木修己.正弦相位调制的频域光学相干层析成像.光学学报,2007,27(8):1470-1474
    [46]段炼,何永红,朱锐,等.三维谱域光学相干层析成像系统的研制.中国激光,2009,36(10):2528-2533
    [47]T. Wakabayashi, Y. Oshima, H. Fujimoto, et al. Foveal Microstructure and Visual Acuity after Retinal Detachment Repair Imaging Analysis by Fourier-Domain Optical Coherence Tomography. Ophthalmology,2009
    [48]48.A. Aydin, G. Wollstein, L. L. Price, et al. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology,2003, 110(8):1506-1511
    [49]J. R. Wilkins, C. A. Puliafito, M. R. Hee, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology,1996,103(12):2142-2151
    [50]史国华,丁志华,戴云,等.光纤型光学相干层析技术系统的眼科成像.中国激光,2008,35(9):1429-1431
    [51]袁韬,薛平,谌一,等.光学相干层析成像系统的实验研究.光学学报,1999,19(10):1386-1389
    [52]苑佳丽,刘瑞华,高旋,等.视网膜光学相干层析图像的预处理方法.光学学报,2007,27(3):419-423
    [53]K. Kobayashi, J. A. Izatt, M. D. Kulkarni, et al. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography:preliminary results. Gastrointest Endosc,1998,47(6):515-523
    [54]C. Pitris, C. Jesser, S. A. Boppart, et al. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J Gastroenterol,2000, 35(2):87-92
    [55]Y. Chen, A. D. Aguirre, P. L. Hsiung, et al. Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues. Opt Express,2008, 16(4):2469-2485
    [56]杨亚良,丁志华,孟婕,等.适合于内窥成像的共路型光学相干层析成像系统.光学学报,2008,28(5):955-959
    [57]G. J. Tearney, M. E. Brezinski, S. A. Boppart, et al. Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. Circulation,1996,94(11):3013
    [58]O. C. Raffel, F. M. Merchant, G. J. Tearney, et al. In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J,2008,29(14):1721-1728
    [59]G. J. Tearney, B. E. Bouma. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis. Opt Lett,2002,27(7):533-535
    [60]M. E. Brezinski, G. J. Tearney, N. J. Weissman, et al. Assessing atherosclerotic plaque morphology:comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart,1997,77(5):397-403
    [61]S. M. Motaghian Nezam, C. Joo, G. J. Tearney, et al. Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy. Opt Express,2008,16(22):17186-17195
    [62]G. J. Tearney, M. E. Brezinski, J. F. Southern, et al. Optical biopsy in human urologic tissue using optical coherence tomography. J Urol,1997,157(5):1915-1919
    [63]A. V. D'Amico, M. Weinstein, X. Li, et al. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology, 2000,55(5):783-787
    [64]M. C. Pierce, J. Strasswimmer, B. H. Park, et al. Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol,2004,123(3):458-463
    [65]J. Welzel. Optical coherence tomography in dermatology:a review. Skin Res Technol, 2001,7(1):1-9
    [66]J. Welzel, M. Bruhns, H. H. Wolff. Optical coherence tomography in contact dermatitis and psoriasis. Arch Dermatol Res,2003,295(2):50-55
    [67]J. Welzel, C. Reinhardt, E. Lankenau, et al. Changes in function and morphology of normal human skin:evaluation using optical coherence tomography. Br J Dermatol,2004, 150(2):220-225
    [68]J. Welzel, E. Lankenau, R. Birngruber, et al. Optical coherence tomography of the human skin. J Am Acad Dermatol,1997,37(6):958-963
    [69]J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner. Subsurface imaging of living skin with optical coherence microscopy. Dermatology,1995,191(2):93-98
    [70]刘丽红,刘凡光,顾瑛.光学相干层析成像术在皮肤科的应用.中国激光医学杂志,2005,14(5):331-333
    [71]A. Baumgartner, S. Dichtl, C. K. Hitzenberger, et al. Polarization-sensitive optical coherence tomography of dental structures. Caries Res,2000,34(1):59-69
    [72]C. Xu, D. Marks, M. Do, et al. Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. Opt Express, 2004.12(20):4790-4803
    [73]J. M. Schmitt, S. H. Xiang, K. M. Yung. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A,1998,15(9):2288-2296
    [74]D. J. Faber, E. G. Mik, M. C. Aalders, et al. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett,2003,28(16):1436-1438
    [75]J. F. de Boer, T. E. Milner. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt,2002,7(3):359-371
    [76]76. J. F. de Boer, T. E. Milner, M. J. van Gemert, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett, 1997,22(12):934-936
    [77]Z. Chen, T. E. Milner, S. Srinivas, et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett.,1997,22(14):1119-1121
    [78]J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, et al. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett.,1997, 22(18):1439-1441
    [79]Y. K. Tao, K. M. Kennedy, J. A. Izatt. Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Opt Express, 2009,17(5):4177-4188
    [80]Y. Zhao, Z. Chen, C. Saxer, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett,2000,25(2):114-116
    [81]俞晓峰,丁志华,陈宇恒,等.光学相干层析多普勒成像功能拓展研究.光学学报,2006,26(11):1717-1720
    [82]W. Drexler, J. G. Fujimoto. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res,2008,27(1):45-88
    [83]83.K. Bizheva, R. Pflug, B. Hermann, et al. Optophysiology:depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A,2006,103(13):5066-5071
    [84]李鹏,高万荣.光学相干层析系统的信噪比分析及优化.中国激光,2008,35(4):635-640
    [85]朱晓农,毛幼馨,梁艳梅,等.光学相干层析系统噪音分析(Ⅰ)——理论与计算.光子学报,2007,36(3):452-456
    [86]朱晓农,毛幼馨,梁艳梅,等.光学相干层析系统噪音分析(Ⅱ)——时域OCT和频域OCT.光子学报,2007,36(3):457-461
    [87]B. E. Bouma, G. J. Tearney. Handbook of optical coherence tomography. New York: Marcel Dekker,2002
    [88]J. Strasswimmer, M. C. Pierce, B. H. Park, et al. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt,2004,9(2):292-298
    [89]S. Sakai, M. Yamanari, A. Miyazawa, et al. In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin. J Invest Dermatol.2008,128(7):1641-1647
    [90]Y. Zhao, Z. Chen, C. Saxer, et al. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt Lett,2000,25(18):1358-1360
    [91]Y. Wang, B. A. Bower, J. A. Izatt, et al. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt,2008, 13(6):064003
    [92]Y. Wang, A. Lu, J. Gil-Flamer, et al. Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol, 2009,93(5):634-637
    [93]C. Xu, J. Ye, D. L. Marks, et al. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt Lett,2004,29(14):1647-1649
    [94]J. M. Schmitt, A. Knuttel, R. F. Bonner. Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt.,1993.32(30):6032-6042
    [95]A. Knuttel, M. Boehlau-Godau. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt,2000,5(1):83-92
    [96]D. Levitz, L. Thrane, M. Frosz, et al. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt. Express,2004,12(2): 249-259
    [97]F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, et al. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging,2005,24(10):1369-1376
    [98]C. Xu, J. M. Schmitt, S. G. Carlier, et al. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt,2008,13(3):034003
    [99]王凯,丁志华,王玲.基于光学相干层析术的组织光学性质测量.光子学报,2008,37(3):523-527
    [100]J. M. Schmitt, A. Knuttel. Model of optical coherence tomography of heterogeneous tissue. J. Opt. Soc. Am. A,1997,14(6):1231-1242
    [101]L. Thrane, H. T. Yura, P. E. Andersen. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A,2000,17(3): 484-490
    [102]D. Faber, F. van der Meer, M. Aalders, et al. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt. Express, 2004,12(19):4353-4365
    [103]J. W. Goodman. Statistical optics. New York:Wiley,2000
    [104]J. M. Schmitt, S. H. Xiang, K. M. Yung. Speckle in Optical Coherence Tomography. Journal of Biomedical Optics,1999,4(1):95-105
    [105]J. C. Dainty. Laser speckle and related phenomena. Berlin; New York:Springer-Verlag, 1984
    [106]J. W. Goodman. Some fundamental properties of speckle. J. Opt. Soc. Am.,1976,66(11): 1145
    [107]T. R. Hillman, S. G. Adie, V. Seemann, et al. Correlation of static speckle with sample properties in optical coherence tomography. Opt Lett,2006,31(2):190-192
    [108]K. W. Gossage, C. M. Smith, E. M. Kanter, et al. Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys Med Biol,2006,51(6):1563-1575
    [109]A. E. Desjardins, B. J. Vakoc, A. Bilenca, et al. Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging. Opt Lett,2007, 32(11):1560-1562
    [110]D. D. Duncan, S. J. Kirkpatrick, R. K. Wang. Statistics of local speckle contrast. J. Opt. Soc. Am. A,2008,25(1):9-15
    [111]V. V. Tuchin. Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics. Journal of Biomedical Optics,1999,4(1):106-124
    [112]P. Zakharov, A. Volker, A. Buck, et al. Quantitative modeling of laser speckle imaging. Opt Lett,2006,31(23):3465-3467
    [113]Y. Pan, R. Birngruber, R. Engelhardt. Contrast limits of coherence-gated imaging in scattering media. Appl. Opt.,1997,36(13):2979-2983
    [114]M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner. Contrast and resolution in the optical coherence microscopy of dense biological tissue. Proc. SPIE,1995,2387:193-203
    [115]M. Bashkansky, J. Reintjes. Statistics and reduction of speckle in optical coherence tomography. Opt. Lett.,2000,25(8):545-547
    [116]A. E. Desjardins, B. J. Vakoc, G. J. Tearney, et al. Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging. Opt. Express,2006,14(11): 4736-4745
    [117]N. Iftimia, B. E. Bouma, G. J. Tearney. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding. Journal of Biomedical Optics, 2003,8(2):260-263
    [118]A. E. Desjardins, B. J. Vakoc, W. Y. Oh, et al. Angle-resolved Optical Coherence Tomography with sequential angular selectivity for speckle reduction. Opt. Express,2007, 15(10):6200-6209
    [119]M. Pircher, E. Gotzinger, R. Leitgeb, et al. Speckle reduction in optical coherence tomography by frequency compounding. Journal of Biomedical Optics,2003,8(3):565-569
    [120]D. C. Adler, T. H. Ko, J. G. Fujimoto. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett.,2004,29(24): 2878-2880
    [121]J. Rogowska, M. E. Brezinski. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Phys Med Biol,2002,47(4): 641-655
    [122]A. Ozcan, A. Bilenca, A. E. Desjardins, et al. Speckle reduction in optical coherence tomography images using digital filtering. J. Opt. Soc. Am. A,2007,24(7):1901-1910
    [123]P. Puvanathasan, K. Bizheva. Speckle noise reduction algorithm for optical coherence tomography based on interval type Ⅱ fuzzy set. Opt. Express,2007,15(24):15747-15758
    [124]沈婷梅,顾瑛,王天时,等.光学相干层析成像中散斑噪声减小算法.中国激光,2008,35(9):1437-1440
    [125]S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, et al. Quantitative temporal speckle contrast imaging for tissue mechanics. J. Opt. Soc. Am. A,2007,24(12):3728-3734
    [126]B. Karamata, K. Hassler, M. Laubscher, et al. Speckle statistics in optical coherence tomography. J. Opt. Soc. Am. A,2005,22(4):593-596
    [127]杨亚良,丁志华.用于全场光学相干层析成像的无色散相移器研究.光学学报,2007,27(8):1460-1464
    [128]C. K. Hitzenberger, A. Baumgartner, A. F. Fercher. Dispersion induced multiple signal peak splitting in partial coherence interferometry. Optics Communications,1998,154(4): 179-185
    [129]C. K. Hitzenberger, A. Baumgartner, W. Drexler, et al. Dispersion Effects in Partial Coherence Interferometry:Implications for Intraocular Ranging. Journal of Biomedical Optics,1999,4(1):144-151
    [130]T. Hillman, D. Sampson. The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography. Opt. Express,2005,13(6): 1860-1874
    [131]A. Fercher, C. Hitzenberger, M. Sticker, et al. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography. Opt. Express,2001, 9(12):610-615
    [132]E. D. J. Smith, A. V. Zvyagin, D. D. Sampson. Real-time dispersion compensation in scanning interferometry. Opt. Lett.,2002,27(22):1998-2000
    [133]D. L. Marks, A. L. Oldenburg, J. J. Reynolds, et al. Autofocus Algorithm for Dispersion Correction in Optical Coherence Tomography. Appl. Opt.,2003,42(16):3038-3046
    [134JD. L. Marks, A. L. Oldenburg, J. J. Reynolds, et al. Digital Algorithm for Dispersion Correction in Optical Coherence Tomography for Homogeneous and Stratified Media. Appl. Opt.,2003,42(2):204-217
    [135]M. Wojtkowski, V. Srinivasan, T. Ko, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express,2004,12(11):2404-2422
    [136]A. V. Zvyagin, E. D. J. Smith, D. D. Sampson. Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry. J. Opt. Soc. Am. A,2003, 20(2):333-341
    [137]Y. Chen, X. Li. Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator. Opt. Express,2004,12(24): 5968-5978
    [138]T. Xie, Z. Wang, Y. Pan. Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation. Appl. Opt.,2005,44(20):4272-4280
    [139]K. S. Lee, A. C. Akcay, T. Delemos, et al. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer. Appl Opt,2005,44(19):4009-4022
    [140]W. Drexler, U. Morgner, F. X. Kartner, et al. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett,1999,24(17):1221-1223
    [141]S. M. Bagherzadeh, B. Grajciar, C. K. Hitzenberger, et al. Dispersion-based optical coherence tomography OCT measurement of mixture concentrations. Opt. Lett.,2007,32(20): 2924-2926
    [142]W. K. Niblack, J. O. Schenk, B. Liu, et al. Dispersion in a grating-based optical delay line for optical coherence tomography. Appl Opt,2003,42(19):4115-4118
    [143]C. Yang, A. Wax, I. Georgakoudi, et al. Interferometric phase-dispersion microscopy. Opt Lett,2000,25(20):1526-1528
    [144]C. Yang, A. Wax, R. R. Dasari, et al. Phase-dispersion optical tomography. Opt Lett, 2001,26(10):686-688
    [145]B. Liu, E. A. Macdonald, D. L. Stamper, et al. Group velocity dispersion effects with water and lipid in 1.3 microm optical coherence tomography system. Phys Med Biol,2004, 49(6):923-930
    [146]郁道银,谈恒英.光学工程.北京:机械工业出版社,2004
    [147]F. L. Pedrotti, L. M. Pedrotti, L. S. Pedrotti. Introduction to optics. Upper Saddle River, N.J.:Pearson/Prentice Hall,2007
    [148]E. Hecht. Optics. Reading, Mass.:Addison-Wesley,2002
    [149]W. Drexler. Ultrahigh-resolution optical coherence tomography. J Biomed Opt,2004, 9(1):47-74
    [150]钱浚霞.光电检测技术.北京:机械工业出版社,1993
    [151]江月松,阎平,刘振玉.光电技术与实验.北京:北京理工大学,2000
    [152]B. E. A. Saleh, M. C. Teich. Fundamentals of photonics. Hoboken, N.J.:Wiley Interscience.2007
    [153]V. V. Tuchin. Handbook of coherent domain optical methods:biomedical diagnostics, environmental and material science. Boston:Kluwer Academic Publishers,2004
    [154]A. Yariv, P. Yeh. Photonics:optical electronics in modern communications. New York: Oxford University Press,2007
    [155]J. M. Schmitt. Optical coherence tomography (OCT):a review. Selected Topics in Quantum Electronics, IEEE Journal of,1999,5(4):1205-1215
    [156]T. Gambichler, G. Moussa, M. Sand, et al. Applications of optical coherence tomography in dermatology. J Dermatol Sci,2005,40(2):85-94
    [157]J. F. de Boer, C. E. Saxer, J. S. Nelson. Stable Carrier Generation and Phase-Resolved Digital Data Processing in Optical Coherence Tomography. Appl. Opt.,2001,40(31): 5787-5790
    [158]A. F. Fercher, et al. Optical coherence tomography-principles and applications. Reports on Progress in Physics,2003,66(2):239
    [159]Y. Pan, R. Birngruber, R. Engelhardt. Optical coherence-gated imaging in biological tissues.1996,2678:165-171
    [160]A. M. Rollins. J. A. Izatt. SNR analysis of conventional and optimal fiber optic low-coherence interferometer topologies. Coherence Domain Optical Methods in Biomedical Science and Clinical Applications Ⅳ,2000,3915:60-67
    [161]A. G. Podoleanu. Unbalanced versus balanced operation in an optical coherence tomography system. Appl Opt,2000,39(1):173-182
    [162]石顺祥,过已吉.光电子技术及其应用.北京:电子科技大学出版社,2000
    [163]H. Hodara. Statistics of thermal and laser radiation. Proceedings of the IEEE,1965, 53(7):696-704
    [164]曾庆勇.微弱信号检测.浙江:浙江大学出版社,1986
    [165]邓焱,王磊LabVIEW 7.1测试技术与仪器应用.北京:机械工业出版社,2004
    [166]A. M. Rollins, J. A. Izatt. Optimal interferometer designs for optical coherence tomography. Opt. Lett.,1999,24(21):1484-1486
    [167]K. Takada, A. Himeno, K. Yukimatsu. Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry. Applied Physics Letters,1991,59(20): 2483-2485
    [168]J. M. Schmitt. Array detection for speckle reduction in optical coherence microscopy. Phys Med Biol,1997,42(7):1427-1439
    [169]B. E. Bouma, G. J. Tearney, I. P. Bilinsky, et al. Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Opt. Lett.,1996, 21(22):1839-1841
    [170]M. Bashkansky, M. Duncan, L. Goldberg, et al. Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography. Opt. Express,1998, 3(8):305-310
    [171]B. E. Bouma, L. E. Nelson, G. J. Tearney, et al. Optical Coherence Tomographic Imaging of Human Tissue at 1.55 mu m and 1.81 mu m Using Er-and Tm-Doped Fiber Sources. Journal of Biomedical Optics,1998,3(1):76-79
    [172]I. Hartl, X. D. Li, C. Chudoba, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett,2001,26(9): 608-610
    [173]B. Povazay, K. Bizheva, A. Unterhuber, et al. Submicrometer axial resolution optical coherence tomography. Opt Lett,2002,27(20):1800-1802
    [174]B. Laude, A. De Martino, B. Dreillon, et al. Full-Field Optical Coherence Tomography with Thermal Light. Appl. Opt.,2002,41(31):6637-6645
    [175]J. Moreau, V. Loriette, A.-C. Boccara. Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory. Appl. Opt., 2003,42(19):3800-3810
    [176]J. Moreau, V. Loriette, A.-C. Boccara. Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. Ⅱ. Instrument and Results. Appl. Opt.,2003,42(19):3811-3818
    [177]L. Vabre, A. Dubois, A. C. Boccara. Thermal-light full-field optical coherence tomography. Opt. Lett.,2002,27(7):530-532
    [178]D. Huang, E. A. Swanson, C. P. Lin, et al. Optical coherence tomography. Science,1991, 254(5035):1178-1181
    [179]S. M. Sze, K. K. Ng. Physics of semiconductor devices. Hoboken, N.J.: Wiley-Interscience,2007
    [180]杨乐平,李海涛,杨磊LabVIEW程序设计与应用.北京:电子工业出版社,2005
    [181]杨乐平,李海涛,赵勇,等Lab VIEW高级程序设计.北京:电子工业出版社,2003
    [182]高英茂.组织学与胚胎学.北京:人民卫生出版社,2005
    [183]M. Vogt, A. Knuttel, K. Hoffmann, et al. Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging. Biomed Tech (Berl),2003,48(5):116-121
    [184]S. Neerken, G. W. Lucassen, M. A. Bisschop, et al. Characterization of age-related effects in human skin:A comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt,2004,9(2):274-281
    [185]G. J. Tearney, M. E. Brezinski, J. F. Southern, et al. Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt. Lett.,1995,20(21): 2258
    [186]G. Vargas, E. K. Chan, J. K. Barton, et al. Use of an agent to reduce scattering in skin. Lasers Surg Med,1999,24(2):133-141
    [187]T. Gambichler, S. Boms, M. Stucker, et al. Epidermal thickness assessed by optical coherence tomography and routine histology:preliminary results of method comparison. J Eur Acad Dermatol Venereol,2006,20(7):791-795
    [188]T. Gambichler, S. Boms, M. Stucker, et al. Comparison of histometric data obtained by optical coherence tomography and routine histology. J Biomed Opt,2005,10(4):44008
    [189]J. Weissman, T. Hancewicz, P. Kaplan. Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express,2004, 12(23):5760-5769
    [190]陈杰,李甘地.病理学.北京:人民卫生出版社,2005
    [191]T. Gambichler, G. Moussa, M. Sand, et al. Correlation between clinical scoring of allergic patch test reactions and optical coherence tomography. J Biomed Opt,2005,10(6): 064030
    [192]N. D. Gladkova, G. A. Petrova, N. K. Nikulin, et al. In vivo optical coherence tomography imaging of human skin:norm and pathology. Skin Res Technol,2000,6(1):6-16
    [193]F. G. Bechara, T. Gambichler, M. Stucker, et al. Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol,2004,10(3):169-173
    [194]J. K. Barton, K. W. Gossage, W. Xu, et al. Investigating sun-damaged skin and actinic keratosis with optical coherence tomography:a pilot study. Technol Cancer Res Treat,2003, 2(6):525-535
    [195]K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, et al. Texture analysis of optical coherence tomography images:feasibility for tissue classification. J Biomed Opt,2003,8(3): 570-575
    [196]V. de Giorgi, M. Stante, D. Massi, et al. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol,2005,14(1):56-59
    [197]G. Vargas, A. Readinger, S. S. Dozier, et al. Morphological changes in blood vessels produced by hyperosmotic agents and measured by optical coherence tomography. Photochem Photobiol,2003,77(5):541-549
    [198]R. J. McNichols, M. A. Fox, A. Gowda, et al. Temporary dermal scatter reduction: quantitative assessment and implications for improved laser tattoo removal. Lasers Surg Med, 2005,36(4):289-296
    [199]A. Pagnoni, A. Knuettel, P. Welker, et al. Optical coherence tomography in dermatology. Skin Research and Technology,1999,5(2):83-87
    [200]S. M. Srinivas, J. F. de Boer, H. Park, et al. Determination of burn depth by polarization-sensitive optical coherence tomography. J Biomed Opt,2004,9(1):207-212
    [201]V. X. D. Yang, J. Pekar, S. S. W. Lo, et al. Optical coherence and Doppler tomography for monitoring tissue changes induced by laser thermal therapy---An in vivo feasibility study. Papers from the 12th International Conference on Photoacoustic and Photothermal Phenomena,2003,74:437-440
    [202]M. C. Pierce, J. Strasswimmer, B. Hyle Park, et al. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt,2004, 9(2):287-291
    [203]M. H. Niemz. Laser-tissue interactions:fundamentals and applications. Berlin; New York:Springer,2004
    [204]M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner. Multiple scattering in optical coherence microscopy. Appl. Opt.,1995,34(25):5699-5707
    [205]M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner. Contrast and resolution in the optical-coherence microscopy of dense biological tissue. Proc. SPIE,1995,2387:193-203
    [206]Y. Pan, R. Birngruber, J. Rosperich, et al. Low-coherence optical tomography in turbid tissue:theoretical analysis. Appl. Opt.,1995,34(28):6564
    [207]J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, et al. Optical characterization of dense tissues using low-coherence interferometry. Proc. SPIE,1993,1889:197-211
    [208]H. T. Yura. Signal-to-noise Ratio of Heterodyne Lidar Systems in the Presence of Atmospheric Turbulence. Optica Acta:International Journal of Optics,1979,26(5):627-644
    [209]H. T. Yura, S. G. Hanson. Optical beam wave propagation through complex optical systems. J. Opt. Soc. Am. A,1987,4(10):1931-1948
    [210]H. T. Yura, S. G. Hanson. Second-order statistics for wave propagation through complex optical systems. J. Opt. Soc. Am. A,1989,6(4):564-575
    [211]R. F. Lutomirski, H. T. Yura. Propagation of a Finite Optical Beam in an Inhomogeneous Medium. Appl. Opt.,1971,10(7):1652-1658
    [212]H. J. van Staveren, C. J. M. Moes, J. van Marle, et al. Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl. Opt.,1991,30(31):4507-4514
    [213]A. Giusto, R. Saija, M. A. Iati, et al. Optical properties of high-density dispersions of particles:application to intralipid solutions. Appl. Opt.,2003,42(21):4375-4380
    [214]G. Zaccanti, S. Del Bianco, F. Martelli. Measurements of optical properties of high-density media. Appl. Opt.,2003,42(19):4023-4030
    [215]T. L. Troy, S. N. Thennadil. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J. Biomed. Opt.,2001,6(2):167-176
    [216]R. C. Weast. Handbook of Chemistry and Physics. Fla.:CRC, Boca Raton,1978
    [217]A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, et al. Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography. Appl. Opt.,2003,42(16):3027-3037
    [218]T. G. van Leeuwen, D. J. Faber, M. C. Aalders. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. Selected Topics in Quantum Electronics, IEEE Journal of,2003,9(2):227-233
    [219]P. Parsa, S. L. Jacques, N. S. Nishioka. Optical properties of rat liver between 350 and 2200 nm. Appl. Opt.,1989,28(12):2325-2330
    [220]L. Carrion, M. Lestrade, Z. Xu, et al. Comparative study of optical sources in the near infrared for optical coherence tomography applications. J Biomed Opt,2007,12(1):014017
    [221]H. H. Arsenault, G. April. Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Am.,1976,66(11):1160-1163
    [222]Z. Li, H. Li, Y. He, et al. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues. Phys Med Biol,2008, 53(20):5859-5866
    [223]R. N. Bracewell. The Fourier transform and its applications. Boston:McGraw Hill,2000