益气解毒活络法对早期糖尿病肾病大鼠TGF-Smads-UPP通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过观察益气解毒活络中药复方对链脲佐菌素(STZ)所致早期糖尿病肾病(DN)大鼠一般状况的影响;探讨益气解毒活络中药复方抑制糖尿病模型大鼠肾组织中TGF-β1(转化生长因子)过度表达的具体机制,即研究益气解毒活络中药复方对早期DN大鼠TGF-Smads-UPP(泛素-蛋白水解酶复合体通路)信号通路的干预作用,进一步明确益气解毒活络中药复方防治早期糖尿病肾病的分子机制。
     材料与方法:
     1.益气解毒活络中药对早期DN大鼠的干预作用
     SPF级健康雄性SD大鼠72只,适应性饲养一周,按体重随机分为6组:正常对照组(A)、模型空白组(B)、中药预防组(C)、中药低剂量治疗组(D1)、中药高剂量治疗组(D2)及阳性西药对照组。正常对照组予普通饲料喂养,其余5组予高糖高脂饲料喂养。4周后各治疗组大鼠予尾静脉注射STZ35mg/kg,正常对照组予尾静脉注射等量生理盐水。72小时后测大鼠空腹血糖,≥16.7mmol/L确定为DM模型成模。再根据大鼠血糖值高低对各治疗组进行随机分组。益气解毒活络中药复方选用中药颗粒剂溶于蒸馏水中。各治疗组每日用药量按大鼠-人体(g/kg)的等效剂量6.3倍计算;中药高剂量治疗组的用药量为中药低剂量治疗组的3倍。正常对照组、模型空白组大鼠予2毫升/日生理盐水灌胃。中药预防组在成DM模型后立即给予灌服益气解毒活络中药复方,每日1次,共计给药6周;中药低剂量治疗组、中药高剂量治疗组及阳性西药对照组均在成DM模型2周后,即成DN模型后灌服中药复方,每日1次,共计给药4周。分别在灌服中药2周末、4周末收集大鼠24小时尿液待测尿微量白蛋白;4周后行腹主动脉穿刺取血检测大鼠血糖、糖化血红蛋白、血β2微球蛋白水平;光镜下观察大鼠肾脏组织病理形态学改变。
     2.益气解毒活络中药对早期DN大鼠TGF-β1基因及蛋白表达的影响
     在DN模型成模4周末,留取肾组织标本,观察益气解毒活络中药对早期DN大鼠肾组织TGF-β1mRNA(RT-PCR法)及蛋白表达(Western-blot法)的影响。
     3.益气解毒活络中药对早期DN大鼠TGF-Smads-UPP信号传导通路的影响
     在成功复制DN模型4周末留取肾组织标本,观察益气解毒活络中药对早期DN大鼠肾组织Smad3和Smad7mRNA(RT-PCR法)及蛋白表达(Western-blot法);Smurf1、Smurf2mRNA(RT-PCR法)及蛋白表达(Western-blot法);肾组织26S蛋白水解复合体酶活性(ELISA法)的影响,进一步探讨其对早期DN可能的作用机制。
     结果:
     1.益气解毒活络中药对早期DN大鼠的干预作用
     1.1各组大鼠体重的比较
     在DN模型成模4周末,模型空白组大鼠体重下降明显,与正常对照组比较差异显著(P<0.01);经药物干预后各治疗组大鼠体重明显增加,与模型空白组比较有显著差异(P<0.01),中药预防组效果最为明显。
     1.2各组大鼠24小时尿微量白蛋白含量的比较
     在DN模型成模4周末,模型空白组大鼠24小时尿微量白蛋白含量明显上升,与正常对照组比较差异显著(P<0.01);经药物干预治疗后各治疗组大鼠24小时尿微量白蛋白含量显著降低,与模型空白组比较差异显著(P<0.01),中药高剂量治疗组和阳性西药对照组效果最为明显。
     1.3各组大鼠空腹血糖的比较
     在DN模型成模4周末,模型空白组大鼠空腹血糖显著升高,与正常对照组比较差异显著(P<0.01);各治疗组大鼠在药物干预治疗后空腹血糖明显降低,与模型空白组比较差异显著(P<0.01),中药预防组效果最为明显。
     1.4各组大鼠糖化血红蛋白水平的比较
     在DN模型成模4周末,模型空白组大鼠糖化血红蛋白水平显著增高,与正常对照组比较差异显著(P<0.01);各治疗组大鼠糖化血红蛋白水平明显下降,与模型空白组比较差异显著(P<0.01),其中中药高剂量治疗组效果最为明显。
     1.5各组大鼠血β2微球蛋白含量的比较
     在DN模型成模4周末,模型空白组大鼠血β2微球蛋白含量显著增高,与正常对照组比较差异显著(P<0.01);各治疗组大鼠经药物干预治疗后,血β2微球蛋白含量与模型空白组比较均显著降低(P<0.01),其中阳性西药对照组效果最为明显。
     1.6肾脏病理形态学观察
     光镜下正常对照组肾小球结构完整,未见细胞增生,毛细血管基底膜(GBM)、系膜区、细胞外基质(ECM)未见异常改变;模型空白组可见肾小球肥大,GBM增厚,系膜细胞增生、系膜区增宽,部分肾小管上皮空泡变性,肾小管萎缩;各治疗组经药物干预治疗后上述病理改变均有不同程度的改善,与模型空白组比较显著减轻。
     2.益气解毒活络中药对早期DN大鼠TGF-β1基因及蛋白表达的影响
     正常对照组大鼠4周末肾皮质TGF-β1mRNA仅微弱表达,模型空白组TGF-β1mRNA表达较正常对照组有明显提高(P<0.01)。与模型空白组比较,各治疗组TGF-β1mRNA表达显著下调(P<0.05),中药预防组下调最为显著。
     检测到正常大鼠肾组织匀浆可见少量TGF-β1蛋白表达,与正常对照组比较,模型空白组大鼠TGF-β1蛋白表达提高显著(P<0.01)。与模型空白组比较,各治疗组TGF-β1蛋白表达水平下调明显(P<0.01),中药预防组作用最为明显。
     3.益气解毒活络中药对早期DN大鼠TGF-Smads-UPP(泛素-蛋白水解酶复合体通路)信号传导通路的影响
     3.1对肾组织Smad3、Smad7mRNA及蛋白表达的影响
     正常对照组大鼠4周末肾皮质Smad3mRNA仅微弱表达,模型空白组Smad3mRNA表达较正常对照组有明显提高(P<0.01)。与模型空白组比较,各治疗组Smad3mRNA表达显著下调(P<0.01)。中药预防组、中药低剂量治疗组的Smad3mRNA表达下调最为明显。
     正常对照组4周末大鼠肾皮质Smad7mRNA表达显著,模型空白组Smad7mRNA表达较正常对照组有明显降低(P<0.01)。与模型空白组比较,中药高剂量治疗组、中药低剂量治疗组表达水平均明显上调(P<0.05),与阳性西药对照组比较无显著差异。治疗组间,中药预防组的Smad7mRNA表达最增强。
     模型空白组大鼠肾组织中的Smad3蛋白表达与正常对照组比较明显增强,差异显著(P<0.01);模型空白组大鼠肾组织中Smad7蛋白表达水平与正常对照组比较明显下降,差异显著(P<0.01);与模型空白组相比较,各治疗组可明显下调肾组织中Smad3蛋白的表达水平(P<0.01);上调肾组织中Smad7蛋白的表达水平,其中中药预防组效果最为明显(P<0.01)。
     3.2对肾组织UPP特异信号蛋白Smurf1、Smurf2mRNA及蛋白表达的影响
     正常对照组大鼠4周末肾皮质Smurf1、Smurf2mRNA仅微弱表达,模型空白组Smurf1、Smurf2mRNA表达较正常对照组明显上调(P<0.01);中药各治疗组和阳性西药对照组与模型空白组比较Smurf1、Smurf2mRNA表达水平均显著下调(P<0.01);其中中药预防组的下调作用最为明显。
     Western-blot结果显示,大鼠肾组织中可检测到Smurfl、Smurf2的蛋白表达;与正常对照组比较,模型空白组Smurfl、Smurf2的蛋白表达明显增强(P<0.01)。与模型空白组比较,各治疗组用药4周后Smurfl、Smurf2的蛋白表达水平均明显下调(P<0.01),其中中药预防组及阳性西药对照组下调幅度大于其他各用药组(P<0.01)。
     3.3对肾组织26S蛋白水解复合体酶活性的影响
     4周末正常对照组大鼠肾组织26S蛋白水解复合体酶活性较高,模型空白组较正常对照组比较水平明显降低(P<0.01)。与模型空白组比较,各治疗组26S蛋白水解复合体酶活性水平升高明显(P<0.01),中药预防组与各治疗组比较升高最为明显(P<0.01)。
     结论:
     1.益气解毒活络中药复方能改善DN大鼠的一般状况,减少尿蛋白的排泄,对早期DN大鼠的体重、24h尿微量白蛋白含量、血β2微球蛋白含量、空腹血糖水平、糖化血红蛋白水平及肾脏组织病理形态学改变均有明显改善,能够有效防治早期大鼠DN。
     2.益气解毒活络中药复方防治早期DN大鼠的作用机制是通过抑制TGF-β1mRNA及蛋白表达,调节Smad3、Smad7mRNA及蛋白表达以及UPP特异信号蛋白Smurf1、Smurf2mRNA及蛋白表达,升高26S蛋白水解复合体酶活性而发挥防治效果。
     3.早期糖尿病肾病病理机制TGF-β1的过度表达与TGF-Smads-UPP信号传导通路密切相关。
Purpose: Through observing the general effects of compound Chinese medicineYiqi Jiedu activating method on rats with early diabetic nephropathy (DN) causedby streptozotocin (STZ), to probe into the specific mechanism of activeinhibition on over expression of TGF-β1(transforming growth factor) of YiqiJiedu activating method in diabetic model rats’ renal tissue, namely to researchthe intervention effects of Yiqi Jiedu activating method on TGF-Smads-UPP(ubiquitin proteolytic enzyme complex pathways) signal pathway of rats withearly DN, and to further clarify the molecular mechanism of Yiqi Jiedu activatingmethod in treating early diabetic nephropathy.
     Material and method:1. The intervention effects of compound Chinesemedicine Yiqi Jiedu activating method on rats with early DN
     72SPF healthy male SD rats were adaptively fed for a week and randomlydivided into6groups by weight: normal group(A), model group (B), traditionalChinese medicine prevention group (C), low dose group of traditional Chinesemedicine(D1), high dose group of traditional Chinese medicine (D2) and westernmedicine group (E). The normal group was given common feed, and the remaining5groups were given high-sucrose and high-fat feed. After4weeks, the rats ofeach treatment group were injected STZ35mg/kg by tail vein, while those ofnormal group were injected saline of the same amount. After72hours, rats’fasting blood glucose was measured, and≥16.7mmol/L was identified as DM model.Then, according to the blood glucose level in each treatment group, the ratswere randomly divided again. The traditional Chinese medicine granules dissolvedin distilled water. In each treatment group, daily volume of medication wascomputed by6.3times of the equivalent dose of rat-human body (g/kg); the dosageof the high dose group of traditional Chinese medicine was3times of low dosegroup.2ml saline lavage was poured into rats’ stomach every day in the normalgroup and the model group. After DN model taking shape, the traditional Chinese medicine prevention group was fed traditional Chinese medicine immediately;after DN model taking shape for2weeks, low and high dose groups of traditionalChinese medicine and western medicine group were fed Chinese herbal compound,once every day for4weeks. On the2nd and4thweekends, rats’24-hour urinewas collected to observe urinary albumin; after4weeks, blood was drawn throughabdominal aortic puncture to determine blood glucose, glycosylated hemoglobin,and serum β2microglobulin; the pathological changes of rats’ kidney tissuewas observed by light microscopy.
     2. The effects of Yiqi Jiedu activating herbs on TGF-β1genes and proteinexpressions of rats with early DN
     After4weeks of DN model taking shape, the kidney tissue specimens weretaken to observe the effects of Yiqi Jiedu activating herbs on renal tissue TGF-β1mRNA (RT-PCR) and protein (Western-blot) expressions of rats with earlyDN.
     3. The effects of Yiqi Jiedu activating herbs on TGF-Smads-UPP signaltransduction pathway of rats with early DN.On the4th weekend after successfully replicating DN model, renal tissue sampleswere taken to observe the expressions of renal tissue Smad3and Smad7mRNA(RT-PCR) and protein (Western-blot), the expressions of Smurf1and Smurf2mRNA (RT-PCR) and protein (Western-blot method), and the effects on renaltissue26S proteolytic complex enzyme activity (ELISA), to further explorethe possible effective mechanisms of early DN.
     Results:
     1. Yiqi Jiedu activating method had intervention effects on rats with early DN
     1.1The comparison of rats’ weight in each group
     After4weeks of DN model taking shape, the weight of rats in the model groupdecreased, which had significant difference compared with the normal group (P<0.01); after drug intervention, the weight of rats in each treatment groupremarkably increased, which had significant difference compared with the model group (P <0.01), and the traditional Chinese medicine prevention group had thebest effect.
     1.2The comparison of rats’24h urine micro albumin content in each group
     After4weeks of DN model taking shape, the24h urine micro albumin contentof rats in the model group obviously increased, which had significant differencecompared with the normal group (P <0.01); after drug intervention, the24h urinemicro albumin content of rats in each treatment group significantly decreased,which had significant difference compared with the model group (P <0.01), andthe traditional Chinese medicine high dose group and western medicine group hadthe best effect.
     1.3The comparison of rats’ fasting glucose in each group
     After4weeks of DN model taking shape, the fasting glucose of rats in themodel group increased, which had significant difference compared with the normalgroup (P <0.01); after drug intervention, the fasting glucose of rats in eachtreatment group significantly decreased, which had significant differencecompared with the model group (P <0.01), and the traditional Chinese medicineprevention group had the best effect.
     1.4The comparison of rats’ glycosylated hemoglobin level in each group
     After4weeks of DN model taking shape, the glycosylated hemoglobin levelof rats in the model group increased, which had significant difference comparedwith the normal group (P <0.01); after drug intervention, the glycosylatedhemoglobin level of rats in each treatment group obviously decreased, which hadsignificant difference compared with the model group (P <0.01), and thetraditional Chinese medicine high dose group had the best effect.
     1.5The comparison of rats’ serumβ2micro globulin content in each group
     After4weeks of DN model taking shape, the serumβ2micro globulin contentof rats in the model group obviously increased, with significant differencecompared with the normal group (P <0.01); after drug intervention, comparedwith the model group, the serumβ2micro globulin content of rats in eachtreatment group significantly decreased (P <0.01), and the western medicine group had the best effect.
     1.6renal pathomorphologic observation
     Under the light microscope, glomerular structure of the normal group wasintact, with no cell proliferation and no abnormal changes in glomerular basementmembrane (GBM), mesangial area, and extracellular matrix (ECM); it was shownin the model group that glomeruli hypertrophied, GBM thickened, mesangial cellsproliferated, mesangial area widened, portions of the tubular epithelialvacuolation degenerated, and renal tubular withered; through pharmacologicalintervention, the lesions in each treatment group improved to different degreesand significantly reduced compared with the model group.
     2. The effects of Yiqi Jiedu activating herbs on the TGFβ1genes and proteinexpressions of rats with early DN
     After4weeks, the renal cortex TGFβ1mRNA of rats in the normal group onlyweakly expressed compared with normal group, and the mRNA expression of modelgroup significantly improved (P <0.01). Compared with the model group, the mRNAexpression of each treatment group obviously decreased (P <0.05), among whichtraditional Chinese medicine prevention group was the most significant.
     It was detected that normal rats’ kidney tissue homogenate had a bit ofTGFβ1expression, and compared with the normal group, the protein expressionof rats in the model group increased significantly (P <0.01). Compared withthe model group, the protein expression levels of each treatment group obviouslydecreased (P <0.01), among which traditional Chinese medicine prevention groupwas the most evident.
     3. The effects of Yiqi Jiedu activating herbs on TGF-Smads-UPP (ubiquitinproteolytic enzyme complex pathways) signal transduction pathway of rats withearly DN
     3.1The effects on renal tissue Smad3,7mRNA and protein expressions
     After4weeks, the renal cortical Smad3mRNA of rats in the normal grouponly showed weak expression, and compared with the normal group, the mRNAexpression of the model group improved remarkably (P <0.01). Compared with the model group, the mRNA expression of each treatment group significantly decreased(P <0.01), among which the Chinese medicine prevention group and the low dosegroup of traditional Chinese medicine were the most obvious.
     After4weeks, rats’ renal cortical Smad7expression in the normal groupwas remarkable, and compared with the normal group, the mRNA expression of themodel group significantly decreased (P <0.01). The expression of high and lowdose groups of Chinese medicine remarkably increased (P <0.05) compared withthe model group, and there was no significant difference compared with thewestern medicine group. Among these treatment groups, the mRNA expression ofChinese medicine prevention group increased the most.
     Compared with the normal group, the Smad3protein expression of rats’ kidneytissue in the model group remarkably enhanced with significant difference (P<0.01); the Smad7protein expression obviously decreased with significantdifference (P <0.01) compared with the normal group; the treatment group candown-regulate Smad3protein expression level in renal tissue (P <0.01) comparedwith the model group; the Chinese medicine prevention group had the most notableeffects on up-regulating Smad7protein expression level in renal tissue (P <0.01).
     3.2The effects on renal tissue UPP specific signal proteins Smurf1, Smurf2mRNAand protein expressions
     After4weeks, renal cortical Smurf1, Smurf2normal of the rats in the normalgroups only expressed weakly, and compared with the normal group, the expressionof the model group significantly increased (P <0.01); compared with the modelgroup, traditional Chinese medicine groups and western medicine group obviouslydecreased (P <0.01); Chinese medicine prevention group was the most remarkable.
     Western-blot results showed that Smurfl and Smurf2protein expression canbe detected in rats’ renal tissue; compared with the normal group, proteinexpression of the model group obviously increased (P <0.01). After4weeks,compared with the model group, the protein expression level of each treatmentgroup significantly decreased (P <0.01), among which the reducing degree of traditional Chinese medicine prevention group and western medicine group wasgreater than other medication groups (P <0.01).
     3.3The effects on26S proteolytic complex enzyme activity of renal tissueAfter4weeks, renal tissue26S proteolytic complex enzyme activity of the ratsin the normal group was higher than that of the model group (P <0.01). Comparedwith the model group, other treatment groups increased significantly (P <0.01),while Chinese medicine prevention group decreased more obviously than othertreatment groups (P <0.01).
     Conclusion:
     1. Yiqi Jiedu compound Chinese medicine can effectively prevent rats’ earlyDN by reducing urinary protein excretion and improving DN rats’ generalcondition, such as the weight of rats with early DN,24h urine micro albumincontent, serum β2microglobulin content, fasting blood glucose, glycosylatedhemoglobin level and pathological changes of renal tissue.
     2. Yiqi Jiedu compound Chinese medicine can prevent rats’ early DN throughinhibiting the expressions of TGF-β1mRNA and protein, regulating Smad3,7mRNAand protein expressions, and UPP specific signaling proteins, Smurf1,Smurf2mRNA and protein expressions, increasing26S protein hydrolysate complexenzyme.
     3. The over expression of TGF-β1in the pathological mechanism of early diabeticnephropathy is closely related to the TGF-Smads-UPP signal transduction pathway.
引文
[1]路在英,钟南山.内科学第7版[M].北京;人民卫生出版社,2008,1:770,775,776.
    [2] Cui XM,Shuler CF.The TGF-beta type Ⅲ receptor is localized to the medicaledge epithelium during palatal fuion.Int J Dev Biol,2000,44:397-4O2.
    [3] McGowanTA,DunnSR,FalknerB,eta1.Stimulation of Urinary TGF-beta1andIsoprostanes in Response to Hyperglycemia in Humarls[J]. Clin J Am SocNephrol.2006,1(2):263-268.
    [4] NathKA,GarndeJ,CroattA,et a1.Redox regulation of renal DNA synthesis,transforming growth factor-beta1and collagen gene expression[J].Clinchem.1998,53(2):367.
    [5] Melhem MC,Liachenko J,Derubertis FR.Alpha-lipoic acid attenualeshyperglycemia and prevents glomerular mesangial matrix expansion indiabetes[J].J Am Soc Nephorl.2002,13(5):108-116.
    [6] Deruberdtis F,CravenP,Melhem M,et a1.Attenuation of renal injury in db/dbmice overexperssing superoxide dismutase: evidence for enducedsuperoxide-nitric oxide interaction[J].Diabetes.2004,53:762-768.
    [7] Weigertc,BrodbeckK,KlopferK,et a1.AngiotensinⅡinducse human TGF-beta1promoter activation:similarity to hyperglycaemia[J]. Diabetogia.2002,45(6):890-898.
    [8] CosenziA,BemobiehE,TervisanR,et a1.Nephroprotcetive effect of bosentnain diabetic rates[J].J Cardiovasc Pharmacol.2003,42:752-756.
    [9]管鑫娟,姚伟峰.TGF-β1与糖尿病肾病[J].山东医药.2009,49(17):111-112
    [10] Ten Dijke1,Miyazono1,Heldi1,et al. Signaling inputs clear effector-inconverge in TGF-beta signaling[J]. Trends Biochem Sci.2000,25:64-70.
    [11] Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomerular capillarywall toward the center of disease:podocyte injury comes of age in diabeticnephropathy[J].Diabetes.2005,54(6):1626-1634.
    [12] Javelaud D, MauvieA. Transforming growth factor-betas:Smad signaling androles in physiopathology [J]. PatholBio.2004,52(4):50-54.
    [13] Yu HT.Progression of chronic renal failure[J].Arch Intern Med.2003,163(12):1417-1429.
    [14]吴丹,王秋月.Smad2在糖尿病肾病中的作用及临床应用前景[J].国际内科学杂志Signaling inputs clear.2008,35(9):512-515.
    [15]KuratomiG,KomuroA,GotoK,etal.NEDD4-2(neural precursor cell expressed,developmentally down-regulated negatively regulates TGF-b(transforming growthfactor-b) signalling by inducing ubiquitin-mediated degradation of Smad2andTGF-b type1receptor[J]. Biochem J.2005,386(3):461-470.
    [16]张金海,黄云剑,蔡文琴.Smad2,3,4,7蛋白在大鼠5P6肾切除肾衰模型中的定位和表达变化[J].第三军医大学学报.2004,26(13):1141-1144。
    [17]郁胜强,赖凌云,马骥,等.Smad2反义寡核苷酸抑制高糖培养大鼠系膜细胞细胞外基质的分泌[J].中华肾脏病杂志.2005,21(2):103-107。
    [18] Furuse Y.Hashimoto N,Maekawa M,et al.Activation of the smad pathway inglomeruli from a spontaneously diabetic rat model,0LETF rats[J].NePhron ExpNephrol.2004,98(3):100-108.
    [19]0kazaki Y,Yamasaki Y,uchida H A,et al.Enhanced TGF-beta/Smad signalingin the early stage of diabetic nephropathy is independent of the ATlareceptor[J].Clin Exp Nephrol.2007,ll(1):77-87.
    [20]金华,崔镇花,金英顺,等.雷米普利降低糖尿病肾病大鼠转化生长因子及其信号转导分子表达[J].中国糖尿病杂志.2008,16(9):548-551。
    [21] Mehra A,JL Wrana. TGF-beta and the Smad signal transduction pathway[J].Biochem Cell Biol.2002,80(5):605-622.
    [22]黄云剑,梁莉,杨唐俊. Smad2,3,6,7蛋白在实验性肾间质纤维化模型中的定位和表达变化[J].中华肾脏病杂志.2002,18(5):356-360。
    [23] Park SH. Fine tuning and cross-talking of TGF-beta signal by inhibitorySmads [J].J Biochem Mol Biol.2005,38(1):9-16.
    [24] Awazu M,Ishikura K,Hida M, et al.[J].J Am Soc Nephrol,1999,10:738-745.
    [25]王丽晖, MAPK信号转导途径与糖尿病肾病[J].国外医学内科学分册.2005,32(6):234-237
    [26]Yakymovych I,Ten Dijke P, Heldin CH, et al. Regulation of Smad signalingby protein kinase C.FASEB.1.2001,15:553-555.
    [27]徐小良;戴克戎;汤亭亭,Smads及其相关转录因子与骨形态发生蛋白诱导成骨的信号传导[J].中国修复重建外科杂志.2003,17(5):359-362。
    [28] Selbi W, de la Motte C, Hascall V, Phillips AO. BMP-7modulateshyaluronan-mediated proximal tubular cell-monocyte interaction [J]. J Am SocNephrol.2004,15:1199-1211.
    [29] Merrihew C, Soeder S, Rueger DC, Kuettner KE, Chubinskaya S. Modulationof endogenous osteogenic protein-1(OP-1) by interleukin-1.in adult human articular cartilage[J]. J Bone Joint Surg Am.2003,85:67-74
    [30] Leung-Hagesteijn C, Hu MC, Mahendra AS, Hartwiq S, Klamut HJ, RosenblumND, Hanniqan GE. Integrin-linked kinase mediates bone morphogenetic protein7-dependent renal epithelial cell morphogenesis [J]. Mol Cell Biol.2005,25:3648-3657.
    [31] Xiao LZ,Wisam Selbi, Carol de la Motte, Vincent Hascall, and Aled O. Phillips.Bone Morphogenic Protein-7Inhibits Monocyte-Stimulated TGF-β1Generation inRenal Proximal Tubular Epithelial Cells. Journal of the American Society ofNephrology[J]. J Am Soc Nephrol.2005,16:79-89.
    [32] Chen D,Zhao M,Mundy GR.Bone morphogenetic proteins.Growth Factors,2004,22:233-241.
    [33] Stephen E,Gould,Maria Day,et a1.BMP-7regulates chemokine,cytokine,and hemodynamic gene expression in proximal tubule cells[J].Kid Int.2002,61:51-60.
    [34] Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogeneticprotein-7in diabetic nephropathy[J]. J Am Soc Nephrol2001,12:2392-2399.
    [35] Motoko Yanagita,Tomohiko Okuda,Shuichior Endo,eta1.Uterinesensitization-associated gene-1(USAG-1).a novel BMP antagonist expressed in thekidney,accelerates tubular injury[J].J Clin Invest.2006,116:70-79.
    [36]杨勤,韩冰,谢汝佳,程明亮.骨形态发生蛋白-7及抑制性Smads[J].生理学报.2007,59(2):190-196。
    [37] Zhang XL, Selbi W, de la Motte C, Hascall V, Phillips AO. Bone morphogenicprotein-7inhibits monocyte stimulated TGF-β1generation in renal proximaltubular epithelial cells [J]. J Am Soc Nephrol.2005,16:79-89.
    [38] Wang S,Chen Q,Simon TC,et al. Bone morphogeneic protein-7(BMP-7), anovel therapy for diabetic nephropathy[J].Kidney Int.2003,63:2037-2049.
    [39] Klahr S,Morrissey J,Hruska K,et a1.New approaches to delay the progressionof chronic renal failure[J].Kidney Int.2002,61:23-26.
    [40] Wang SN,Mark Caestecker,Jeffrey Ko-PP,et al.Renal bone morphogeneticprotein-7protects against diabetic nephropathy.J Am Soc Nephrol,2006,17:2504-2512
    [41] Wang S,Hirschberg R.BMP-7antagonizes TGF-beta-dependent fibrogenesisin mesangial cells[J].Am J Physiol Renal Physiol.2003,284:F1006-1013.
    [42] Morrissey J, Hruska K, Guo G, Chen Q, Klahr S. BMP-7improves renal fibrosisand accelerates the return of renal function [J]. J Am Soc Nephrol.2002,13(Suppl1):14-21.
    [43] Ciechanover A. The ubiquitin proteolytic system and pathogenesis of humandisease:a novel platform for mechanism-based drug targeting. Biochem Soc Trans,2003,31(2):474-481.
    [44] Belecky-Adams TL, Adler R, Beebe DC. Bone morphogenetic protein signalingand the initiation of lens fiber cell differentiation [J]. Development.2002,129:3795-3802.
    [45]克日阿且,尹洪涛,徐勇.TGF-β/smad信号通路的负性调节与糖尿病肾病[J].医学综述.2009,15(11):1683-1686。
    [46] Itoh S, Itoh F, GoumansM J, et al. Signaling of transforming growth factorbfamily members through Smad p roteins[J]. Eur J Biol Chem.2000,267(24):6954-6967.
    [47] Zhang Y et al. Regulation of Smad degradation and activity by Smurf2, anE3ubiquitin ligase [J]. Proc Natl Acad Sci USA.2001,98(3):974-979.
    [48] Kornitzer D,Ciechanover A.Modes of regulation of ubiquitin-mediatedprotein degradation [J].J Cell Physiol.2000,182(1):1-11
    [49] Datto M,Wang XF. Ubiquitin-mediated degradation a mechanism for fine-tuningTGF-beta signaling[J].Cell.2005,121(1):2-4.
    [50] Weigert C,Brodbeck K,Brosius FC3rd,et al. Evidence for a novelTGF-beta1-independent mechanism of fibronectin production in mesangial cellsover expressing glucose transporters[J].Diabetes.2003,52:527-535.
    [51]陆姣薇,张秀彬. TGF-β及其信号转导网络与糖尿病肾病[J].国外医学内分泌学分册.2005,25:24-26
    [52] lsono M,Chen S,Hong SW,et a1.Smad pathway is activated in the diabeticmouse kidney and Smad3mediates TGF-beta-induced fibronectin inmesangial cells[J].Biochem Biophys Rse Commun.2002,296:1356-1365.
    [53] Chen R,Huand C,Morinelli TA,et a1.Blokade of the effects of transforminggrowth factor-β1on messangial cells by over expression of Smad7. J Am SocNephrol,2002,13:887-893
    [54] Zeisberg M,Bonner G,Maeshima Y,et al.Renal fibrosis:collagencomposition and assembly regulates epithelial-mesenchymal transdifferentiation[J].Am J Pathol.2001,159:1313-1321.
    [55] Sato M,Muragaki Y,Saika S,et a1.Targeted disruption of TGF-β1/Smad3signaling protects against early tubulointerstitial fibrosis inducedby unilateral ureteral obstruction[J].J Clin Invest.2003,l12:1486-1494.
    [56] Dalla Vestra M,Masiero A,Roiter AM,et al. Is podocyte injury relevantin diabetic nephropathy?Studies in patients with type2diabetes[J].Diabetes.2003,52:1O3l-lO35.
    [57] Schiffer M,Bitzer M,Roberts IS,et a1.Apoptosis in podocytes inducedby TGF-βand Smad7[J].J Clin Invest.2001,l08:807-816.
    [58] Mizra A,Liu SL,Frizell E,et al. Am J Physiol.1997,272:281-288.
    [59] Kumar A,Rlawkins K S,Hannan M A,et a1.Activation of PKC-BATA(I)in glomemlarmesangialcell is associated with specific NF-kappaB subunit translocation[J].AmJ Physiol Renal Physiol.2001,281(4):613-619.
    [60]杨明正、张小如.决明子对糖尿病大鼠肾组织NF-κB活化的影响[J].浙江中西医结合杂志.2006,16(3):149-150。
    [61]郭汉城,凌毅生,李国贤等.洛伐他汀对高糖诱导的大鼠肾小球系膜细胞NF-kB活性的影响[J].中华内分泌代谢杂志.2006,22(4),380-381。
    [62] Guijarro C.Central role of the transcription factor nuclear fact or kappaB in messangila cell production of chemokines[J].Contirb Nephrol.1997,120(6):210-218.
    [63] Hofmann MA,Shiekofer S,lsermann B,et a1.Peripherla blood mono nuclearcells isolated from patients with diabetic nephropathy show increased activationof the oxidative-stress sensitive transcription factor NF-kappaB[J].Diabetologia.1999,42(2):222-232.
    [64] Kumar A,Rlawkins KS,Hannan M A,et a1.Activation of PKC-BATA(I) inglomerular messangial cell is associated with specific NF-kappa B subunittranslocation[J].Am J Physiol Renal Physiol.2001,281(4):613-619.
    [65]Katherine RT.Linking metabolism and immunology:diabetic Rephmpathy is aninflammatory disease[J].J Am Soc Nephrol.2005,16(6):1537-1538.
    [66]Jones S,Phillips AO.Regulation of renal proximal tubular epithelila cellhylaumnan generation:implications for diabetic nephropathy[J].Kidney Int.2001,59(5):1739-1749.
    [67]Ha H,Yu MR,Choi YJ,et al.Role of high glucose induced nuclear factorkappa-B activation in monocyte chemo attratant protein-1expression bymessangial cells[J].J Am Soc Nephrol.2002,13(4):894-902.
    [68]Ogata N,Yamamoto H,Ku-yama K,et al.Involvement of protein kinase C insuperoxidenation-induced activation of nuclear factor-kappa B in humanendothelila cells[J].Cardiovase Res.2000,45(2):513-521.
    [69] Ha HJ,Lee YJ,Park SH,et al.Highlguco-induced oxidative stress inhibitsNa/glucose cotransporter activity in renal proixmla tube cells[J].Am J PhysiolRenal Physiol.2005,288(5):988-996.
    [70] Gruden G,Setti G,Hayward A,et al.Mechanical stretch inducemonocyte chemo attractant activity via an NF-kappa B dependent monceyte chemoattarctant protein I mediated pathway in human messangial cells:inhibition byrosilgitaznae[J].J Am Soc Nephm.2005,16(3):688-696.
    [71] Ohga S,Shikata K,Yozai K,et al.Thiazolid indeioneamelioartse ernlainjury in experimental diabetic artsthroughnati-inflammatoy refects mediatedby inhibition of NF-{kappa}B activation[J].Am J Physiol Renal Physiol.2007,292(4):F1141-1150.
    [72] Aljada A,Garg R,Ghnaim H,et al.Nuclear factor-KB suppressive andinhibitor-KB stimulatory effects of truglitazone in obese patients with type2diabetes:Evidence of an anti-inflammatory action[J].J Clin Endocrionl Metab,2001,86(7):3250-3256.
    [73] Cha DR,Kang YS,Hna SY,et al.Role of ladsetemne in diabeticnephropathy[J].Nephrology(Carlton).2005,10Suppl:$37-39.
    [74] Weber CK,Liptay S,Witrh T,et al.Suppression of NF-kappa B activity bysulfaslaazine is mdeiated by direct inhibition of I kappa B kinases aJlpha andbeta[J].Gastroenterology.2000,119(5):1209-1218.
    [75] National Kidney Foundation. KDOQI clinical practice guidelines and clinicalpractice recommendations for diabetes and chronic kidney disease.AmJ Kid Dis,2007,49(2suppl2):S1-S181.
    [76]封翠云.糖尿病肾病的中医病名探讨[J].国医论坛.2007,22(2):22.
    [77]周仲瑛.中医内科学[M].北京:中国中医药出版社.2005:427-433.
    [78]李小会,董正华.糖尿病肾病病因病机探讨[J].陕西中医.2005,26(6):552-553.
    [79]陈茜,王卫群.糖尿病肾病瘀血理论及其关系探讨[J].新疆中医药.2004,22(06):4-5.
    [80]王秀霞,郑亚萍,王玉中.益肾排浊汤配合贝那普利治疗糖尿病肾病的临床研究[J].辽宁中医杂志,2009,36(6):986-988.
    [81]孙君雅,王兴华,富志南.芪白四君子汤治疗糖尿病肾病患者临床观察[J].山东医药.2011,51(4):105。
    [82]司福全,周世芬,崔宇辰.补肾活血法对糖尿病肾病尿白蛋白排泄率及血流动力学的干预作用[J].辽宁中医杂志.2010,37,(6):979-980。
    [83]李敬林,王东.从“脾主运化”论治消渴[J].中国中医基础医学杂志.2002,8(12):43-44。
    [84]朱成英,李鸣,莫燕新.糖尿病肾病病因病机探讨[J].河南中医.2010,30(11):1050-1051。
    [85]郎江明,李美珍,魏爱生,等.糖尿病肾病辨证分型客观指标的研究[J].中国中西医结合杂志.1995,15(2):84。
    [86]林兰.中西医结合糖尿病学[M].北京;人民卫生出版社,1999:102
    [87]宋宗良,姜菊娥,刘丽秀中西医结合治疗早期糖尿病肾病48例临床研究[J].四川中医.2007,25(2):76-77。
    [88]徐郁杰,张庆怡,吴青伟.黄芪对糖尿病大鼠早期肾肥大和蛋白尿的影响[J].上海第二医科大学学报.1997,17(5):357。
    [89]黄淳康,黄爱梅.黄芪注射液对早期糖尿病肾病肾脏功能的影响[J].吉林中医药.2008,28(6):21-22。
    [90]杜月光,柴可夫,杨明华.等,三七皂苷对糖尿病大鼠肾脏保护作用的实验研究[J].中国中医药科技.2010,17(1):40-41。
    [91]范红英,石咏军.雷公藤多苷对糖尿病肾病患者转化生长因子β1的影响[J].中国中西医结合肾病杂志.2005,6(7):395-397。
    [92]史伟,唐爱华,吴金玉,等.水蛭注射液治疗糖尿病肾病57例疗效观察新中医.2006,38(3):38-39。
    [93]王秀霞,赵明耀.中西医结合治疗糖尿病肾病的临床研究[J].中国现代医药杂志.2009,11(2):56-58
    [94]颜国富.中西医结合治疗糖尿病肾病40例疗效观察[J].新中医.2007,39(5):86-87。
    [95]玉山江,哈丽达.中西医结合治疗早期糖尿病肾病的临床研究[J].辽宁中医杂志.2009,1(4):591-593。
    [96]欧阳静萍.黄芪降血糖机制的研究[J].山东中医杂志,2005,24(11):688
    [97]刘慧琦.黄芪注射液的临床应用[J].医药导报.2001,20(6):388。
    [98]黄厚聘.黄芪的利尿与降压作用[J].药学学报.1965,12(5):319。
    [99]李萍.黄芪对体液免疫的影响[J].山东医学院学报.1982,6(1):66。
    [100]樊红灿,等.绵毛黄芪总苷对小鼠免疫功能影响[J].中国药理通讯.1989,6(2):21。
    [101]王浴生.中医药理与应用[M].第1版.北京:人民卫生出版社,1983:998。
    [102]锦州医学院药理教研组.降血脂中草药筛选的实验性研究[J].锦医科技.1977,(6):19。
    [103]凌树森,等.黄精对H-TdR掺入小鼠心肌等脏器的影响[J].江苏医药.1982,(5):5。
    [104]黄精、大承气汤加味治愈皮质醇增多症1例报告[J].新医学.1976,7(10):476。
    [105]陈其明,谢明智.黄连及小蘖碱降血糖作用的研究[J].药学学报.1986,21(6):401-406
    [106]宋菊敏.等.黄连素对非胰岛素依赖性糖尿病大鼠的抗氧化作用[J].中草药.1992,23(11):590。
    [107]木岛正夫,等.药用植物大辞典.日本[M].广川书店,1977:28。
    [108]Kimuray,et al.Effect of stilbene components of roots of polygonum ssp onliver injury in peroxidized oil-fed rats.Planta Med.1983,49:51.
    [109]童平,等.虎杖中白藜芦醇苷对脂质体过氧化的抑制作用[J].中国药学杂志,1991,26(6):363。
    [110]高南南,等.泽兰有效成分活血化瘀药理学的研究I.泽兰4个提取部分对大鼠血液流变学的影响[J].中草药.1996,27(6):352。
    [111]杨峰,等.八味活血化瘀中药对小鼠细胞免疫调节作用的量效关系研究[J].中国实验临床免疫学杂志.1997,9(1):49。
    [112]董柯,等.水蛭对细膜增殖性肾炎蛋白尿、脂质代谢及凝血机制的影响[J].中华内科杂志.1995,34(4):250。
    [113]武继彪,等.3种水蛭炮制品调脂作用比较[J].中国中药杂志.1994,19(6):343。
    [114]马丽,张伟平,涂斌.血清胱抑素C和血尿β2-微球蛋白对糖尿病早期肾损害的诊断价值[J].实用医药杂志.2011,28(2):116-117。
    [115]付晓,李敬林,卞镝,等.糖克煎剂对糖尿病大鼠肾组织TGF-β1表达的影响[J].辽宁中医杂志,2006,33(4)501-502。
    [116]肖炜,马云.肾康丸对糖尿病肾病大鼠TGFβ1/Smad信号通路的影响[J].第三军医大学学报,2008,30(16):4651-4654。
    [117]陈丽,刘晓城,宁勇.姜黄素对糖尿病大鼠肾脏病变的作用及对肾脏Smad7表达的影响[J].华中科技大学学报(医学版).2004,33(4):438-444。
    [118] Itoh S, Itoh F, Goumans M J, et al. Signaling of transforming growthfactor2b family members through Smad proteins [J]. Eur J Biol Chem.2000,267(24):6954-6967.
    [119] Zhang Y et al. Regulation of Smad degradation and activity by Smurf2, anE3ubiquitin ligase[J]. Proc Natl Acad Sci USA.2001,98(3):974-979.
    [120] Kornitzer D,Ciechanover A.Modes of regulation of ubiquitin-mediatedprotein degradation[J].J Cell Physiol,2000,182(1):1-11.