小型薄壁TiAl基合金件底注式真空吸铸技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于TiAl合金有许多突出的特点,其发展受到世人的关注和重视。TiAl合金的密度低,高的比强度和比弹性模量,在高温时仍可以保持足够高的强度和刚度,同时它还具有良好的抗蠕变及抗氧化的能力。由于TiAl基合金室温延性差,难以加工成形,研究者将目光集中在TiAl基合金铸造近净成形技术上,目前TiAl基合金的铸造成形技术有熔模铸造、反重力低压铸造、离心铸造等,但是这些铸造方法在成形小型薄壁TiAl基合金件时效率较低。因此,TiAl基合金薄壁叶片一般采用精锻件,但是这类薄壁叶片加工存在较大的变形问题,精加工余量采用手工抛光来去除,并靠截面样板来保证叶片气动形状,影响发动机的气动性能。
     本文提出了一种新的TiAl基合金近净成形铸造方法-底注式真空吸铸,通过对底注式真空吸铸过程的数值模拟和实验验证,详细研究了金属型底注式真空吸铸的充型和凝固规律。在此基础上研究了底注式真空吸铸TiAl基合金小型薄壁件的组织特征。底注式真空吸铸技术是将TiAl基合金在水冷坩埚中熔化,熔化了的合金通过坩埚底部的吸口充入到真空室金属铸型中凝固的近净成形铸造技术。底注式真空吸铸过程中,TiAl合金液是在真空条件下充型凝固的,克服了氧化物的形成,合金液在上下气体压差和自身重力的同向耦合下充型,充型动力大,即使在较小的过热度下也可成形小型薄壁件,利用金属铸型还可以获得细小的组织、减弱界面反应。
     吸口直径对底注式真空吸铸过程TiAl基合金熔体的流动行为产生很大的影响(型腔宽20mm,厚2mm,长60mm):当吸口直径为2mm时,合金熔体到达铸型底部后进行反向充填,在铸型的底部出现反向充填区,随着吸口直径的增大,反向充填区从底部向上部移动,当吸口直径为4mm时,反向充填区消失。影响流动产生这种行为的主要原因是由于吸口直径改变了合金液的最大射流宽度,随着吸口直径的增大,合金液的最大射流宽度增大。研究了吸口直径、浇注温度、浇注速度、铸型温度、换热系数和合金元素对充填率的影响:吸口直径和充填率呈线性关系;浇注温度的提高有利于充填率的提高;当浇注速度小于2m/s时,浇注速度和充填率成线性关系;铸型温度的提高也有利于充填率的提高;大的换热系数铸型使充填率降低;添加使TiAl基合金熔点提高、粘度增加的合金元素,不利于熔体的充型。适当的电流强度和电极高度有利于减少铸件中气孔缺陷。
     研究了工艺参数对凝固时间和凝固分数的影响:浇注温度的提高使浇口部位的合金液凝固时间延长,金属液前端临界凝固分数减少,有利于叶片隼部的补缩;吸口直径的增大、铸型温度的提高,有利于叶片隼部合金液在浇口部位的合金液后凝固,使叶片隼部的凝固封闭区减少,有利于叶片隼部的补缩;浇注速度的提高使叶片隼部的凝固封闭区先变小后增大,其临界速度为1m/s,当浇注速度小于1m/s时,有利于叶片隼部的补缩。确定了底注式真空吸铸TiAl基合金的局部凝固收缩率1.55%为缩孔,实验结果和数值模拟结果吻合。吸口直径对底注式真空吸铸TiAl基合金构件的缩孔影响最大,浇注温度次之,随着吸口直径的增大,浇注温度的提高,叶片隼部的缩孔减少。浇注温度的提高有利于应力的消除;吸口直径的增大,使叶片叶身部位的应力减少;铸型温度和浇注速度的提高,有利于叶片整体应力的减少;大的换热系数的铸型,使叶片的应力集中加剧。
     利用综合优化工艺参数图获得了充型完整且无宏观缩孔的薄壁铸件。研究了TiAl基合金薄板铸件、叶片铸件的组织特征。Ti-47Al合金薄板铸件晶粒尺寸和距底部距离有关,铸件底部的晶粒最小,随着距底部距离的增大,晶粒增大,铸件整个横截面全是等轴晶。Ti-47Al合金叶片铸件内部的晶粒也随着距底部距离的增大而增大,在距底部距离20mm处,叶片铸件的横截面从等轴晶向柱状晶转变,柱状晶的尺寸也随距底部距离的增大而变大。无论是薄板铸件还是叶片铸件,层片间距随距底部距离的增大而增大。和离心铸造对比,底注式真空吸铸得到的TiAl基合金组织偏析少,晶粒尺寸小,且晶粒尺寸分布均匀,无界面反应。W元素的添加细化了Ti-47Al合金的一次、二次枝晶臂;B、Si元素的添加,在Ti-47Al合金中生成第二相,形成的第二相主要分布在晶界处,阻碍晶粒的长大,从而细化了Ti-47Al合金的组织。
TiAl based alloys are considered as promising structural materials in aerospace, energy and automotive industries. Their advantages are mainly low density, high specific strength, high specific stiffness, good oxidation resistance, and good creep property up to high temperatures. TiAl based alloys have low ductility, low deformation limit, and bad cold-forming property, so these bad properties limit the cold processing technology of TiAl based alloys.
     Casting is the most economical way to produce TiAl based alloy components. Different casting methods such as low pressure casting, centrifugal casting, shell mould casting etc. are used. However, there are some problems in casting small thin walled component of TiAl based alloy. Therefore, the TiAl based alloy precise forging thin blades were generally used in small engine. However, this thin blade has deformation problem, and precision allowance was removed by hand polishing, and the air-actuated shape of the blade was assured by cross section pattern.
     In this article, a new net-shape casting method for TiAl based alloy was developed - bottom pouring vacuum suction casting using permanent mold. Through the numerical simulation and experimental verification, the detailed study on filling and solidification process of TiAl based alloy melt during bottom pouring vacuum suction casting has been carried on. On the basis of the numerial simulation an experimental results, the defects and structure characteristics of small thin sheet Ti-47Al alloy components prepared by bottom pouring vacuum suction casting were studied also. Bottom pouring vacuum suction casting technique is to melting TiAl based alloy in a water-cooled crucible, and molten alloy will fill into metal mould through the suction hole at the bottom of the crucible,and then solidify. In the process of bottom pouring vacuum suction casting, the melt fills and solidifies under vacuum so as to overcome the oxide formation, on the other hand, melt the mould cavity in the coupled effect of the pressure difference and gravity, and the smaller superheat can also form small thin walled component, at the same time,use of metal mold can refine TiAl based alloy structure and weaken interface reaction.
     The suction hole diameter will affect filling behavior of TiAl based melt. With the increase of suction hole diameter, the max jet width increases. In this article, the effects of suction hole diameter, pouring temperature, pouring velocity, mold temperature, alloy element and coefficient of heat transfer on filling ratio have been studied. The suction hole diameter and filling ratio have linear relationship. With the increase of pouring temperature, the filling ratio increases. When pouring velocity is less than 2m/s, there has a linear relationship between the pouring velocity and the filling ratio. With the increase of the mold temperature, the filling ratio increases. The addition of alloy element, which will increase melting point and viscosity, will decrease the filling ratio. The proper current density and electrode height are benefit to decrease gas hole of casting.
     The effect of technology parameter on solidification time and solidification fraction has been studied. With the increase of pouring temperature, the solidification time of front melt is extended, which will benefit to feeding; The increase of suction hole diameter and mold temperature are benefit to solidification of blade hawk after the front melt solidification, and the solidification fraction is reduced, which will benefit to improve feeding; With the increase of pouring velocity, the solidification closed area decreases first and then increases, and the critical value is 1m/s, when pouring velocity is less than 1m/s, the increase of pouring velocity will benefit to improve feeding. The local solidification shrinkage ratio 1.55% of TiAl based alloy is used for shrinkage criterion, the experimental results and numerical simulation results agree well. The suction hole diameter has the greatest effect on shrinkage cavity of TiAl based alloy component, followed by the pouring temperature, with the increase of suction hole diameter and pouring temperature, the shrinkage cavity is reduced. With the increase of pouring temperature, the stress is reduced; the increase of suction hole diameter will lead to decrease blade leaf stress; the increase of pouring velocity and mold temperature will benefit to decrease blade stress
     In this article, the qualified TiAl based alloy thin walled components have been obtained. The structure character of the thin sheet casting and blade casting of TiAl based alloy has been studied. The grain size of Ti-47Al alloy thin sheet casting increases with increasing distance from the bottom, and the entire cross section has equiaxed grain. The inner grain size of Ti-47Al alloy blade increases with increasing distance from bottom. The inner grain shape of Ti-47Al alloy blade is changes from equiaxed to columnar crystal at the distance from the bottom 20mm, and the columnar crystal fraction increases with increasing distance from bottom. The lamellar spaces of blade and thin sheet casting increase with the distance increase from bottom. Compared with centrifugal casting, the bottom pouring vacuum suction casting has several advantages, that is, less segregation, no interface reaction, and smaller grain size. The effect of alloying element on Ti-47Al alloy structure has been studied also in this article. The first secondary dendrite arm was refined, because of the W element addition; Because of B and Si element additions, second phase will form and result in refinement of Ti-47Al alloy structure.
引文
1 T. Noda, M.Okabe, S.Isobe, M.Sayashi. Silicide Precipitation Strengthen TiAl. Materials Science and Engneering A. 1995,192/193:774~779
    2 S. L. Xiao, J. Tian, L. J Xu, Y. Y. Chen, H. B. Yu, J. C. Hai. Microstructures and Mechanical Properties of TiAl Alloy Prepared by Spark Plasma sintering. Transactions of Nonferrous Metals Society of China. 2009,19(6):1423~1427
    3 M. T. Jovanovic, B. Dimcic, I. Bobic, S. Zec, V. Maksimovic. Microstructure and Mechanical Properties of Precision Cast TiAl Turbocharger Wheel. Journal of Materials Processing Technology. 2005,167(1):14~24
    4 M. Nazmy, V. Lupinc. Gamma TiAl Intermetallic for Gas Turbine Applications. Materials for Advanced Power Engineering. 1998,933~941.
    5秦高梧,郝士明. Ti~Al系金属间化合物.稀有金属材料与工程. 1995,24(2):1~7
    6尚尔晶. TiAl基合金高温钎焊钎料配制及连接工艺研究.哈尔滨工业大学硕士论文. 2007:1~4
    7 S. Y. Sung, Y. J. Kim. Economic Net~Shape Forming of TiAl Alloys for Automotive Parts. Intermetallics. 2006,14(10~11):1163~1167
    8 P. X. Fu, X. H. Kang, Y. C. Ma, K. L. Liu, D. Z. Li, Y. Y. Li. Centrifugal Casting of TiAl Exhaust Valves. Intermetallics. 2008,16(2):130~138
    9 K. Liu, Y. C. Ma, M. Gao. Single Step Centrifugal Casting TiAl Automotive Valves. Intermetallics. 2005,13(9):925~928
    10 A Choudhury, M Blum. Economical Production of Titanium-Aluminide Automotive Valves using Cold Wall Induction Melting and Centrifugal Casting in A Permanent Mold Vacuum. Proceedings of the 13th International Vacuum Congress and the 9th International Conference on Solid Surfaces 1996, 47(6~8): 829~831
    11张伟昊,邹正平,刘火星,李维.小型涡扇发动机涡轮气动设计研究.航空动力学报. 2010,25(1):72~79
    12 Y. M. Kim. Intermetallic Alloys Based on Gamma Titanium Aluminides. JOM. 1989,41(7):24~30
    13 D. M. Dimiduk. Gamma Titanium Aluminide Alloys—an Assessment Within the Competition of Aerospace Structural Materials. Materials Science and Engineering A. 1999,263: 281~288
    14韩传玺,张启海.钛合金研究和工艺技术的最新进展.稀有金属材料与工程. 1994,23(3):73~80
    15 H. Oikawa. Creep in Titanium Aluminides. Material and engineering A. 1992, 153: 427~432
    16 K. S. Chan. Microstructure Effects on Fracture Resistance in TiAl ased Alloys In Gamma Tiatanium. Ed. By Y. W. Kim, R. Wagner and M. Yamaguich. 1995:835~847
    17 D. M. Dimiduk. Gamma Titanium Aluminides-an Emerging Materials Technology. In Gamma Tiatanium. Ed. By Y. W. Kim, R. Wagner and M. Yamaguich. 1995:3~20
    18 K. S. Chan. Understanding Fracture Toughness in Gamma TiAl. JOM. 1992, 44(5):30~38
    19孙福生,曹春晓.钛铝基合金研究的进展.金属学报. 1999,35(1):39~43
    20 F. H. Froes, C. Suryanarayana and D. Eliezer. Properties and Application of Titanium Aluminides. Journal of Materials Science. 1992,27(5):5113~5140
    21 H. Umeda, K. Kishida, H. Iniu, M. Yamaguchi. Effects of Al-Concentration and Lamellar Spacing on the Room Temperature Strength and Ductility of PST Crystal of TiAl. Materials Science and Engineering A. 1997, 239/240:336~343
    22 H. Inui, M. H. Oh, A. Nakamura, M. Yamaguchi. Room-temperature Tensile Deformation of Poly Synthetically Twinned (PST) Crystals of TiAl. Acta Metall Mater. 1992,40: 3095~3104
    23 P. M. Hazzledine, R. K. Kad, Yield and Fracture of Lamellarγ/α2 TiAl alloys. Materials Science and Engineering A. 1995, 192 /193: 340~346
    24 C. T. Liu, J. H. Schneibel, P. J. Maziasz, J. L. Wright, D. S. Easton. Tensile Properties and Fracture Toughness of TiAI Alloys With Contrlled Microstructures. Intermetaliics. 1996, 4(6):429~440
    25 M. Enoki, T Kishi. Effect of Rate on The Fracture Mechanism of TiAl, Materials Science and Engineering A. 1995, 192/193:420~426
    26 A. Bartels, C. Koppe, H. Mechking. Microstructure and Properties of Ti48Al2Cr after Thermomechanical Treatment. Materials Science and Engineering A. 1995, 192/193,226~232
    27 Y. W. Kim. Microstructual Evolution and Mechanical Properties of Forged Gamma Titanium Aluminide Alloy. Acta Metall. Mater. 1992, 40(6):1121~1134
    28 M. Yamaquchi and H. Inui. TiAl Compounds for Structural Applications. In Structural Intermetallics. 1993:127~142
    29 Y. W. Kim. Trends in the Development of Gamma TiAl Alloys. In Gamma Titanium Aluminides. Ed. By Y. W. Kim, R. Wangner and M. Yamaguich, 1995:637~654
    30 S. C. Huang, J. C. Chesnutt. Gamma TiAl and It’s Alloys. IntermetallicsCompounds. 1995, 2:73~90
    31 J. D. Shi, Z. J. Pu, K. H. Wu, Influence of Grain Size on Tensile Properties and Fracture to Ughness of TiAl Based Alloy. Gamma Titanium Aluminides, Edited by. Y. W. Kim, R. Wagner, M. Yamaguchi, TMS. 1995:771
    32 C. T. liu, J. H. Schneibel, P. J. Maziasz, J. L. Wright, D. S. Easton. Room and Elevated Temperature Mechanical Properties of PM TiAl Alloy Ti-47Al-2Nb-2Cr, Gamma Titanium Aluminides, Edited by Y. W. Kim, R. Wagner, M. Yamaguchi. TMS. 1995:679
    33 K. S. Chan, Y. W. kim. Influence of Microstructure on Crack Tip Micromechanics and Fracture Behavior of a Two Phase TiAl alloy, Metall.Trans.1992, 23A:1663~1677
    34 K. S. Chan. Micromechanics of Shear Ligament Toughening, Metall Trans A. 1991, 22A:2021~2029
    35 K. S. Chan. Toughening Mechanism in Titanium Aluminides. Metall.Trans. 1994, 24A: 569~583
    36 Y .W. Kim. Effects of Microstructual on the Deformation and Fracture ofγ- TiAl Alloys. Materials Science and Engneering A. 1995, 192/193:519~533.
    37 Y.W. Kim, D. Dimiduk. Designing Gamma TiAl Alloys: Fundamentals Stratiogy and Production". In Structural Intermetallics. eds. M. V. Nathal, R. Darolia, C. T. Liu, P. L. Matin, D. B. Miracle, R. Wagner and M. Yamaguchi. TMS. 1997:531.
    38 C. T. Liu. P. J. Maziasz and J. L Wright. Key Microstructure Controlling the Mechanical Properties of Two-Phase TiAl Alloys with Lamellar structures. Mat.Res.Soc.Symp.Proc. MRS. 1997,460:83
    39 D. G. Morris, M. M. Dadras, M. A. Morris-Mu?oz. Strain-Ageing Effects inγ-TiAl Based Alloys. Intermeallics. 1999,7(5):589~598
    40 Y Zheng, L. Zhao, K. Tangri. Efects of Cr Addition and Heat Treatmenton the Microstructure and Tensile Properties of a Cast Ti-45Al-3Cr Alloy. Materials Science and Engneering A. 1996, 208: 80~87
    41孔凡涛,陈子勇,田竞,陈玉勇.提高TiAl基合金室温塑性的方法.稀有金属材料与工程. 2003,2(32):81~86
    42 J.H. Kim, S.W. Kim, H.N. Lee, M.H. Oh, H. Inui, D.M. Wee. Effects of Si and C Additions on the Thermal Stability of Directionally Solidified TiAl–Nb alloys. Intermetallics. 2005,13(10): 1038~1047
    43 Z. G. Liu, Y. Y. Chen, L H. Chai, F. T. Kong, H. A. Davies. Production and Characterization of TiAl Ribbons with Y Additions. Transactions of Nonferrous Metals Society of China. 2006,16(2):s711~s714
    44 Y. L. Hao. Compression Properties of Ti-Al-X Alloys in Relation to SiteOccupancies of Alloying Elements in TiAl and Ti3Al Journal of material science and technology. 1999,15(6):536~540
    45 Y. L. Hao. The Site Occupancies of Alloying Elements in TiAl and Ti3Al Alloys. Acta Materialia. 1999,47(4):1129~1139
    46付连峰,林建国,曹国鑫,张永刚,陈昌麒.全片层TiAl基合金的屈服强度与显微组织关系.稀有金属材料与工程. 2001,30(6):178~182
    47李文,关振中,张瑞林. TiAl化合物反常屈服行为的键本质研究.稀有金属材料与工程. 1998,27(6):331~335
    48张国兴,康强,李阁平,石南林,李东. SiCf增强Ti-48Al-1.5Mn复合材料的界面反应.金属学报. 2003,39(3):329~331
    49 M. Nazmy, M. Staubi. Alloy Modification ofγTiAl for Improved Mechanical Properties. Scripta Metallurgica etc Materialia. 1994,31(7): 829~833.
    50 D. Hu. Effect of Composition on Grain Refinement in TiAl-based Alloys. Intermetallics. 2001,9:1037~1043
    51 G. Shao, P. Tsakiropoulo. Solidifcation Structures of Ti-Al-Cr Alloys. Intermetallics. 1999,7(5):579~587
    52 T. T. Cheng, M. R. Willis, I. P. Jones. Effects of Major Alloying Additions on the Microstructure and Mechanical Properties ofγ-TiAl. Intermetallics. 1999, 7(1):89~99
    53 J. Zackrisson, H. O. Andren. Effect of Carbon Content on the Microstructure and Mechanical Properties of (Ti, W, Ta, Mo)(C, N)-(Co, Ni) Cermets. International Journal of Refractory Metals & Hard Materials. 1999,17(4):265~273
    54 F. S. Sun, F. H. S. Froes. Precipitation of Ti5Si3 Phase in TiAl Alloys. Materials Science and Engineering A. 2002, 328:113~121
    55 F. S. Sun, F. H. S. Froes. Solidification Behavior of Ti5Si3 Whiskers in TiAl alloys. Materials Science and Engineering. 2003, A345:262~269
    56 Y. G. Li, M. H. Loretto. Microstructure and Fracture Behaviour of Ti-44A1-xM Derivatives. Acta Metallurgicaet Materialia. 1994,42(9):2913~2919
    57 J. N. Wang, J. Zhu, J. S. Wu, X. W. Du. Effects of Alloying Elements on Creep of TiAl Alloys with a Fine Lamellar Structure. Acta Materialia. 2002,50(6):1307~1318
    58 W. J. Zhang, S. C. Deevi. The Controlling Creep Processes in TiAl Alloys at Low and High Stresses. Intermetallics. 2002,10(6):603~611
    59 K. Hashimoto, M. Kimura. Efect of Third Element Addition on Mechanical Properties of TiAl. in Structural Intermetallics eds. Nathal M. V. Drrolia R, Liu C. T. Martin, P. L. Miracle, D. B. Wagner R. and Yamaguhi. M. 1993,TMS 309
    60 B. London. Investment Cast Gamma Titanium Aluminide Alloys: Processing Properties and Promise. Structural Intermetallics. 1993, TMS:151
    61 M. Yamaguchi, H. Inui. TiAl compounds for Structural Application. Structural Intermetallics. 1993,TMS:127
    62贾均.钛铝合金及其熔炼技术.特种铸造及有色合金. 1998,4:6~11
    63 C. Frueh, D. R. Poirier, M. C. Maguire, R. A. Harding. Attempts to Develop a Ceramic Mold for Titanium Casting-A Review. Int. J Cast Metals Res.1996(9):233~239
    64 M. Hoch. Solubility of Y2O3 in Liquid, Solid Titanium and Commercial Ti Alloys in Titanium Science and Technology. Ed by Lutjering G, Z wicker U and Bunk W, 1984,3:1431~1438
    65 T. Degawa, K. Kamata, Y. Yoneda. Melting and Precision Casting of Pure Titanium Using Calcia The Paper of Sixth World Conference on Titanium, France.1988:707~713
    66舒群,郭永良,陈子勇,孔凡涛,陈玉勇.铸造钛合金及其熔炼技术的发展现状.材料科学与工艺. 2004,12(3):332~336.
    67窦永庆.钛合金的主要合金元素在铸锭中的分布.第六届全国钛及钛合金学术交流会文集.北京:原子能出版社,1987.43~48
    68 J. W. Sears. Current Processes for the Cold-Wall Melting of Titanium. JOM, 1990,42(3):17~21
    69 G. H. Chippereit. Cold Crucible Induction Melting of Reactive Metals. JOM, 1961,22(2):1~6
    70蒋炳玉.冷坩埚感应熔炼活性金属的发展与应用.稀有金属材料与工程. 1993,22(2):1~6
    71闫蕴琪. 8.5Nb-TiAl基合金制备-组织-性能关系.西安交通大学[D]. 2001,7~13
    72 M. M. Keller. Efects of Processing Variables on the Creep Behavior of Ti-48Al-2Nb-2Cr Casting. Titanium'95 Science and Technoloy, 1995, Birmingham, UK, October2 2-26: 184~193
    73 M. K. WiezorekJ Deformation Behavior of aα2 Lamellae in Fully Lamellar Ti-48Al-2Mn-2Nb at Room Temperature. Scripta Material. 1998, 38(8): 811~817
    74 V. K. Jain, R. L. Goetz, S. L. Semiatin.Trans.ASME, 1996,118:15 5~16
    75 F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J. D. H. Paul, Recent Progress in the Development of Gamma Titanium Aluminide Alloys. Advanced Engineering Materials. 2000,2(11):699~720.
    76 Y. Q. Yan, Z. Q. Zhang, G. Z. Luo etc. Microstructure Observation and Compressing Tests of TiAl Based Alloys Containing High Nb. Materials Science and Engineering A , 2000,280(1):187~191
    77 Q. H. Rao, Y. H. He, B. Y Huang. Stress Analysis of Canned Hot for Forged Specimen of TiAl Intermetallic Compound. Trans. Nonferrous Met. Soc. China.1997,7(2):91~94
    78贺跃辉,黄伯云,陈小群,刘业翔,徐强.双温热处理对TiAl基合金显微结构的影响.电子显微学报. 1997,16(1):31~38
    79贺跃辉,黄伯云,曲选辉,雷长明,刘业翔,徐强. TiAl基合金热处理显微组织缺陷.热加工工艺. 1995,(1):13~16
    80华伟,吴建生,张澜庭.含Nb的Ti-Al-Si系金属间化合物的热轧组织与性能.稀有金属材料与工程. 1999,28(1):41~45
    81 D. Eylon, F. H. Froes, L. D. Parasons. Titanium PM Components for Advanced Aerospace Applications. Met Power Rep. 1983; 38(10):567~571
    82 F. H. Froes. Prealloyed Titanium Powder Metallurgy-Barriers to Use. Int. J. Powder Metal..1987,23(4):267~269
    83 F. H. Froes, J. Hebeisen. Emerging and Fortune Applications for HIP of Titanium Based Materials. In: C. G. Li, H. X. Chen, F. K. Ma, Hot Isostantic Pressing Conference Proceedings, HIP’99, Beijing: International Academic Publishers, 1999:1~24
    84 G. G. Demchnkov. Powder Metallurgy of Titanium Alloys Is Promising Trend in Manufacture of Enclosed Blade Dicks Used in Aerospace Industry. Titanium'99 (Volume III) / Proceedingz of the Ninth World Conference on Titanium. Saint-Petersburg, Russia. 2000,1840~1844
    85 J. Moll, B. McTiernan. P M TiAl Alloys: the Sky's the Limit. Metal Powder Report. 2000,55(1):18~22
    86 J. R. Merhar. Overview of Metal Injection Moulding. Metal Powder Report. 1990, 45(5):339~342
    87何世文,欧阳鸿武,刘咏,周朝科.制备钛合金件的粉末冶金新技术.粉末冶金工业. 2004,14(2):35~38
    88 K. Kato, K. Katoh, T. Leki. Tensile Properties at High Temperature of Sintered TiAl Compacts by MIM. Journal of the Japan Society of Powder and Powder Metallurgy. 1997, 44(11):1029~1034.
    89 J. Takekawa, N. Sakurai. Effect of Processing Condictions on Density, Strength and Microstructure of Ti-12Mo Alloy Fabricated by MIM Process. Journal of the Japan of Powder and Powder Metallurgy. 1999,46(8): 877~881.
    90 A. D. N bbott, F. G. Arcella. Aeromet Implementing Novel Ti Process. Metal Powder Report. 1998,53(2):24~26
    91 F. G. Arcella, F. H. Froes. Producing Titanium Aerospace Components from Powder using Laser Forming. JOM. 2000,52(5):28~30
    92 D. H. Abbott. Laser Forming Titanium Components. Advanced Materials and Process. 1998,153(5):39~30
    93张连洪译.快速全向压制.国外金属加工.1989,3:47~53.
    94郑弃非,谢水生,袁冠森.利用ROC技术制备TiNi形状记忆合金的研究.稀有金属.1999,23(4):284~288.
    95 J. Capus, S. Pickering, A. Weaver. Hoeganaes Offers Higher Density at Low Cost. Metal Powder Report. 1994,49(7/8):22~24
    96 H. G. Rutz, F. G. Hanejko, Luk S. H. Warm Compaction Offers High Density at Low cost. Metal Powder report. 1994,49(9):40~47
    97曲选辉,黄伯云.快速凝固钛合金粉末的制备技术.材料导报. 1993, 5:12~15
    98刘志坚,曲选辉,黄伯云.粉末冶金方法制备TiAl合金的进展.材料导报. 1995,(2):23~28
    99曹国平,谢成木,周邦彦.国外航空钛合金逐渐的应用与发展.金属学报. 1999,35(1):557
    100 Q Jia,. YY Cui, R Yang. A Study of Two Refractories as Mould Materials for Investment Casting TiAl Based Alloys. Journal of Materials Science. 2006, 41(10): 3045~3049
    101 S. Y. Sung; M. G. Kim; Y. J. Kim. A Study on the Metal-Mold Reaction for TiAl Investment Casting. World Conference on Titanium v.4, 20030713-20030718, Hamburg, DE. 2004, p2233~2240
    102李邦盛,李志强,蒋海燕.熔模铸造中钛合金与型壳界面的相互作用.特种铸造及有色冶金(增刊). 1999,1:20~22
    103戴介泉.钛精铸陶瓷型壳的新耐火材料研究.材料工程. 1996,12:20~21
    104 S. Nourbaskhsh, O. Sabin, H. Margolin. A Structure of Oxidation in an Al2O3 Fiber Reinforced Titanium Aluminide. Acta Metallurgica Material. 1995, 43(8):3035~3044
    105 M. G. Kim, S. K. Kim, Y. J. Kim. Effect of Mold Material and Binder on Metal-Mold Interfacial Reaction for Investment Casting of Titanium Alloys. Materials Transaction. 2002,43(4):745~750
    106颜鸣皋,曹春晓.金属间化合物材料的进展.第七届全国钛合金学术交流会论文集,广州, 1990:201~205
    107韩传玺,张启海.金属间化合物的发展新动向.稀有金属材料与工程. 1992, 21(4):68~80
    108 C. Hartig, H. Fukutom, H. Mecking, etal. Texture and Microstructure of Ti-49at.%Al after Dynamic Eecrystallization and Annealing. ISIJ International. 1993,33(2):313~320
    109周彦邦.钛合金铸造概论.航空工业出版社.北京. 2000.
    110南海,谢成木.国外铸造钛合金及其铸件的应用与发展.中国铸造装备与技术. 2003, 6:1~3.
    111 K. Watanabe, O. Miyakawa, Y. Takada, O. Okuno, T. Okabe. Casting Behavior of Titanium Alloys in a Centrifugal Casting Machine. Biomaterials. 2003, 24:1737~1743.
    112 Z. Yansheng. The Application of Titanium and Titanium Alloy in Automotive Industry, Prog. Titanium Ind. 2004, 21:16~18.
    113韩建民主编.材料成型工艺技术基础.中国铁道出版社. 2002, 8: 31
    114盛文斌,丁宏升,郭景杰,苏彦庆,贾均. Ti-15V-3Cr-3Sn-3Al合金熔体离心力场下充型流态分析.铸造. 2000,49(3):125~129
    115 S. P. Wu, C. Y. Li, J. J. Guo, Y. Q. Su, L. Q. Xiu, H. Z. Fu. Numerical Simulation and Experimental Investigation of Two Filling Methods in Vertical Centrifugal Casting. Transactions of Nonferrous Metals Society of China. 2006,16(5): 1035~1040
    116徐达鸣,李鑫,安阁英,郭景杰,贾均.钛合金离心精密铸造充型过程计算机模拟.铸造. 2002,51(1):39~43.
    117 T. Noda. Application of Cast Gamma TiAl for Automobiles. Intermetallics. 1998,6:709~713
    118 S. Yokoshima, M. Yamaguchi. Fracture Behavior and Toughness of PST Crystals of TiAl. Acta Metall Mater. 1996,44: 873~883
    119 C. T. Liu, P. J. Maziasz, D. J. Larson. Effects of B and W Additions on Microstructures and Mechanical Properties of Dual-phase Lamellar TiAl alloys. Proceedings of the TMS Fall Meeting, InterstiTiAl and Substitutional Solute Effects in Intermetallics. 1998,179~188
    120 A. Nakamura, H. Inui, M. H. Oh, M. Yamaguchi. Deformation of Polysynthetically Twinned (PST) Crystals and PST Bicrystals of TiAl at Room Temperature. Proceedings of the International Conference on Mechanical Behaviour of Materials, 1992,187~196
    121 J. L. Heatherly, E. P George, C. T. Liu, M. Yamaguchi.. An Auger Investigation of the Fracture Behavior of PST TiAl Alloys. Intermetallics. 1997, (5): 281~288
    122 V. J. Laraia, A. H. Heuer. On Metastable Eutectic Reactions in Peritectic Systems: Possible Applications to Ti-Al Alloys. Scripta Metall. Mater. 1991,25: 2803~2814
    123 K. Kishida, H. Inui, M. Yamaguchi. Deformation of PST Crystals of a TiAl/Ti3Al two Phase Alloy at 1000°C. Intermetallics. 1999,(7): 1131~1139
    124 Y. G. Zhang, Y. F. Han, G. L. Chen. Intermetallics Structural Materials. Beijing: National Defense Industry Press, 2001:716
    125 D. R. Johnson, H. Inui, M. Yamaguchi. Crystal Growth of TiAl Alloys. Intermetallics.1998,(6): 647~652
    126 K. Kishida, D. R. Johnson, Y. Shima. Characteristics Benefits and Applications of PST TiAl Crystal. Gamma Titanium Aluminide, 1995,219~229
    127 M. M. Keller, P. E. Jones, W J Porter et al, Porter W J, et al. Effects of Processing Variables on the Creep Behavior of Investment Cast Ti-48Al-2Nb-2Cr. Gamma Titanium Aluminide, 1995,441~450
    128傅恒志,丁宏升,陈瑞润等.钛铝合金电磁冷坩埚定向凝固技术的研究.稀有金属材料与工程. 2008,37(4):565~570
    129白云峰.钛合金冷坩埚电磁定向凝固.传输过程耦合模拟与数值计算[D].哈尔滨工业大学. 2006
    130江和甫.燃气涡轮发动机发展与制作技术.航空制造技术. 2007,5:36~39
    131 S. V. Shepel, S. Paolucci. Numerical Simulation of Filling and Solidification of Permanent Mold Casting. Applied Thermal Engineering. 2002, 22: 229~248
    132 S. M. H. Mirbagheri, H. Esmaeileian. Simulation of Melt Flow in Coated Mould Casting in the Casting Process. Journal of Materials Processing Technology. 2003, 142: 493~507
    133 J. Christophe, Gebelin. Modeling of the Investment Casting Process. Journal of Materials Processing Technology. 2003,135: 291~300
    134王建国.周中波.王一川,商国强,李金山. TiAl合金铸造工艺数值模拟及分析.特种铸造. 2009,30(8):1054~1057
    135 S. M. Xiong, B.C. Liu. Numerical Simulation of Molding Filling and Heat Transfer of High Pressure Die Casting. Proceeding of Molding of Casting, Welding and Advanced Solidification IX, Germany, 2000.
    136李邦盛.王狂飞,吴世平,米国发,毕维升,郭景杰,傅恒志. TiAl合金熔模精铸件缩孔形成的数值模拟及预测.特种铸造及有色合金. 2005,25(5):280~283
    137张春梅. TiAl基合金及其复合材料薄板的残余应力分析[D].哈尔滨工业大学硕士学位论文. 2006:19~24
    138闻星火,何丙军,童本行,柳百成.压力条件下缩松判据的研究.清报(自然科学版).1999(8):54~56
    139洪润洲,周永江,姚惟斌.真空吸铸条件下浇注速度对薄壁铝合金铸件内部质量的影响.材料工程. 2006,增刊1:294~296
    140 P. X. Fu, X. H. Kang, Y. C. Ma, etal. Centrifugal Casting of TiAl Exhaust Valves. Intermetallics. 2008,16:130~138
    141张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤主编.金属间化合物结构材料.北京:国防工业出版社. 2001:70
    142郑魁.钛合金等离子弧熔炼温度场数值模拟及相关参数的研究.哈尔滨工业大学硕士论文. 2006:31~35
    143 V. T. Witusiewicz, A. A. Bondar, U. Hecht, etal. The Al-B-Nb-Ti SystemⅢ. Thermodynamic Re-Evaluation of the Constituent Binary System Al-Ti. Journals of Alloys and Compounds. 2008,465:64~77
    144张志敏.离心力场对急冷TiAl基合金组织和性能的影响.山东理工大学硕士学位论文. 2008:23~34
    145 R. Yu, L. L. He, Z. Y. Cheng, etal. B2 Precipitates and Distribution of W in a Ti-47Al-2W-0.5Si Alloy. Intermetallics. 2002,10:661~665
    146田金华.γ-TiAl基合金组织细化技术研究.哈尔滨工业大学硕士论文. 2007:27
    147邱国华.金属间化合物Ti3Al/Ti5Si3合金研究[D] .上海交通大学.1993
    148高文理,张虎,张二林,曾松岩. TiAl-B合金中TiB2微观形态的主要存在方式.铸造技术. 2003,24(3):176~178
    149张虎,张二林,高文理,曾松岩. Ti-40Al-2B合金的微观组织和初生TiB2的生长特征.复合材料学报.2001,18(4):46~49.