离心力场下钛合金充型流动及铸造缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金力学性能优异,但其机加工难度大,在离心力场下,精密铸造成形钛合金薄壁复杂铸件具有十分独特的优势。而深入揭示离心力场下钛合金充型流动规律及铸造缺陷的形成机理,对制备钛合金优质铸件,优化其铸造工艺,降低实验费用,缩短生产周期均具有重要的理论意义和实用价值。故此,本文采用相似模拟和及计算机数值模拟方法,深入系统地研究了离心力场下钛合金充型流动规律及铸造缺陷的形成机理。
     本文借助相似模拟流体并依据所推导的离心力场下钛合金充型过程的相似准则,研究了离心力场下,不同浇注系统及不同转速条件下模拟流体的充型流动行为,结果显示:在模拟流体在横浇道中正向(即沿离心方向)充型流动过程中,流体总是沿着横浇道后壁进行充型,到达其末端时,流体冲击型壁,在此过程中流体经历了动能和势能之间相互的转化,一次压头转变为二次压头,并导致液体改变流动方向,沿后续浇道以逐层方式平稳的充入铸型,并且在反向(即沿向心方向)充型过程中,流体的自由液面是以转轴为圆心的规则圆弧面,流体只有径向运动而没有切向运动。对于直充式和顶注式,液流直接反向充型,最后充型部位为入口处;
     分析了模拟流体充型过程中,横浇道中向外流动的流股横截面积和充型长度,与转速之间的相互关系,结果显示:横浇道中流股横截面积随着充型长度的增加而减小;随着转速的提高,在相同位置处,流体横截面面积相应减小。
     研究了离心力场下,模拟流体充型速度及长度随时间的变化规律,结果显示:充型速度随着时间的增加而减小,充型开始阶段,速度下降的较为迅速,随后逐渐趋于平缓。对于同一类型的浇注系统,随着转速的提高,对应时刻的充型速度相应减小;充型过程中,充型长度随时间增大,充型初期,充型长度的增加迅速,随之增幅趋于平缓。而充型长度随转速的变化规律为:在充型开始阶段,转速对充型长度影响很小,随着充型时间的增加,转速对充型长度影响越来越显著,转速越高,充型长度增幅越小。
     此外,本文还推导了离心力场条件下,模拟流体中夹杂物运动的相似准则,并借此分析了离心力场下模拟流体中夹杂物的运动规律,研究表明:密度大于液态金属的夹杂物,将弥散分布在流体中形成两相流,将沿径向向外运动。
     计算机数值模拟,对纯钛/氧化锆陶瓷铸型界面反应所引起的反应性气孔进行了研究,结果表明:钛熔体与氧化锆陶瓷铸型界面处由界面化学反应引起的发气量变化规律为:初始发气较快,为增幅较大的线性增加阶段,后
Titanium alloys have excellent mechanical properties but they are difficult to be machined. Investment casts in Titanium alloys with thin wall produced under the centrifugal force field have unique advantages. It has important theory significance and the practical value to the development of Titanium alloys, the optimization of craft; reduce of experimental expense with clarification of the filling rule and the formation mechanism of defect in Titanium alloys under the centrifugal force field.
     As the result, the filling rule and the formation mechanism of defect in Titanium alloys under the centrifugal force field have been studied by the way of similar simulation and computer numerical simulation.
     In this dissertation, the similar criterion of filling process of Titanium alloys under the centrifugal force field is obtained applying to the similarity theory. The filling activity of alloys at different gating systems and different rotational speeds is simulated by water under centrifugal force field. The results show that fluid fills along the back of cross gate during forward filling. Exchange between the kinetic energy and the potential energy is taken place with crashing of fluid to wall, at the same time the primary pressure head become to the second pressure head. Then fluid stream go on filling along other running channels and stuff the cavity layer by layer. Free surface of liquid during filling backward process is on the circular arc with center is rotation axis. So there is not tangential motion, but only radial motion. Fluid fills backward directly for the gating system without ingate , and the final stuffing place is the gateway.
     The change rule of the filling speed and the filling length has been studied under the centrifugal force field. Results show that, the filling speed reduces along with the time increasing, and the decrease is more rapid at the initial stage. And then, the decrease keeps smooth. For the same gating system, the filling speed reduces with the enhancing of the rotation speed in the same time. During the filling process, filling length increases with the increase of the filling time, and the change is obvious at the initial period. Then the change becomes smooth. The influence of the filling speed on the filling length can be ignored at the
引文
1 Dimiduk D M. Miracle D B, Ward C H. Development of Intermetallic. Materials for Aerospace Systems. Materials Science and Technology. 1992, 8(3): 367~375
    2 Frose F H. Structure Intermetallics. JOM. 1989, 41(9):6~7
    3 Liu. C. T, Inoutge H. ControlofOrderedStructure and Ductility of Alloys. Metal. Trans. A. 1979,10A(10):1515~1525
    4 Kim Y M. Intermetallics Alloys Based on Gamma Titanium Aluminides. JOM. 1989, 1(7):24~30
    5 Parameswaran V R. High-Temperature Aluminides and Intermetallics. JOM. 1992, 44(6): 41~43
    6 彭艳萍等. 国外航空钛合金的发展应用及其特点分析. 材料工程.1997, (10): 3~6
    7 侯振声. 钛及钛合金在装甲车辆上的应用. 稀有金属材料与工程. 1994, (02): 52
    8 李东英. 我国的钛工业. 有色金属. 2000, (03): 1~6
    9 南海, 谢成木. 国外铸造钛合金及其铸件的应用于发展. 中国铸造装备与技术. 2003, (6): 1~3
    10 张春生主编. 钛合金的切削加工技术. 西北工业大学出版社, 1986: 232~24
    11 袁文明,陈荣章. 高温合金大型薄壁件精铸技术的发展. 航空制造工程. 1997, (01): 15~17
    12 何峰,程军. 铸造铝合金中的气体和氧化夹杂. 华北工学院学报. 1997, 18(1): 57~60
    13 牛济泰编著.材料和热加工领域的物理模拟技术.国防工业出版社, 1999: 2~13
    14 VRIshwar, Hakuhn. Experimentaland Theoretical Modelling of Ti-6Al-2Mo-4Zr Alloy compressor disk forging. Titanium Science and Technology. 1985, (2):13~19
    15 苏群,郭勇良,陈子勇等.铸造钛合金及其熔炼技术的发展. 材料科学与工艺. 2004, 6(3): 332~336
    16 谢成木,王新英.铸造钛合金及其铸造技术的发展和应用.金属学报. 1993, 35(1): 550~556
    17 张伯明. 离心铸造. 机械工业出版社, 2004: 1~7.
    18 范英俊. 特种铸造. 浙江大学出版社, 1995: 193~194
    19 曾兴旺. 离心铸造充型过程数值模拟的研究. 华中科技大学工学硕士论文. 2004: 5~8
    20 J. D. Hwang, H. J. Lin, K. C. Su. Mathematical Modeling of Fluid Flow and Heat Transfer During Vertical Centrifugal Casting. The Modeling of Casting Welding and Advanced Solidification Processes V. 1990, 9:23~25
    21 Zhang Baosheng, Zhu Jingchuan, Yin Zhongda. Fabrication of in-situ Al3Ni/Al Functionally Graded Material by Centrifugal Casting. Journal of Harbin Institute of Technology. 1998, 3: 21
    22 吴士平, 郭景杰, 苏彦庆等. TiAl 基合金排气阀离心铸造充型过程数值模拟的试验验证. 铸造. 2001, 50(9): 560~563
    23 盛文斌, 丁宏升, 郭景杰等. Ti-15-3 合金熔体离心力场下充型流态分析. 铸造. 2000, 49(3): 125~129
    24 盛文斌, 丁宏升, 郭景杰等. Ti-15-3 合金离心浇注过程中流速分析. 特种铸造及有色合金. 1999(3): 1~4
    25 邹鹑鸣. 低查压铸造充型过程水模拟实验研究.哈尔滨工业大学硕士论文. 2003: 10~12
    26 邹鹑鸣, 魏尊杰等.垂直缝隙式浇注系统充型过程水模拟. 材料科学与工艺. 2004, 12(6): 615~621
    27 陈秀娟, 杨秉俭, 苏俊义. 氢气泡测速法在连铸板坯结晶器水模拟实验中的应用初探.西安交通大学学报. 1996, 30(10): 77~81
    28 S.H.Jong, W.S.Hwang. Measurement of Flow Pattern for the Mold Filling of Castings. AFS Trans. 1991, (99): 69~75
    29 S.H.Jong, W.S.Hwang.3D. Mold Filling Simulation for Casting and Its Experimental Verification. AFS Trans. 1991, (99): 117~124
    30 F. A. Mampaey, Z. A. Xu. Simulation and Experimental Validation of Mould Filling. Proceedings of Modeling of Casting Welding and Advanced Solidification Process Ⅶ. London. TMS. 1995: 3~14
    31 蔡临宁, 麻向军, 杨秉俭. 铸型型腔充填过程的准三维水模拟试验. 西安交通大学学报. 1999, 33(5): 84~87
    32 张铁军. 电磁场下大型薄壁铝合金件物理模拟. 哈尔滨工业大学博士论文. 2000: 70~85
    33 杨艳, 赵忠兴, 王承志. 铸件浇注系统水模拟试验的计算机可视化技术. 中国铸造装备与技术. 2000, 1: 24~25
    34 吴士平等. TiAl 基合金排气阀立式离心铸造充型凝固过程数值模拟研究. 金属学报. 2004, 3(5): 326~330
    35 李庆春主编. 铸件形成理论基础. 哈工大出版社, 2000: 27~31
    36 何峰, 程军. 铸造铝合金中的气体和氧化夹杂. 华北工学院学报. 1997, 18(1): 55~66
    37 王长春. 论“气缩孔”概念造成的误导. 铸造. 2001, 12: 761~762
    38 刘汉武, 朱丽娟等. 侵入性气孔的形成原因及其防止方法. 铸造技术. 1998, (3): 21~22
    39 王萍, 赵彦楼, 王莉等. 铸钢件气孔的成因及防治. 河北工业大学成人教育学院学报. 2002, 3(1):20~22
    40 许云祥等. 熔模铸钢件气孔的产生与防止. 特种铸造及有色合金. 2001, (2): 22~26
    41 郭景杰, 盛文斌, 贾均. 钛合金金属型铸造工艺研究现状. 特种铸造及有色合金. 1999(1): 125~127
    42 谭银元. Al-Si 合金离心铸造产生气孔的原因及防止措施. 武汉船舶职业技术学院学报. 2003, 1: 28~29
    43 Moldovan. Petru, Popescu. Gabriela. Microstructure Evaluation and Microporosity Formation in AlSi7Mg0.3 Alloys. Light Metals 2003: 235~239
    44 Sobolev. V. V. Kinetics of Gas Porosity Development in the Process of Granule Crystallization. Poroshkovaya Metallurgiya. 1991, 4:1~6
    45 董杰, 任期锋, 石路等. 铝合金半固态触变压铸件气孔的形成与防治. 材料与冶金学报. 2002, 1(2): 102~105
    46 祝远志, 尹志民等. AlMg10 合金铸造零件表面缺陷成因探析. 铸造. 2004, 53(5): 372~375
    47 Niu X. P., Hu B. H. et al. Vacuum Assisted High Pressure Die Casting of Aluminium Alloys. Material Processing Technology. 2002, 105(1/2):119~127
    48 Syverud Morten, Hero H. Mold Filling of Ti Castings Using Investments with Different Gas Permeability. Dental Materials. 1995, 11:14
    49 Gorelov.G..S, Efimov.V.A et al. Russ Case Prod.1974, (10): 441~442
    50 Kashintsev.V.A, Kasatkin.G.N. Russ Case Prod.1973,10: 405~406
    51 Mirzonyan.G..S, Ivan’ko.E.X. Russ Case Prod. 1974, 6: 260~261.
    52 C.J.Simensen, G.Berg. A. Survey of inclusions in Aluminum. Aluminum. 1980, 56: 335~340
    53 张文辉.铸钢熔炼中夹杂物上浮速度的理论分析. 沈阳机电学院学报. 1981, 1: 99~106
    54 颜慧成, 丁永良等. 去除水平连铸不锈钢中间包钢水夹杂物的水模拟试验.特殊钢. 2004, 25(1): 12~14
    55 疏达, 孙宝德, 王俊等. 铸造铝合金洁净度-性能关系. 特种铸造及有色合金(增刊),1999, (3):27~30
    56 D.E.Groteke,”Eliminating Hard Spots Problems?”. Die Casting Engineer. 1985, 29(5): 16~24
    57 D.K.Lewis. ”Can We Control Hard Spot Problems ?”. Die Casting Engineer. 1987, 32(2): 34~38
    58 孙宝德, 王俊, 疏达等. 铝合金中的夹杂及其检测方法. 铸造技术(增刊). 1998(8): 67~69
    59 李诗久. 工程流体力学. 机械工业出版社, 1989: 231
    60 姚连增. 晶体生长基础. 中国科学技术大学出版社, 1995: 288
    61 KANG C G , Rohantgi P K. Transient thermal analysis of solidification in a cesting FIR Composite Materials Containing Particle Segregation. Metallurgical and Materials Transactions. 1996, 27B(4):277~285
    62 H.Akasaka, ZhuangDamin. Development of the trial volcanic ash collectors and their performances Used as an air-conditioning pre-filter. SHACS Transaction. JAPAN, 1996:
    63 周彦邦, 肖锡云, 王殿斌. 熔融钛与铸型材料的交互作用. 航空材料. 1988, (1): 1~3