高光谱图像分辨率增强及在小目标检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感是在测谱学基础上逐渐发展起来的新型遥感技术,除了空间图像信息外,其所具有的精细光谱信息,克服了宽波段遥感探测的局限,被广泛应用于多种领域,成为对地观测最重要的信息源之一。但由于成像原理与制造技术等因素的限制,高光谱图像的空间分辨率相对较低,给进一步应用,如特定目标的检测识别带来一系列的问题。为此,论文分别从信息融合和混合像素分解角度研究了高光谱图像的分辨率增强方法,旨在提高基于图谱结合的高光谱图像目标检测的性能。
     论文首先对遥感成像中涉及到的电磁波理论进行简单的介绍,分析了遥感图像的空间分辨率与光谱分辨率间的关系,即随着光谱分辨率的增加,在CCD等性能参数不变下,遥感图像的空间分辨率下降的原理。并在介绍了高光谱图像特性的基础上,对PCA、MNF及LDA变换的降维算法的原理进行了分析,研究其各种算法的特点及应用范围。降维算法是重要的高光谱图像预处理技术,这一部分的工作为后文的开展打下一个基础。
     然后对常用的高光谱图像目标检测算法进行了介绍。通过对支持向量数据描述的研究,分析并验证了其单类分类的性能及其适用范围;针对传统纯像素目标检测算法大部分无法解决目标与背景样本数量不平衡的问题,论文提出了基于SVDD的高光谱图像目标检测算法,把目标检测问题转化为单类分类问题。实验结果表明,与经典的光谱角度制图和有约束能量最小化算法相比,该算法仅需要较少的目标类训练样本就可以得到与前两者相近的检测结果,当增加背景样本时,本文方法可以将目标更容易的从背景中分离出来,为利用空间信息进一步检测提高了便利,使最终的检测结果优于上述两种算法。
     针对空间分辨率的不足,论文借助于空间信息补偿的思想,提出了基于相关向量机的增强高光谱图像分辨率的数据融合算法。由于该方法需要利用其它图像的信息,因此首先研究了多图像间的配准技术,并在对现有配准算法进行改进的基础上,提出了基于高斯拟合的配准控制点提取算法,从而获得了高精度的配准结果。在此基础上,研究了辅助信息补偿分辨率的方法,提出了基于RVM的融合算法,在增强高光谱图像空间信息的同时,较好地保持了原光谱特征。将增强后图像应用于纯像素小目标检测的实验表明,论文算法可以解决由于高光谱图像空间分辨率不足而导致的检测效果不佳的问题,分辨率增强后图像的检测精度明显优于融合前各图像的检测结果。
     最后,在缺少辅助信息的情况下,论文研究了通过光谱解混来改善高光谱图像空间分辨能力、解决光谱混叠的问题;利用子像素制图技术来实现高光谱图像空间分辨率的增强。对光谱解混的两个主要步骤:端元提取和混合像素分解分别进行了系统的研究。针对原始N-FINDR算法提取光谱端元时对噪声影响敏感的问题,提出了基于无监督聚类的端元提取算法。该算法利用K均值聚类方法从高光谱数据中选出光谱曲线代表集,再从代表集中找到光谱端元,实验表明该算法具有较强的抗噪性。针对传统算法在混合像素分解时,在含未知地物的像素处解混结果易出现较大偏差的问题,提出了一种基于SVDD的高光谱图像混合像素分解算法。该算法首先利用SVDD将高光谱数据分成完全由已知地物数据混合的像素和包含未知地物的像素两类,两类交界处为已知地物和未知地物混合的数据,然后对这些像素点进行混合像素分解,实验结果表明该算法可以有效地解决因存在未知端元对解混精度的影响,而且能给出未知端元的解混分量。在得到高精度的解混分量图的基本上,提出了基于感兴趣目标的子像素制图技术来改善高光谱图像的空间分辨率,经实验验证,该方法对检测出的目标形状保持较好,处理后的图像可以更容易地被利用光谱-空间信息联合的方法检测出目标。
Hyperspectral remote sensing is a technique based on the spectroscopy, which contains abundant spectral information besides the spatial information of the images, and overcomes the limitations of the wide-band remote sensing detection. As a result, it has been widely used in many areas and becomes one of the most important earth observation information source. However, with the limitations such as imaging spectrometer manufacturing techniques and imaging principles, the spatial resolution of the hyperspectral images is relatively low. This brings a series of problems to the further applications, such as detection of the specific targets. Therefore, in this thesis, the methods of information fusion and mixed pixel decomposition have been researched to enhancement the image spatial resolution, and finally to improve the capability of the hyperspectral image target detection combining the spatial and spectral information.
     Firstly, this thesis introduces the principle of electromagnetic wave, analyses the relationship between spatial resolution and spectral resolution. For the same CCD, the spatial resolution is decreasing with the increase of spectral resolution. This thesis also introduces the characteristic of hyperspectral image, analyses the characteristic and applicable range of several dimension reduction algorithms, such as PCA, MNF and LDA. Dimension reduction is an important image preprocessing technique which lays the foundation for the subsequent work.
     And then, this thesis introduces the widely used target detection algorithms, analyses the support vector data description(SVDD) and its classification capability and applicable range. Aiming at the unbalanced problem between the target and background samples in most traditional pure-pixel target detection algorithms, a hyperspectral image target detection algorithm based on SVDD has been proposed in this thesis, which converts target detection to one-class classification problem. Experimental results show that compared with the traditional algorithms such as spectral angle mapping and constrained energy minimization, this algorithm needs less target training samples and achieves approximately the same results as these two methods, when increasing the background samples, this method is superior to those two ones.
     Aiming at low spatial resolution of hyperspectral image, by means of spatial information compensation, a data fusion algorithm of enhancing hyperspectral image resolution based on relevance vector machine(RVM) is proposed in this thesis. This algorithm needs the information from other source, so the registration techniques between multi-images is firstly studied. An algorithm of registration control point extraction is proposed, which based on the Gaussian fitting and a RVM geometric model, and then a more precise registration result can be obtained. In terms of supplementary information compensation method, a fusion algorithm based on RVM is proposed, which aims at enhancing the spatial information of the hyperspectral images, and at the same time maintaining the original spectral characteristics. When applying the enhanced images to a pure-pixel small target detection, the result showed that the proposed method can solve the problem of poor detection results caused by the low resolution of the hyperspectral images. The detection precision of the enhanced resolution image is much better than the original one.
     In the condition of lack of assistant information, spectral unmixing techniques has been researched in order to enhance the spatial resolution of the hyperspectral images and solve the spectral mixing problems. Mixing pixel decomposition includes two key steps: endmember extraction and abundance solving. Due to the noise sensitivity for the spectral endmember extraction in the original N-FINDR algorithm, a new endmember extraction algorithm is proposed on the basis of unsupervised clustering algorithm. This algorithm utilizes K-means clustering to select a representative spectrum from hyperspectral data, and then select the endmember from these spectra. Experimental results showed that the algorithm has a strong anti-noise performance. On the conditions that the existence of some unknown features contained in many pixels, unmixing results on these points will have a large deviation. An unmixing method for hyperspectral image based on SVDD is proposed. It firstly divides the hyperspectral data into two categories by SVDD, one is the mixed pixels with known materials, and the other contains unknown materials. The boundaries between them are considered to be a mixed pixel of the known and unknown ground covers. And these pixels are then decomposed. Experimental results show that the algorithm can effectively solve the low unmixing precision problem caused by the unknown pixels, and can give the mixing factor for the unknown pixels. Based on the high accurate unmixing fraction map, a sub-pixel mapping technique for interested targets is adopted to improve the spatial resolution. The experimental results show that the method can preserve the target shape better, and the targets in the processed image are prone to be detected by combining the spatial and spectral information.
引文
1万余庆,谭克龙,周日平.高光谱遥感应用研究.科学出版社, 2006: 1~75
    2 D. Landgrebe. Hyperspectral image data analysis. IEEE Signal Processing Magazine, 2002, 19(1): 17~28
    3浦瑞良,宫鹏,高光谱遥感及其应用.高等教育出版社,北京2000: 1~57
    4童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用.高等教育出版社,2006: 1~80
    5张钧萍,张晔.基于多特征多分辨率融合的高光谱图象分类.红外与毫米波学报, 2004, 23(5): 345~348
    6 K P. Varshney, M. K.Arora, R. M. Rao. Signal processing for hyperspectral data. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing - Proceedings, 2006: 1181~1184
    7胡秀清,刘京晶,邱康睦等.神舟3号飞船中分辨率成像光谱仪场地替代定标新方法研究.光谱学与光谱分析. 2009,29(5): 1153~1156
    8贺霖,潘泉等.高光谱图像目标检测研究进展.电子学报. 2009,9(37): 2016~2024
    9 I.S. Reed, X. Yu. Adaptive Multiple-band CFAR Detection of An Optical Pattern with Unknown Spectral Distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990, 38(10): 1760~1770
    10 L.L. Scharf, B. Friedlander. Matched Sub-space Detectors. IEEE Transactions on Signal Processing. 1994, 42(8): 2146~2157
    11 R.I.Hammoud. Advances in Pattern Recognition. Springer London,2009: 173~194
    12 H. Ren. Y.L.Chang. Multispectral Subpixel Detection using Least Square Unmixing. IEEE International Conference on Geoscience and Remote Sensing Symposium. 2006.(IGARSS 2006): 2754~2756
    13 D.Manolakis. Overview of Algorithms for Hyperspectral Imaging Application: A signal Processing Perspective. IEEE Proceedings of Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003: 378~384
    14 N.M.Nasrabadi. Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery. IEEE SIGNAL PROCESSING LETTERS, 2008,15: 317~320
    15 A.P.Schaum. Spectral Subspace Matched Filtering. Algorithms for Multispectral. Hyperspectral, and Ultraspectral Imagery. SPIE. 2001: 1~17
    16 J.C. Harsanyi. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences. University of Maryland. Ph.D. dissertation, 1993: 21~42
    17 B.Yu. Automatic Understanding of Symbol-Connected Diagrams. Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, Canada, 1995: 803~806
    18 H. Hse, R.R. Newton. Sketched Symbol Recognition Using Zernike Movements. Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 2004: 367~370
    19 S. Benlonie, J. Malik, and J. Puzicha. Shape Matching and Object Recognition Using Shape Contexts. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2002, 24(4): 509~522
    20 S.C. Park, M.N. Park, M.G. Kang. Super-Resolution Image Reconstruction: A. Technical Overview. IEEE Signal Processing. Magazine, 2003,20(3): 21~36
    21 N.A. Woods, N.P. Galatsanos, K.K. Katsaggelos. Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images. IEEE Transactions on Image Processing. 2006, 15(1): 201~213
    22 I. Jordi,M. Vincent, P. Damien, F. Thomas. Analysis of artifacts in subpixel remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing. 2007, 45(1): 254~264
    23 Stockman G.. Matching images tomodels for registration and object detection viaclustering. IEEE Trans.on PAMI, 1982, 4(3): 229~232
    24 Bourret P, Cabon B.. A neural approach for satellite image registration and pairing segmented areas. SPIE, 1995(2579): 22~33
    25 Hui Li, Manjunath B S.. A contour-based approach to mul-tisensor image registration. IEEE Trans.on Image Processing,1995, 4(3): 320~325
    26 B.S. Reddy, B.N. Chatterji.. An FFT-Based Technique for Translation Rotation and Scale-Invariant Image Registration. IEEE Trans on Image Processing, 1996, 5(8):1266~1271
    27 J.P. Djamdji.. Geometrical registration of images: The multiresolution approach . PE&RS, 1993, 59(5): 645~653
    28 J.L.Moigne. The use of wavelets for remote sensing image registration and fusion. SPIE, 1996(2762): 535~547
    29 Corvi M, Nicchiotti G. Multiresolution image registration. Proc of 1995 International Conference on Image Pro-cessing:224~231
    30 H.H. Li, Y.T. Zhou. A wavelet-based point feature extractor for multisensor image registration. SPIE. 1996(2762): 524~538
    31 J.W. Hsieh. Image registration using a new edgebased approach. Computer Vision and Image Understanding. 1997,67(2): 112~130
    32 K. Dana, P.Anandan. Registration of visible and infrared images. SPIE. 1993(1957): 2~14
    33 M. Unser, A. Aldroubi. A multiresolution image registration procedure using spline pyramids. SPIE, 1993(2034): 160~173
    34 A.J. Patti, Y. Altunbasak. Artifact reduction for set theoretic superresolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Processing, 2001, 10(1): 179~186
    35 T. Akgun, Y. Altunbasak, R.M. Mersereau. Super-resolution reconstruction of hyperspectral images. IEEE Trans. on Image Processing. 2005 , 14(11): 1860~1875
    36 R.R. Schulz, R.L. Stevenson. Extraction of high-resolution frames from video sequences. IEEE Trans. Image Processing. 1996, 5(6): 996~1011
    37 R.C. Hardie, M.T. Eismann, G.L. Wilson. MAP estimation for hyper-spectral image resolution enhancement using an auxiliary sensor, IEEE Trans. Image Process. 2004, 13(9): 1174~1184
    38 M.T. Eismann, R.C. Hardie. Application of the stochastic mixing model to hyperspectral resolution enhancement, IEEE Trans. Geosci. Remote Sens. 2004,42(9): 1924~1933
    39 M. Choi. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44 (6): 1672~1682
    40 V.K. Shettigara. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogrammetric Engineering and Remote Sensing. 1993, 59 (1): 81~87
    41 B.Zhukov, D.Oertel, F.Lanzl, G.Reinhackel, Unmixing-based multisensor multiresolution image fusion, IEEE Trans. Geosci. Remote Sens. 1999,37 (10): 1212~1226
    42 M.E.Winter, Resolution enhancement of hyperspectral data, in Proc. Aerospace Conf. 2002,3: 1523~1529
    43 M.V. Joshi, L. Bruzzone, S. Chaudhuri. A Model-Based Approach to Multire-solution Fusion in Remotely Sensed Images,
    67HIEEE Transactions on Geoscience and Remote Sensing. 2006, 44(9): 2549~2562
    44 J.G.Liu. Smoothing filter based intensity modulation: a spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing. 2000, 21(18): 3461~3472
    45 M.Choi, R.Y.Kim, M.R.Nam, et.al1. Fusion of multispectral and panchromatic satellite images using the curvelet Transform. IEEE Geoscience and Remote Sensing Letters. 2005, 2(2): 136~140
    46 L.P. Zhang,X. Huang,B. Huang,P.X. Li. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Transactions on 68HGeoscience and Remote Sensing. 2006,44(10): 2950~2961
    47 L.Alparone, S. Baronti,A. Garzelli, et al. A global qualitymeasurement of pan2sharpened multispectrali Imagery. IEEE Geoscience and Remote Sensing Letters. 2004, 1(4): 313~317
    48 B. Aiazzi, L. Alparone, S. Baronti, et al. MTF-tailored multiscale fusion of high-resolution MS and Panimagery. Photogrammetric Engineering and Remote Sensing. 2006, 72(5): 591~596
    49 M.E.Winter, E.M.Winter. Physics-based resolution enhancement of hyper-spectral data. Proc. SPIE. 2002(4725): 580~587
    50 R.B. Gomez, A. Jazaeri, M. Kafatos. Wavelet-based hyperspectral and multispectral image fusion. Proceedings of SPIE. 2001(4383): 36~42
    51 Zhang Yifan, He Mingyi. Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. Journal of Electronics (China). 2007, 24(2): 218~224
    52 W.T. Freeman, T.R. Jones, E.C. Pasztor. Example based super-resolution. IEEE Computer Graphics and Applications. 2002, 22: 56~65
    53 F.M. Candocla, J.C. Principe. Super-resolution of images based on local correlations. IEEE Transactions on Neural Networks, 1999,10 (2): 372~380
    54 W.Freeman, E.Pasztor, O.T. Carmichael. Learning low-level vision. In IEEE International Conference on Computer Vision(ICCV). 1999: 1182~1189
    55 M.M.Islam, V.K.Asari, M.N.Islam, M.A.Karim. A kernel regression based resolution enhancement technique for low resolution video. 2010 Digest of Technical Papers International Conference on 2010: 29~30
    56 K.I. Kim, Y.h. Kwon. Single-Image Super-resolution using sparse regression and natural image prior. IEEE Trans. on Pattern analysis and machine intelligence. 2010, 32(6): 1127~1133
    57 N.Keshava and J.F.Mustard, Spectral unmixing. IEEE Signal Processing Magazine. 2002, 19(1): 44~57
    58 A. J. Tatem and Lewis. Land Cover Mapping at the Sub-pixel Scale Using a Hopfield Neural Network. Proceedings of 28th International Symposium on Remote Sensing of Environment. 2000: 27~31
    59 P M. Atkinson. Mapping Sub-pixel Boundaries from Remotely Sensed Images.Innovations in GIS. 1997, 4: 166~180
    60 J. Verhoeye, D.W.Robert. Land Cover Mapping at Sub-pixel Scales Using Linear Optimization Techniques. Remote Sensing of Environment. 2002, 79(1): 96~104
    61 C.A.Bateson, B.Curtiss. A method for manual endmember selection and spectral unmixing. Remote Sens. Environ. 1996, 55(3): 229~243
    62 J.W.Boardman, F.A. Kruse, R.O. Green. Mapping target signatures via partial unmixing of AVIRIS data. in Summaries of the VI JPL Airborne Earth Science Workshop. Pasadena, CA, 1995: 23~26.
    63 M.E. Winter. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc of SPIE. 1999, 3753: 266~275
    64 R.A. Neville, K. Staenz, T. Szeredi, et al. Automatic endmember extraction from hyperspectral data for mineral exploration. in Proc. 21st Can. Symp. Remote Sensing. Canada, 1999: 891~897.
    65 A. Ifarraguerri, C.I. Chang. Multispectral and hyperspectral image analysis with convex cones IEEE Transactions on Geoscience and Remote Sensing. 1999, 37(2): 756~770.
    66 A. Plaza, P. Martinez, R. Perez, et al. Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(9): 2025~2041
    67 J.B.Adams, M.O.Smith, Spectral mixing modeling: A new analysis of rock and soil types at the Viking Lander I site. Journal of Geophysical Research-Atmospheres, 1986, 91: 8089~8112
    68 T.W.Ray, B.C.Murray. Nonlinear spectral mixing in desert vegetation. Remote Sensing of Environment, 1996, 55(1): 59~64
    69 X.X.Chen, L.Vierling. Spectral mixture analyses of hyperspectral data acquired using a tethered balloon. Remote Sensing of Environment. 2006, 103(3): 338~350
    70 B.Somers, K.Cools, S.Delaieux,st. Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards. Remote Sensing of Environment. 2009, 113(6): 1183~1193
    71 C. Ichoku, A. Karnieli. A review of mixture modeling techniques for sub-pixel land cover estimation. Remote Sensing Reviews. 1996, 13: 161~186.
    72 J.C.Ju, E.D.Kolaczyk, S.Gopal. Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing. Remote Sensing of Environment. 2003, 84(4): 550~560
    73 M.M. Dundar, D.A. Landgrebe. A Model-Based Mixture-SupervisedClassification Approach in Hyperspectral Data Analysis. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(12): 2692~2699
    74 A.D. Storcker, A.P. Schaum. Application of stochastic mixing models to hyperspectral detection problems. Proc. SPIE, 1997 (3071): 47~60
    75 P.M. Atkinson, M.E.J. Cutler, H.G.Lewis. Mapping Subpixel Proportional Land Cover with AVHRR Imagery, International Journal of Remote Sensing. 1997,18(4): 917~935
    76 R.A.Schowengerdt. Remote Sensing Models and Methods for Image Processing. 3rd ed. San Diego, Academic Press, 2007: 86~93
    77 J.C. Harsanyi, C.I. Change. Hyperspectral image clsaaification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. on Geoscience and Remote Sensing. 1994, 32(4): 779~785
    78 B. Solaiman, M.C. Mouchot. A Comparative Study of Conventional and Neural Network Classification of multispectral data. Proceeding of IGARSS'94, USA 1994(111): 1413~1415
    79 C.I. Change. Further Results on Relationship between Spectral Unmixing and Subspace Projection. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36(3): 1030~1032
    80 C.I.Chang, X.L. Zhao, M.L.G. Althouse, et al. Least squares subspace projection approach to mixed Pixel classification for hyperspectral images. IEEE Trans. on Geoscience and Remote Sensing. 1998, 36(3): 898~912
    81 P.M.Atkinson, M.E.J.Cutler, H.Lewis. Mapping sub-pixel proportional land cover with AVHRR imagery. International Journal of Remote Sensing. 1997, 18(4): 917~935
    82 G.A.Carpenter, S.Gopal, S.Macomber, S.Martens, C.E.Woodcock. A Neural Network Method for Mixture Estimation for Vegetation Mapping. Remote Sensing of Environment. 1999, 70(2): 138~152
    83 W.G.Liu, K.C.Seto, E.Y.Wu, S.Gopal, C.E.Woodcock, ART-MMAP: A neural network approach to subpixel classification. IEEE Trans. on Geoscience and Remote Sensing. 2004, 42(9): 1976~1983
    84 N. Cristianini, J. Shawe-Taylor.支持向量机导论.李国正,王猛,曾华军译.北京:电子工业出版社, 2004: 31~30
    85 A.M.Turing. Computing machinery and intelligence. Mind. 1950, 59 :433~460
    86 S.Saitoh. Theory of reproducing kernels and its applications. Longman Scientific & Technical, Harlow, England, 1988: 21~87
    87 V.N.Vapnik, A.J.Chervonenkis. The necessary and sufficient conditions foruniform consistency of the method of empirical risk minimization(in Russian). Yearbook of Academy of Sciences of the USSR on Recognition, Classification and Forecasting, Nauka Moscow, 1989, 2: 217~249
    88 B.E.Boser, I.M.Guyon and V.N.Vapnik. A training algorithm for optimal margin classifiers. In D.Haussler, editors, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, 1992: 144~152
    89 C.J.C.Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998, 2(2): 121~167
    90 B.Sch?lkopf, A.J.Smola, R.Willianson,et al.. New support vector algorithms. Neural Computation. 2000, 12: 1207~1245
    91 H.Drucker, C.J.C.Burges, L.Kaufman, et al.. Support vector regression machines. Advances in Neural Information Processing Systems. 1997, 9: 155~161
    92 V.Vapnik. Three remarks on the support vector method of function estimation. In B.Sch?lkopf, C.J.C.Burges, and A.J.Smola, editors. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA, MIT Press, 1999: 25~42
    93 K.M. Lin, C.J. Lin. A Study on Reduced Support Vector Machines. IEEE Transactions on Neural Networks. 2003, 14(6): 1449~1459
    94 Song Jie, Tang Huan-Wen. v-Support vector machine classifier based on linear programming. Journal of Dalian University of Technology. 2005, 45(2): 303~307
    95 J.A.K. Suykens, J.D. Brabanter, L.Lukas and J. Vandewalle. Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation. Neurocomputing. 2002, 48(1-4): 85~105
    96 J. A. K. Suykens, L. Lukas and J. Vandewalle. Sparse Approximation Using Least Squares Support Vector Machines. IEEE International Symposium on Circuits and Systems. 2000, 2: 757~760
    97 Qing Song, Wenjie Hu and Wenfang Xie. Robust Support Vector Machine with Bullet Hole Image Classification. IEEE Trans. on Systems, Man and Cybernetics, Part C. 2002, 32(4): 440~448
    98 T.B. Trafalis and S.A. Alwazzi. Robust Optimization in Support Vector Machine Training with Bounded Errors. Proceedings of the International Joint Conference on Neural Networks. 2003, 3: 2039~2042
    99 Shevade S.K., Keerthi S.S, Bhattacharyya C., etc. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans on Neural Networks. 2000, 11(5): 1188~1193
    100 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A FastIterative Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE Trans. on Neural Networks. 2000, 11(1): 124~136
    101 T. Joachims. Making Large Scale SVM Learning Practical. Advances in Kernel Methods-Support Vector Learning. MIT Press, 1999 : 34~36
    102 M.Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research. 2001(1): 211~244
    103 M.Tipping, A.Faul. Fast marginal likelihood maximisation for sparse Bayesian models. In Proceedings of the ninth international workshop on artificial intelligence and statistics. 2003, 1~13
    104 A.Schmolck, R.Everson, Smooth relevance vector machine: a smoothness prior extension of the RVM. Machine Learning archive. 2007, 68: 107~135
    105 D. Tax, R.Duin. Support vector data description. Machine Learning. 2004, 54: 45~46
    106 G.M. Foody. RVM-based multi-class classification of remotely sensed data. International journal of remote sensing. 2008, 29(6): 1817~1823
    107 F.Ratle, G.Camps-Valls, J.Weston. Semisupervised Neural Networks for Efficient Hyperspectral Image Classification. IEEE Trans. on Geoscience and Remote Sensing. 2010, 48(5): 2271~2282
    108刘丁,刘涵,王飞.基于最小二乘支持向量机的图像配准研究.仪器仪表学报. 2008, 29(1): 124~129
    109 M.M. Jordi, G.C. Luis, B. Lorenzo, C.V. Gustavo. Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data. IEEE Trans. on Geoscience and Remote Sensing. 2010, 48(8): 3188~3197
    110 F. J. Garcia-Haro, M. A. Gilabert, and J. Melia. Linear spectral mixture modeling to estimate vegetation amount from optical spectral data. Int. J. Remote Sensing. 1996, 17: 3373~3400
    111 M. Brown, Gunn S R, and Lewis H G.. Support Vector Machines for Optimal Classification and Spectral Unmixing. Ecol. Modeling. 1999, 120: 167~179
    112 M. Govender, P. J. Dye, I. M.. Weiersbye. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 2009, 35(5): 741~752
    113 M. D. Farrell, R. M. Mersereau. On the Impact of PCA Dimension Reduction for Hyperspectral Detection of Difficult Targets. IEEE Geoscience and Remote Sensing Letters. 2005,2(2): 192~195
    114 S. Prasad, L.M Bruce. Limitations of Principal Components Analysis for Hyperspectral Target Recognition. IEEE Geoscience and Remote Sensing Letters. 2008,5(4): 625~629
    115贺霖.高光谱图像自动目标检测技术研究.西北工业大学,博士论文. 2007: 35~72
    116路威.面向目标探测的高光谱影像特征提取与分类技术研究.中国人民解放军信息工程大学,博士论文. 2005: 15~31
    117 D. Manolakis, D. Marden, Gary A. Shaw. Hyperspectral Image Processing for Automatic Target Detection Applications. Lincoln Laboratory Journal. 2003, 14(1): 79~116
    118 F.A. Kruse, K.S.Kierein-Young, J.W. Boardman. Mineral Mapping at Cuprite, Nevada with a 63 Channel Imaging Spectrometer. Photogram. Eng. Remote Sense. 1990, 56(8): 83~92
    119刘翔.基于光谱维变换的高光谱图像目标探测研究.中国科学院遥感应用研究所,博士论文. 2008: 63~66
    120 L. Capobianco, A. Garzelli, G. Camps-Valls. Target Detection With Semisupervised Kernel Orthogonal Subspace Projection. IEEE Trans. on 69HGeoscience and Remote Sensing. 2009, 47(11): 3822~3833
    121 N.M.Nasrabadi. Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery. IEEE 70HSignal Processing Letters. 2008(15): 317~320 122 Feng Zhang, Shang-qian Liu, Da-bao Wang and Wei Guan. Aircraft recognition in infrared image using wavelet moment invariants. Image and Vision Computing. 2009, 27(4): 313~318
    123 D.Shaw, D.Manolakis. Signal processing for hyperspectral image exploitation. IEEE Signal Processing Magazine. 2002, 19(1): 12~16
    124 D.Manolakis, G.Shaw. Detection Algorithms for Hyperspectral Image Applications. IEEE signal processing Magazine. 2002, 19(1): 29~43
    125潘志松,陈斌,缪志敏,倪桂强. One-Class分类器研究.电子学报. 2009, 37(11): 2496~2503 126 A. Hoekstra. 71HGeneralisation in Feed Forward Neural Classifiers. Delft University of Technology, Ph.D. thesis, ASCI Dissertation Series, 33, Delft, 1998: 116~128
    127 V.M. Cherkassky. Learning from Data. New York: John Wiley&Sons, 1998:
    128 C.Bishop. Novelty detection and neural network validation. IEE Proceedings Vision, Image and Signal Processing, London, 1994: 217~222
    129 R.Duda, P.Hart, D.Stork. Pattern Classification. New York: John Wiley& Sons, 2001: 57~58
    130 J.R.Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective (Third edition).2004: 141~148
    131 J. Kybic. Bootstrap Resampling for Image Registration Uncertainty Estimation without Ground Truth. IEEE Transactions on Image Processing, 2010, 19(1): 64~73
    132 Min Xu and P. K. Varshney. A Subspace Method for Fourier-Based Image Registration, IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 491~494
    133汪爱华,迟耀斌,王智勇等.北京1号小卫星多光谱影像全国镶嵌技术与制图研究.遥感学报. 2009, 13(01): 83~91
    134 J.C. Price. Combining panchromatic and multispectral imagery from dual resolution satellite instruments. Remote Sens. Environ. 1987, 21(2): 119~128
    135 M.Elbakary and M.Alam. Superresolution Construction of Multispectral Imagery based on Local Enhancement. IEEE Geoscience and Remote Sensing Letters. 2008, 5(2): 276~279
    136 M.E.Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research. 2001: 211~244
    137杨国鹏,周欣,余旭初.稀疏贝叶斯模型与相关向量机学习研究.计算机科学. 2010, 37(7): 225~228
    138沈焕锋,李平湘,张良培等.图像超分辨率重建技术与方法综述.光学技术. 2009, 35(2): 194~199, 203
    139 Wang Zhou, A.C. Bovik. A universal image quality index. IEEE Signal Processing Letters. 2002, 9 (3): 81~84.
    140 J.A.Richards, Jia Xiuping. Remote Sensing Digital Image Analysis(4th Edition), Springer, New York, 2005: 385~386
    141 S.Tompkins, J.F.Mustard, C.M.Pieters, D.W.Forsyth. Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment. 1997, 59(3): 472~489
    142 D.A.Roberts, M.Gardner, R.Church, S.Ustin, G.Scheer, R.O. Green. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sensing of Environment. 1998, 65(3): 267~279.
    143 R.L.Powell, D.A.Roberts, P.E.Dennison, L.L.Hess. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment. 2007, 106(2): 253~267
    144 J.A.C.Ballantine, G.S.Okin, D.E.Prentiss, D.A.Roberts. Mapping North African landforms using continental scale unmixing of MODIS imagery. Remote Sensing of Environment. 2005, 97(4): 470~483
    145 C.A.Bateson, G.P.Asner, C.A.Wessman. Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEETransactions on Geoscience and Remote Sensing. 2000, 38(2): 1083~1094.
    146 Yi Hong and Sam Kwong, Learning Assignment Order of Instances for the Constrained K-Means Clustering Algorithm, 72HIEEE Transactions on Systems. Man, and Cybernetics, Part B: Cybernetics. 2009, 39(2): 568~574
    147 A. Plaza, C. I. Chang. Impact of Initialization on Design of Endmember Extraction Algorithms. IEEE Trans. Geosci. Remote Sens. 2006, 44(11): 3397~3407
    148 Wang Jing, C. I. Chang. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44(9): 2601~2616
    149 P.M. Atkinson. Mapping Sub-pixel Boundaries from Remotely Sensed Images. Innovations in GIS. 1997, 4: 166~180
    150王立国.高光谱图像混合像素处理技术研究.哈尔滨工业大学,博士论文. 2005: 87~91
    151 A.J.Tatem, Lewis, et al. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39: 781~796