基于贝叶斯理论的材料非线性桥梁结构模型修正与损伤识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统识别的结果经常受到所选取的模型参数精确度的限制,模型参数的选取的过程中包含很多不确定的信息,这对系统识别结果有着非常大的影响。通过概率分布函数来描述非线性动力系统中模型参数,可以有效避免参数选取时所产生的误差。
     大多数损伤识别技术是通过实际工程中测得的数据与桥梁结构模型进行对比,从而确定结构损伤的位置和程度。实际工程中,桥梁结构均体现出非线性性质,包括材料非线性,几何非线性和材料非线性情况。通过对结构损伤的位置和程度进行识别,可以对结构的剩余寿命进行评估。一般的结构损伤识别方法是从测量数据中提取结构的模态参数值,结构的损伤会引起模态参数值的变化,通过监测模态参数的变化趋势,可以分析出结构损伤的情况。桥梁结构损伤识别的方法很多,但是在实际中应用还有很多问题。很多学者对桥梁结构的损伤识别方法进行了系统研究,探求识别混凝土桥梁的振动模态参数的方法,减小环境噪声对识别结果的影响,提高模态参数识别结果的准确性和有效性。
     基于贝叶斯框架下的相关向量机方法在信号处理中具有所需数据少,计算速度快和准确率高等优点。通过自相关判定方法消去响应向量中不相关项,可以大量降低运算次数,而又不会对结果造成太大的影响。本文通过对非线性理论的系统研究,建立了桥梁结构非线性有限元模型;并且根据贝叶斯模型方法,对有限元模型进行修正;然后对实际桥梁结构进行荷载试验并且对试验结果进行分析,通过相关向量机方法对结构损伤情况进行识别。本文的主要研究工作有:
     根据材料非线性本构方程和几何非线性刚度矩阵,对双非线性平衡方程和非线性动力方程进行了推导。引入实际工程问题,建立了非线性桥梁结构有限元模型,并且描述了非线性对桥梁结构有限元模型的影响。
     运用贝叶斯系统识别方法,计算非线性桥梁结构模型参数优化值和非线性结构模型参数的相对概率值。针对贝叶斯系统识别方法在概率密度函数选取过程中的局限性,通过随机模拟的方法,对先验概率密度函数进行迭代计算,得出模型参数修正概率密度函数。通过对杜芬运动方程和弹塑性振动模型的参数进行修正,验证贝叶斯方法在模型参数修正过程中的有效性。并且基于动力响应信号,对桥梁结构模型进行了修正。
     介绍了相关向量机在回归和分类过程中的应用,引入核函数的概念,对相关向量机在响应信号分析中的应用进行了详细的阐述,提出相关向量机分析响应信号的流程。对Sinc函数和Ripley函数分别进行回归过程和分类过程计算,验证相关向量机的先进性。
     创新性的将相关向量机方法应用于桥梁结构损伤识别过程中,提出选取桥梁结构模态参数变量函数△ψi/△ωi2和[△ψi△fi]做为输入函数进行相关向量机训练,根据训练的结果对桥梁结构的损伤进行识别。建立桥梁结构有限元损伤模型,对不同损伤组合模型的模态参数变化量进行训练,得出结构的损伤识别结果。对实际桥梁结构的荷载试验结果进行分析,将模态参数变量代入相关向量机进行训练,对桥梁结构进行损伤识别,通过与桥梁进行静力荷载试验结果对比,验证相关向量机对桥梁结构损伤识别的有效性。通过本文的研究,得出以下结论:
     1、基于几何非线性平衡方程和材料非线性本构关系方程,推导出非线性耦合刚度矩阵。提出以非线性耦合刚度矩阵为增量,构建结构的材料非线性平衡方程。考虑材料非线性影响,将材料非线性刚度矩阵对应的弹性模量做为模型的基本参数,针对一座实际桥梁结构建立变截面连续梁桥结构模型。对双非线性连续梁桥结构模型进行加载,结果表明当集中力超过屈服荷载时,结构明显体现出材料非线性特征。
     2、基于贝叶斯方法,对双非线性结构模型进行修正,可以降低模型参数选取时的误差,通过对杜芬运动方程和弹塑性振动模型的模型参数进行修正,验证贝叶斯方法在模型参数修正过程中的有效性。
     3、对相关向量机训练方法进行详细的描述,并且给出相关向量机训练流程。分别通过相关向量机和支持向量机方法对Sinc函数进行回归,并且对Ripley二维混合数组进行分类,将训练结果进行比较,说明相关向量机在信号回归与分类过程中所需数据少,计算速度快和准确率高。
     4、提出分别以双非线性桥梁结构模态参数变量函数△ψi/△ωi2和[△ψi△fi]为超参数,进行相关向量机训练,构建包含超参数的目标函数,通过训练结果对目标函数进行回归和分类,得到结构损伤识别结果。建立损伤结构有限元模型验证相关向量机训练方法在损伤识别过程中的有效性。将相关向量机损伤识别方法应用与实际工程中,与静载试验结果相比,基于相关向量机方法的损伤识别结果精确。说明基于相关向量机训练的损伤识别方法具有速度快,操作简便,准确率高等优点,具有实用价值。
Since the significant of response prediction, structure controlling and structural health monitoring, the problem of bridge structural system damage identification receives more attention recently. However, the research results always be restricted by the accuracy of the model parameters selection, and the parameters include lots of uncertain additional information during the model parameters selection. It will lead an adverse influence to the system damage identification. Adopt probability distribution function (PDF) to describe the nonlinear dynamic system model parameters, could avoid the errors while select the parameters effectively. The model parameters can be used to calculate the probability distribution function.
     Researchers, using the structural health monitoring method of bridge structure to identify the early damage and change. Recently, the structural damage identification methods are received much attention. After analysis for the structural modal parameters, we can identify the structure of injuries in position. However, the bridge structural always complex and with many parameters, determine the damage location structure is difficult, since the large amount of calculation.
     Most damage identification methods are based on actual engineering in measured data and compared the bridge structure model to determine the location and degree of structural damage. Bridge structure model is established to identify the process, the influence is bigger. In practical engineering, bridge structures are embodied in nonlinear properties, including material nonlinearity and the geometrical nonlinearity. However, nonlinear system of bridge structure by the result of identification is often the selection of model parameters accuracy of model with the limit, the parameter selection, many uncertain factors were also included in the parameters, and the system identification results have very adverse effects. Using probability distribution function to describe the nonlinear dynamic system model parameters, can effectively avoid the errors when parameter selection.
     Based on the location and severities of structural damage identification, the remaining life of structure could be assessed. General structural damage identification method was extracted from the measurement data of modal parameter value structure, the structure of the damage can cause modal parameter value change, so by monitoring the modal parameters change trend, also can reflect the structural damage.
     Bridge structural damage identification methods are variously, but in practice and a lot of problems. Many scholars bridge structure damage identification method is studied systematically identifying concrete bridge, and to explore the vibration modal parameters method to identify and reduce the environmental noise affect the results of modal parameter identification, improve the accuracy and validity.
     Bayesian theory in the concrete steps for damage identification from a large number of data including extract limited a regression variables or eigenvalue of feature extraction phase; Recognition input variables and the extraction of eigenvalue of the relationship between training phases; By means of the regression equations and boundary conditions on the structural damage assessment of prediction stage. Bayesian framework based on the relevance vector machine in signal processing method has the required data in less computing speed and accuracy, high yield. In response to the signal accord with Gaussian distribution under the condition of the autocorrelation determination methods, through the response is not relevant items in vector away, so that they could be massively reduce operation times, and won't cause too big for the results of influence. Based on the systematic study of nonlinear theory, a nonlinear finite element model of bridge structure and, depending on the Bayesian model modification method of finite element model, revised, amended bridge structure with nonlinear finite element model for the reference to the actual bridge structure, load test and the experimental results were analyzed, through the relevance vector machine method to identify structural damage situation. This dissertation main research work for:
     According to material nonlinear constitutive equations and geometry nonlinear stiffness matrix, on the double nonlinear equilibrium equation and nonlinear dynamic equations are deduced. Introducing actual engineering problems, establish the nonlinear finite element model of bridge structure, and to describe the nonlinear finite element model of the influence of bridge structure.
     Using bayesian system identification method, the double nonlinear bridge structure model parameters are updating. Through the limitations of the random simulation method of prior probability density function, iterative computation model parameters fixed probability density function.The Duffing equations of motion, and elastic-plastic vibration parameters of the model are employed, validation bayesian method in model parameters in the process of fixed effectiveness.
     The Relevance Vector Machine in regression and classification is introduced, the kernel function is employed, to verify the Relevance Vector Machine application, the response signal of double nonlinear bridge model is adopted. Sine function and Ripley function are employed to verify the Relevance Vector Machine validation.
     Apply the Relevance Vector Machine method in bridge structural damage identification process, put forward the bridge structure modal parameter selection and variable as input function for the Relevance Vector Machine, the result of training according to training of bridge structure damage identification. To verify the Relevance Vector Machine method, bridge structure finite element damage model is established, the modal parameter variation during the Relevance Vector Machine training will yeild structure damage identification results. Employ the actual bridge structure to analysis, the modal parameter variable generation into the Relevance Vector Machine trainning, through and bridge for the static load test results contrast to identify the damage of bridge structure, verify the Relevance Vector Machine structural damage identification method has effectiveness of the double nonlinear bridge structure. Through the above work, the conclusions are:
     1. A double nonlinear coupling stiffness matrix is proposed based on geometric nonlinear balance equation and nonlinear constitutive relation. According to the least squares theory, the nonlinear coupling stiffness matrix is deduced. Consider the double nonlinear effects, to establish the bridge structure model of structure. By the results that the concentrated force beyond the yield load, the structure of the double nonlinear characteristics significantly reflects, with the increase of structural deformation.
     2. Based on bayesian method, on the double nonlinear structure model, through Duffing motion equation and elastoplastic vibration parameters of the model are fixed, validation bayesian method in model parameters in the process of updating effectiveness.
     3. The training methods of the relevance vector machine described in detail. Ramified through the relevance vector machine and support vector machine method to regression Sine function, and classification of Ripley function compared to the training, verify the relevance vector machine in signal regression and classification, the data in the process less computing speed and accuracy higher advantages.
     4. Puts forward the double nonlinear bridge structure modal parameters variable function and for the relevance vector machine training for structural damage identification. Establishing the damage structure finite element model is validated the relevance vector machine training methods in the process of effectiveness in damage identification. Apply the Relevance Vector Machine damage identification method in practical engineering, compared with the static load test results. The relevance vector machine method damage identification results are accurately.
引文
[1]Housner G W, etal.Structural Control:Past, Present and Future [J].Journal of Engineering Mechanics.ASCE,1997,123(9):897-971.
    [2]Rutherford A C, Park G, Sohn H, Farrar C R. Nonlinear Feature Identification of Impedance-Based Structural Health Monitoring [J]. Proceedings of SPIE-The International Society for Optional Engineering,2004,53(9):521-531.
    [3]Natke H G. Problems of Model Updating Procedures:Perspective Resumption [J]. Mechanical Systems and Signal Processing,1998,12(2):65-74.
    [4]Beck J L, Katafygiotis L S. Updating Models and Their Uncertainties:Bayesian Statistical Framework [J]. Journal of Engineering Mechanics,1998,124:455-461.
    [5]Vanik M W, Beck J L, Au S K. Bayesian Probabilistic Approach to Structural Health Monitoring [J]. Journal of Engineering Mechanics,2000,126(2):738-745.
    [6]Gersch W, Taoka G T, Liu R. Structural System Parameter Estimation By Two Stage Least Squares Method [J]. Journal of Engineering Mechanics,1976,102(5):883-889
    [7]Papadimitriou C, Beck J L. Approximate Random Vibration Analysis of Classically Damped MDOF Systems [J]. Probabilistic Engineering Mechanics,1994,120(1):75-96.
    [8]Moyo P, Brownjohn J W, Omenzetter P. Highway Bridge Live Loading Assessment and Load Carrying Capacity Estimation Using a Health Monitoring System [J]. Structural Engineering and Mechanics,2004,13(1):609-626.
    [9]Beck J L, Chan E, Papadimitriou C. Proceedings of the 1998 16th International Modal Analysis Conference, IMAC[C]. Santa Barbara:SEM, Bethel, CT,1998.
    [10]Vandiver J K. Offshore Technology Conference,7th Annu, Proc [C]. Houston:Offshore Technol Conf,1975.
    [11]Vandiver J K. Detection of Structural Failure on Fixed Platforms by Measurement of Dynamic Response [J]. Journal of Petroleum Technology,1977,29:305-310.
    [12]Talha, M A, Elattar, Khalil. Dynamic Monitoring of a Long Span Bridge [J]. Journal of Engineering and Applied Science.2003,50(2):351-370.
    [13]Lauzon, Robert G, John T. Ambient Vibration Monitoring of a Highway Bridge Undergoing a Destructive Test [J].Journal of Bridge Engineering.2006,11(5):602-610.
    [14]Kim, Jeong-Tae, Chung-Bang Yun, Jae-Hyeong Park.Thermal Effects on Modal Properties and Frequency-Based Damage Detection in Plate-Girder Bridges [J]. Proc. Of Spie. 2004,53(9):400-409.
    [15]Begg R D. Structural Integrity Monitoring by Vibration Analysis [J]. Dock and Harbour Authority,1976,57(1):131-132.
    [16]Loland O, Begg R D, Mackenzie A C. BSSM/RINA (Brit Soc for Strain Meas/R Inst of Nav Archit) Jt Conf, Proc, Meas in the Offshore Ind [C]. Edinburgh:BSSM, Newcastle-upon-Tyne,1975.
    [17]Wajnarowski J. Graph Method of Determining the Loads in Complex Gear Trains [J]. Mechanism and Machine Theory,1976,11(2):103-121.
    [18]Duggan M F, Bailie J A. New Test Specimen Geometry for Achieving Uniform Biaxial Stress Distributions in Laminated Composite Cylinders [J]. Economic Computation and Economic Cybernetics Studies and Research,1980, 1(10):900-913.
    [19]Nataraja R. Offshore Technology Conference [C]. Houston:Offshore Technology Conference,1983.
    [20]Slawu O S. Detection of Structural Damage through Changes in Frequency:A Review [J]. Engineering Structures.1997,19(2):718-723.
    [21]Farrar C R, Doebling S W, Cornwell P J, Straser E G. Proceedings of the 1997 15th International Modal Analysis Conference, IMAC [C]. Orlando:SEM, Bethel, CT,1997.
    [22]Vandiver J K. Proc. of the 7th Annual Offshore Tech. Conf. [C].Houston:Offshore Tech. Conf,1975.
    [23]Vandiver J K. Detection of Structural Failure onFixed Platforms by Measurement of Dynamic Response [J]. Journal of Petroleum Technology.1977,12(1):305-310.
    [24]Crohas H, Lepert. Damage-detection monitoring method for offshore platforms is field-tested [J]. Oil & Gas Journal.1982,22(2):94-103.
    [25]Friswell M I, Penny, Wilson. Using vibration data and statistical measures to locate damage in structures [J]. Modal Analysis:The International Journal of Analytical and Experimental Modal Analysis.1994,9(4):239-254.
    [26]Mayes R L.10th International Modal Analysis Conference [C].Chicago:Modal Analysis Conference,1992.
    [27]Nataraja R. Proc.15th Annual Offshore Tech. Conf [C]. Houston:Offshore Tech. Conf, 1983.
    [28]Whittome T R, Dodds. Design in Offshore Structures Conference [C]. Houston: Offshore Structures Conference,1983.
    [29]Pandey A K, Biswas M, Sammon M M. Damage Detection from Changes in Curvature Mode Shapes [J]. Journal of Sound and Vibration.1991,145(2):321-332.
    [30]Stubbs, Kim, Topole. An efficient and robust algorithm for damage localization in offshore platforms [J]. ASCE Tenth Structures Congress.1992,12(1):543-546.
    [31]Chance, Tomlinson, Worden. The 12th International Modal Analysis Conference [C]. Orlando:Modal Analysis Conference,1994.
    [32]Aktan A E, Lee, Chuntavan, Aksel. The 12th International Modal Analysis Conference [C]. Orlando:Modal Analysis Conference,1994.
    [33]Lim T W. Structural damage detection using modal test data [J]. AIAA Journal. 1991,29(12):2271-2274.
    [34]Peterson L D, Alvin, Doebling, Park. The 34th Structures, Structural Dynamics, and Materials Conference [C]. Los Angelis:AIAA Journal,1993.
    [35]Doebling S W, Peterson, Alvin. Estimation of reciprocal residual flexibility from experimental modal data [J]. AIAA Journal,1996,34(8):1678-1685.
    [36]Ojalov. Identification of dynamic parameters of linear and non-linear structural models from experimental data [J]. Nuclear Engineering and Design.1973,25(1):30-41.
    [37]McGowan C R, Doebling S W, Cornwell P J, Straser E G. Proc.15th International Modal Analysis Conf. [C]. Orlando:International Modal Analysis,1997.
    [38]Smith, Scott W, Farrar R. A Summary Review of Vibration-Based Damage Identification Methods [J]. The Shock and Vibration Digest.1998,30(2):91-105.
    [39]Kauk, Mostafiz R, James C R. Accelerometers for Bridge Load Testing [J]. NDT&E International.2003,33(2):237-244.
    [40]Richel W J. Intelligent signal processing for damage detection in composite materials [J]. COMPOSITES SCIENCE AND TECHNOLOGY.2002,62(2):941-950.
    [41]Onipede M A, Patrick M, Mark H R. Continuous Monitoring of Modal Parameters to Quantify Structural Damage [J]. Mechanical System and Signal Processing. 1993,23(6):1734-1746.
    [42]Schulz C, Gallino N. Condition assessment and dynamic system identification of a historic suspension footbridge [J]. Structural Control and Health Monitoring. 2008,15(3):369-388.
    [43]Baruh S. Instantaneous damage detection of bridge structures and experimental verification [J]. STRUCTURAL CONTROL AND HEALTH MONITORING. 2007,15(7):958-973.
    [44]Li T, Richardson M. FAULT DETECTION IN STRUCTURES FROM CHANGES IN THEIR MODAL [J]. Structural Measurement Systems.1989,32(3):339-367
    [45]秦荣.板壳材料非线性分析的新方法[J].工程力学.1995,150-155.
    [46]蔡松柏,沈蒲生,贺仲安,彭克明.钢筋混凝土剪力墙结构几何和材料材料非线性分析的伪动力有限元法[J].贵州大学学报.1997,14(3):145-152.
    [47]陈涛,黄宗明.基于有线元柔度法的材料和几何材料非线性空间梁柱单元[J].计算力学学报.2006,23(5):524-528.
    [48]郑际嘉,张清杰.加筋板材料非线性有限元分析[J].华中工学院学报.1985,13(1):97-104.
    [49]王凤友,钟善桐.夹层壳体结构的材料非线性分析[J].哈尔滨建筑大学学报.1995,28(5):125-131.
    [50]Kerschen G, Worden K, Vakakis A F, Golival J. Past, present and future of nonlinear system identification in structural dynamics [J]. Mechanical Systems and Signal Processing. 2006,20(3):505-592.
    [51]Caughey T K. Response of Van der Pol's oscillator to random excitations [J]. Journal of Applied Mechanics.1959,26(1):345-348.
    [52]Caughey T K. Random excitation of a system with bilinear hysteresis [J]. Journal of Applied Mechanics.1960,27(3):649-652.
    [53]Caughey T K. Equivalent linearisation techniques [J], Journal of the Acoustical Society of America.1963,35(8):1706-1711.
    [54]Kazakov I E. Approximate probabilistic analysis of the accuracy of operation of essentially nonlinear systems [J], Automatika i Telemekhanika.1956,17(8):423-450.
    [55]Socha L, Pawleta M. Are statistical linearization and standard equivalent linearization the same methods in the analysis of stochastic dynamic systems [J]. Journal of Sound and Vibration.2001,248(1):387-394.
    [56]Iwan W D. A generalization of the concept of equivalent linearization [J]. International Journal of Non-Linear Mechanics.1973,8(12):279-287.
    [57]Rice H J. Identification of weakly non-linear systems using equivalent linearization [J]. Journal of Sound and Vibration.1995,185(3):473-481.
    [58]Miles R N. An approximate solution for the spectral response of Duffing's oscillator with random input [J]. Journal of Sound and Vibration.1989,132(1):43-49.
    [59]Bouc R. The power spectral density of response for a strongly non-linear random oscillator [J]. Journal of Sound and Vibration 1994,175(6):317-331.
    [60]Soize C. Proceedings of the International Conference on Structural Safety and Reliability [C]. Innsbruck:A.A. Balkema,1992.
    [61]Avitabile P. Experimental Modal Analysis-A Simple Non-Mathematical Presentation [J]. Sound and Vibration Magazine.2001,35(1):20-31.
    [62]Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York:Wiley-Interscience, 1979.
    [63]Crawley E T, O'Donnell K J. Identification of nonlinear system parameters in joints using the force-state mapping technique [J]. AIAA Journal.1986,3(1):86-1013.
    [64]Crawley E F, Aubert A C. Identification of nonlinear structural elements by force-state mapping [J]. AIAA Journal.1986,24(1):155-162.
    [65]Masri S F, Sassi H, Caughey T K. A nonparametric identification of nearly arbitrary nonlinear systems [J]. Journal of Applied Mechanics.1982,49(2):619-628.
    [66]Yang Y, Ibrahim S R. A nonparametric identification technique for a variety of discrete nonlinear vibrating systems [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1985,107(2):60-66.
    [67]Kim W J, Park S J. Non-linear joint parameter identification by applying the force-state mapping technique in the frequency domain [J]. Mechanical System and Signal Processing. 1994,8(2):519-529.
    [68]Masri S F, Miller R K, Saud A F, Caughey T K. Identification of nonlinear vibrating structures:part Ⅰ—formalism [J]. Journal of Applied Mechanics.1987,45(1):918-922.
    [69]Masri S F, Miller R K, Saud A F, Caughey T K. Identification of nonlinear vibrating structures:part Ⅱ—application [J]. Journal of Applied Mechanics.1987,54(3):923-929.
    [70]Al-Hadid M A, Wright J R. Developments in the force-state mapping technique for non-linear systems and the extension to the location of non-linear elements in a lumped-parameter system [J]. Mechanical Systems and Signal Processing.1989,3(2):269-290.
    [71]Worden K. Data processing and experiment design for the restoring force surface method, Part Ⅰ:integration and differentiation of measured time data [J]. Mechanical Systems and Signal Processing.1990,4(1):295-319.
    [72]Mohammad K S, Worden K, Tomlinson G R.Direct parameter estimation for linear and nonlinear structures [J]. Journal of Sound and Vibration.1991,152(2):471-499.
    [73]Kerschen G, Golinval J C, Worden K. Theoretical and experimental identification of a non-linear beam [J]. Journal of Sound and Vibration.2001,244(2):597-613.
    [74]Meskell C, Fitzpatrick J A, Rice H J. Application of force-state mapping to a non-linear fluid-elastic system, Mechanical Systems and Signal Processing.2001,15(3):75-85.
    [75]Dimitriadis G, Cooper J E. A method for the identification of non-linear multi-degree-of-freedom systems [J] Mechanical Engineers.1998,212(3):287-298.
    [76]Shin K, Hammond J K. Pseudo force-state mapping method:incorporation of the embedding and force-state mapping methods [J]. Journal of Sound and Vibration. 1998,211(1):918-922.
    [77]Lo H R, Hammond J K. Identification of a class of nonlinear systems [M]. Southampton:Institute of Sound and Vibration Research,1988.
    [78]Benedettini F, Capecchi D, Vestroni F. Nonparametric models in identification of hysteretic oscillators [M].Italy:Dipartimento di Ingegneria delle Strutture,1991.
    [79]Shin K, Hammond J K. Force-state mapping method of a chaotic dynamical system [J]. Journal of Sound and Vibration.1998,218(2):405-418.
    [80]Audenino T, Belingardi G, Garibaldi L. An application of the restoring force mapping method for the diagnostic of vehicular shock absorbers dynamic behaviour [M].Toronto: Dipartimento di Meccanica Del Politecnico di Torino,1990.
    [81]Belingardi G, Campanile P. Proceedings of the International Seminar in Modal Analysis and Structural Dynamics [C]. Leuven:Modal Analysis and Structural Dynamics,1990.
    [82]Rice H J, Fitzpatrick J A. A generalised technique for spectral analysis of non-linear systems [J]. Mechanical Systems and Signal Processing.1988,2(3):195-207.
    [83]Rice H J, Fitzpatrick J A. The measurement of nonlinear damping in single-degree-of-freedom systems [J]. Journal of Vibration and Acoustics.1991,113(2):132-140.
    [84]Bendat J S, Coppolino R N, Palo P A. Identification of physical parameters with memory in non-linear systems [J]. International Journal of Non-Linear Mechanics.1995,30(1):841-860.
    [85]Esmonde H, Fitzpatrick J A, Rice H J, Axisa F. Analysis of non-linear squeeze film dynamics:part Ⅰ—physical theory and modeling [C].Nashville:ASME PVP Conference,1990.
    [86]Bendat J S. Nonlinear System Analysis and Identification from Random Data [M]. New York:Wiley,1990.
    [87]Adams D E, Allemang R J. A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback [J]. Mechanical Systems and Signal Processing.2000,14(2):637-656.
    [88]Zeldin B A, Spanos P D. Spectral identification of nonlinear structures [J]. Journal of Engineering Mechanics.1998,124(1):728-733.
    [89]Bendat J S. Nonlinear System Techniques and Applications [M]. New York:Wiley, 1998.
    [90]Surace C, Worden K, Tomlinson G R. On the nonlinear characteristics of automotive shock absorbers [J]. Journal of Automobile Engineering.1992,206(1):3-16.
    [91]Cafferty S, Worden K, Tomlinson G R. Characterization of automotive shock absorbers using random excitation [J]. Journal of Automobile Engineering.1993,209(3):239-248.
    [92]Haroon M, Adams D E, Luk Y W. A technique for estimating linear parameters of an automotive suspension system using nonlinear restoring force excitation [C]. Anaheim:ASME International Mechanical Engineering Congress,2004.
    [93]Box G E, Jenkins G M. Time Series Analysis, Forecasting and Control [M]. San Francisco:Holden-Day,1970.
    [94]Heylen W, Lammens S, Sas P. Modal Analysis Theory and Testing [M]. Leuven:KUL Press,1997.
    [95]Maia N M, Silva J M. Theoretical and Experimental Modal Analysis [M]. Taunton: Research Studies Press LTD,1997.
    [96]Ewins D J. Modal Testing:Theory, Practice and Application [M]. Hertfordshire: Research Studies Press LTD,2000.
    [97]Spina D, Valente C. Tomlinson, A new procedure for detecting nonlinearity from transient data using Gabor transforms [J]. Nonlinear Dynamics.1996,11(3):235-254.
    [98]Franco H, Pauletti R M. Analysis of nonlinear oscillations by gabor spectrograms [J]. Nonlinear Dynamics.1997,12(2):215-236.
    [99]Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind [M]. Boston:Pitman Advanced Publishing,1984.
    [100]Beck J L, Yuen K V. Model Selection using Response Measurements:a Bayesian Probabilistic Approach [J]. Journal of Engineering Mechanics.2004,130(2):192-203.
    [101]Akaike H. A New Look at the Statistical Model Identification [J]. Transactions on Automatic Control.1974,19 (6):716-723.
    [102]Mackay D C. Bayesian Non-linear Modelling for the Prediction Competition [J]. ASHRAE Transactions.1994,100(2):1053-1062.
    [103]Beck J L, Katafygiotis L S. Updating Models and Their Uncertainties:Bayesian Statistical Framework [J]. Journal of Engineering Mechanics.1998,124(3):455-461.
    [104]Vapnik V N. Statistical Learning Theory [M]. New York:Wiley,1998.
    [105]Mackay D C. Bayesian Interpolation [J]. Neural Computation.1992,4(3):415-447.
    [106]游前慧.基于核密度的半监督学习方法在视频语义标注中的应用[D].北京:北京交通大学,2008.
    [107]Cortes C, Vapnik V. Surpport-vector networks [J]. Journal article.1995,20(3):273.
    [108]Mackay D C. Probable Networks and Plausible Predictions-a Review of Practical Bayesian Methods for Supervised Neural Networks [J]. Network:Computation in Neural Systems.1995,6(3):469-505.
    [109]Jaynes E T. Probability Theory:The Logic of Science [J].Cambridge:University Press, 2003.
    [110]寇玉香.支持向量机、信息向量机和相关向量机的比较研究[J].农业网络信息.2010,7(2):149-153.
    [111]Tipping M E. The Relevance Vector Machine [J]. Advances in Neural Information Processing Systems.2000,12(3):652-658.
    [112]杨树仁,沈洪远.基于相关向量机的机器学习算法研究与应用[J].计算技术与自动化.2010,29(1):43-47.
    [113]Hastings, W. K. Monte Carlo sampling methods using Markov Chains and
    their applications [J]. Biometrika.1970,57(6):97-109.
    [114]Scholkopf B, Smola A J. Probability, Reliability and Statistical Methods in Engineering Design [M]. New York:Wiley,2002.
    [115]Papadimitriou C, Beck J L, Katafygiotis L S. Updating robust reliability using structural test data [J]. Probabilistic Engineering Mechanics,2001,16(2):103-113.
    [116]Katafygiotis L S, Lam H F. Tangential-projection algorithm for manifold representation in unidentifiable model updating problems [J]. Earthquake Engineering and Structural Mechanics,2002,31(4):791-812.
    [117]Neal R M. Probabilistic inference using Markov Chain Monte Carlo methods [D]. Toronto:University of Toronto,1993.
    [118]Vanik M W, Beck J L, Au S K. A Bayesian probabilistic approach to structural health monitoring [J]. Journal of Engineering Mechanics.2000,126(7):738-745.
    [119]Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H. Equations of state calculation by fast computing machines [J]. Journal of Chemical Physics.1953, 21(2):1087-1092.
    [120]Mackay D C. The Evidence Framework Applied to Classification Networks [J]. Neural Computation.1992,4(2):720-736.
    [121]Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:A literature review [M]. New Mexico:Los Alamos National Laboratory,1996.
    [122]Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images [J]. Transactions on Pattern Analysis and Machine Intelligence.1984, 6(5):721-741.
    [123]Yuen K V, Au S K, Beck J L. Two-stage structural health monitoring approach for Phase I benchmark studies [J]. Journal of Engineering Mechanics,2004,130(1):738-745.
    [124]Worden W, Tomlinson G R. Nonlinearity in Structural Dynamics:Detection, Identification and Modelling [M]. Bristol and Philadelphia:Institute of Physics Publishing, 2001.
    [125]Ching J, Muto M, Beck J L. In Ninth International Conference on Structural Safety and Reliability [C].Rome:Structural Safety and Reliability,2005.
    [126]Beck J L, Au S K, Vanik M W. Monitoring structural health using a probabilistic measure [J]. Computer-Aided Civil and Infrastructure Engineering,2001,16(1):1-11.
    [127]Gloth G. Handling of non-linear structural characteristics in ground vibration testing [M]. Leuven:Proceedings of the International Seminar on Modal Analysis (ISMA).2004.
    [128]Simon M.Developments in the modal analysis of linear and non-linear structures [D]. Boston:Victoria University of Manchester,1983.
    [129]Gilks W R, Richardson S, Spiegelhalter D J. Markov Chain Monte Carlo in Practice [M]. New York:Chapman and Hall,1996.
    [130]Sivia D S, Webster J P. Bayesian approach to reflectivity data [J]. Journal article.1998, 248(3):327-337.
    [131]Ahmed I, Developments in Hilbert transform procedures with applications to linear and non-linear structures [D], Boston:Victoria University of Manchester,1987.
    [132]Lin R, Ewins D J. Location of localized stiffness non-linearity using measured modal data [J]. Mechanical Systems and Signal Processing.1995,9(4):329-339.
    [133]袁志芬.钢筋混凝土结构非线性有限元分析.杨凌:西北农林科技大学,2001.
    [134]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [135]唐浩程.考虑约束效应的钢筋混凝土非线性有限元分析[D].重庆:重庆大学,2009.
    [136]谢贻权,何福宝.弹性和塑性力学中的有限元法[M].北京:机械工业出版社,1981.
    [137]Adams D E. Frequency domain ARX models and multi-harmonic FRFs for nonlinear dynamic systems [J]. Journal of Sound and Vibration.2002,250(5):935-950.
    [138]Simon M, Tomlinson G R. Use of the Hilbert transform in modal analysis of linear and non-linear structures [J]. Journal of Sound and Vibration.1984,96(4):421-436.
    [139]Franco H, Pauletti R O. Analysis of nonlinear oscillations by gabor spectrograms [J]. Nonlinear Dynamics.1997,12(3):215-236.
    [140]Collis W B, White P R, Hammond J K. Higher-order spectra:the bispectrum and trispectrum [J]. Mechanical Systems and Signal Processing.1998,12(3):375-394.
    [141]李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展.2005,35(2):170-180.
    [142]Meek J L, Tan H S. Geometrically nonlinear analysis of space frames by an increamt iterative technique [J]. Comp. Meth. Appl. Mech. Eng.1984,47(3):261-282.
    [143]Nedergaad H, Pedersen P T. Analysis procedure for space frames with material and geometrical nonlinearities [M]. Norway:Finite Element Methods for Nonlinear Problems Europe-US Symposium,1985.
    [144]Ching J, Muto M, Beck J L. Structural model updating and health monitoring with incomplete modal data using Gibbs sampler [J]. Computer-Aided Civil and Infrastructure Engineering.2006,21(4):242-257.
    [145]Yang Y B, McGuire W. Joint rotation and geometric nonlinear analysis [J]. Journal of Structural Engineering, ASCE.1986,112(4):879-905.
    [146]Zienkiewicz O C. Incremental displacement in non-linear analysis [J]. Int. J. for Num. Methods in Eng.1979,3(4):587-588.
    [147]Haldar A, Nee K M. Elasto-Plastic Large Deformation Analysis of PR Steel Frames for LRFD [J]. Computers and Structures.1989,31(5):811-823.
    [148]Haldar A, Nee K M. An efficient Algorithm for Nonlinear Seismic Response of Multiple-Support Excitations [J]. Structural Mechanics in Reactor Technology.1989, 13(2):355-360.
    [149]Haldar A, Gao L. Reliability evaluation of structures using nonlinear SFEM, Uncertainty Modeling in Finire Element, Fatigue, and Stability of Systems [J]. World Scientific Publishing.1997,4(1):23-50.
    [150]Bathe K J. Finite element procedures in engineering analysis [M]. New Jersey: Prentice-Hall,1982.
    [151]Zanaty E L, Murray D W. Nonlinear finite element analysis of stell frames [J]. Journal of Structural Engineering, ASCE.1983,109(2):353-367.
    [152]Kani I M, McConnel G H. A simple and efficient beam element for the combined nonlinear analysis of framework [J].Computers and Structures.1987,25(3):457-462.
    [153]Kondon K, Atluri S N. Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses [J]. Computational Mechanics.1987,2(1):1-25.
    [154]Shi G, Atluri S N. Elasto-plastic large deformation analysis of space frames [J]. Methods in Eng.1988,26(3):589-615.
    [155]Leger P, Dussault S. Seismic-energy dissipation in MDOF structures [J]. Journal of Structural Engineering Division.1992,118(5):1251-1269.
    [155]Brown J H. Moments on beam-columns with flexible connections in braced frames [J]. Engineering Journal,1986,23(4), pp157-165.
    [156]Warburton G B. Errors in response analysis using the finite element method [J] Finite Element Method.1984,2(3):447-460.
    [157]Hoshiya M, Saito E. Structural identification by extended Kalman filters [J]. J. Eng. Mech.1984,110(12):1757-1770.
    [158]Loh C H, Tsaur Y H. Time domain estimation of structural parameters [J]. Eng. Struct. 1988,10(2):95-105.
    [159]Roberts J B, Dunne J F, Debonos A. A spectral method for estimation for nonlinear system parameters from measured response [J]. Eng. Mech.1995,10(4):199-207.
    [160]Zeldin B A, Spanos P D. Spectral identification of nonlinear structural systems [J]. J. Eng. Mech.1998,124(7):728-733.
    [161]Beck J L. Statistical system identification of structures [J]. Structural Safety and Reliability.1990,2(1):1395-1402.
    [162]Beck J L, Katafygiotis L S.Updating models and their uncertainties. I:Bayesian statistical framework [J]. J. Eng. Mech.1998,124(4):455-461.
    [163]Katafygiotis L S, Papadimitriou C, Lam H F. A probabilistic approach to structural model updating [J]. Soil Dyn. Earthquake Eng.1998,17(7):495-507.
    [164]Yuen K V, Katafygiotis L S. Bayesian time-domain approach for modal updating using ambient data [J]. Probab. Eng. Mech.2001,16(3):219-231.
    [165]Katafygiotis L S, Yuen K V. Bayesian spectral density approach for modal updating using ambient data [J]. Earthquake Eng. Struct. Dyn.2001,30(8):1103-1123.
    [166]Yuen K V, Katafygiotis L S. Bayesian modal updating using complete input and incomplete response noisy measurements [J]. J. Eng. Mech.2002,128(3):340-350.