分散相梯度分布对水泥基材料物理力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梯度功能材料,是指在材料设计制造过程中,使构成材料的要素沿着厚度方向由一侧到另一侧呈梯度连续变化,并使材料的性能与功能呈现连续变化的一种新型材料。
     本文首次运用水泥基梯度功能材料的概念,分析了分散相在水泥基材料中的作用及其作用机理,探讨了分散相梯度分布对水泥基复合材料物理力学性能以及功能特性的影响。在没有专门的水泥基梯度材料成型设备的情况下,采用组分梯度变化,通过分层布料和机械振动成型的方法,通过合理的控制,基本上保证了组分的相对梯度变化,分层越多,梯度分布连续性越好。
     研究工作主要有三个方面:(1)碳纤维的分散工艺;(2)碳纤维梯度分布对水泥基材料电、热性能的影响;(3)骨料和玻璃纤维线性、抛物线性梯度分布对水泥基材料力学性能影响。
     研究结果表明:(1)采用甲基纤维素和超细硅粉复合掺拌的分散办法,使纤维充分分散,导电效果比较理想,为纤维分散提供了一条优良的途径;(2)碳纤维混凝土中,导电网络形成后,纤维含量继续增加对电阻率的影响不大。本试验结果表明当含量在0.3~0.8%之间时,导电率迅速上升,当0.8%含量以后,上升速度变缓。碳纤维的掺入对砂浆混凝土的热膨胀能够起到一定的抑制作用。碳纤维梯度分布,使得在纤维用量最少的情况下实现了导电发热功能,并有效地改善了内部温差和温度应力,缓解了应力集中。通电后迅速发热,随着时间的延长升温速度变缓(电阻增大),最终达到发热和散热的平衡而使温度恒定;(3)不同性能骨料的梯度分布可带来比其均匀分布优越的力学性能。骨料梯度分布时富熟料侧分布于受拉区,承受较大应力,使得总体强度上升,尤其抗弯强度的变化幅度较大。抛物线梯度不如线性梯度增强效果好,线性梯度变化比均匀分布试件抗折强度提高了16%,抛物线梯度提高了8%;玻璃纤维的高抗拉强度及较高的弹性模量,提高了纤维混凝土复合材料的拉伸强度和弹性模量。纤维梯度分布,增强纤维较多的分布于受拉区,纤维的分布更符合材料(构件)的受力方式。在承受最大弯拉应力部位,梯度分布的纤维含量比均匀分布高,因此梯度分布比均匀分布对抗弯强度的提高更明显。抛物线梯度分布组28天抗弯强度比均匀试件提高达18%,而线性梯度提高6%。
     不同性能与功能的分散相梯度分布,使水泥基材料的物理力学性能得到了明显改善并可以实现在同一制品上的复合功能,这为水泥基梯度功能材料的设计与进一步发展奠定了基础,同时展示了水泥基梯度复合功能材料良好的研究价值和应用前景。
Functionally Graded Materials (FGM) is that the components and the structure of the material are gradient distribution from one side of the material (product) to the omer. So far, FGM has been widely used in modern Industries.
    In this paper, the concept of FGM is firstly applied in cement-based materials to study the effect of dispersion phase gradient distribution in cement-based materials on physicomechanical property and functions after the effect of dispersion phase and its mechanism in cement-based materials were analyzed. Without special forming equipment, the gradient distribution of components and the designed properties of the material can be achieved by the component graded change, layering formation and mechanical vibration. And the study shows that more layers of the structure, smoother transition from one layer to another.
    Three aspects are studied: (1) The methods of carbon fibers (CF) dispersion; (2) The effect of CF gradient distribution on thermal and electric properties; (3) the effect of aggregates and glass fibers (GF) with linear and parabolic component gradient variation on mechanical property.
    The test results indicate that the properties and functions of the cement-based FGM can be obviously improved by the gradient distribution of different disperse phases. Namely:
    (1) The CF can be dispersed by methyl cellulose and superfine silica fume used together and the electrical resistivity is low. So it provides a good way for CF dispersion;
    (2) The results on CF cement-based FGM include four aspects. Firstly, the electrical resistivity is influenced little by CF content increase after the conductive circuit formation. The results in this paper show that the conductivity increases quickly when CF weight percentage is 0.3-0.8% and turns to low after 0.8%; Secondly, it indicates that thermal expansion is restrained by CF obviously. Furthermore, electric-thermal property can be realized and thermal stress can be reduced in CF cement-based FGM in which the discontinuous carbon fibers are gradient distribution. Lastly, the test results show that the increase of the temperature of the carbon fiber reinforced cement-based FGM is quick when the electric circuit passes through it, and the heat quantity of the matrix decreases (the electric
    
    
    
    resistance of the matrix increases) as the temperature of the matrix increase and the temperature of the matrix may tend to a constant value at last when the heat generating quantity of thg matrix equal to the heat radiating quantity of the matrix.
    (3) Compared with that of the homogeneous distribution of the high strength aggregates and the activation aggregates, the higher strength of the gradient distribution of the disperse phase of the cement-based FGM are achieved, especially the bending strength. It is because the clinker is distributed much more in tensile area which bears more stress. For example, with linear and parabolic component gradient variation of aggregates, linear component gradient variation of aggregates reinforces higher than parabolic variation. Linear component gradient variation of aggregates improves 16% of aggregates homogeneous distribution on bending strength; parabolic component gradient variation does 8%. GF is widely used as composite reinforcement due to low cast and excellent properties such as high tensile strength and high elastic modulus. When the reinforced glass fibers (GF) gradient distribution, the same reinforced role can be achieved in the lower volume of the reinforced fibers, because the distribution of the r
    einforced fibers is coincident with the stress distribution of the specimen. For example, with linear and parabolic component gradient variation of GF, parabolic component gradient variation of GF reinforces higher than linear variation. Parabolic component gradient variation of GF improves 18% of GF homogeneous distribution on bending strength; linear component gradient variation only does 6%.
    In conclusion, different properties (or functions) of the dispersion phase improve cement-based FGM and t
引文
[1]周馨我(编).功能材料学.北京:北京理工大学出版社,2002:290-307
    [2]贡长生,张克立(编).新型功能材料.北京:化学工业出版社,2001:45
    [3]新野正之,平井敏雄,渡边龙三.颜料机能材料.日本复合材料学会志,1987,13(6):257
    [4]F Nogata. Proc. Conf. Functionally Graded Materials 1996. Tsukuba, Japan, 1996, I Shiota and Y Miyamoto, eds. Elsevier. Amsterdam: 737~742
    [5]S Amada and N Shimizu. Proc. Conf. Functionally Graded Materials 1996. Tsukuba, Japan, 1996, I Shiota and Y Miyamoto, eds. Elsevier. Amsterdam: 731~736
    [6]丁保华,李文超.梯度功能材料的研究现状与展望.耐火材料,1998,5
    [7]潘俊德,田林海等.功能梯度材料及薄膜的研究现状与前景.金属热处理,1998,6
    [8]王豫,姚凯伦.功能梯度材料研究的现状与将来发展.物理,2000,4
    [9]S Suresh,A Mortensen著.李守新等译.功能梯度材料基础.北京:国防工业出版社,2000,8:1~2
    [10]Qui Tran-Cong,. Jin Okinaka. Polymer blends with spatially graded structures prepared by phase separation under a temperate gradient. Copyright Society of Plastics Engineer; 1999, 39(2):365
    [11]沈强,张联盟,袁润章.Ni/Ni-3AI-TiC系梯度功能材料的组成结构设计与制备.硅酸盐学报,1994,4
    [12]赵军,艾兴等.新型梯度功能陶瓷刀具材料的设计模型.陶瓷学报,1997,3
    [13]刘书田,程耿东.基于均匀化理论的梯度功能材料优化设计方法.宇航材料工艺,1995(6):2~27
    [14]王建平,翟鹏程,张光辉.梯度功能材料热应力缓和优化设计.武汉工业大学学报,1998,3
    [15]冉均国,杨云志,郑昌琼.梯度薄膜材料设计原则.材料研究学报,1999,18(2):46~50
    [16]Tanigawa Y, Matsumoto M, Akat T. Optimization problem of material composition for non-homogeneous plate to minimize thermal stresses when subjected to unsteady heat supply. Transactions of the Japan Society of Mechanical Engineers, Series A, 1996, 62(593): 115~122
    [17]李臻熙,张同俊,李星国.Al_2O_3-Ti系梯度功能材料的优化设计.宇航材料工艺,1998,1:30~35
    
    
    [18] 李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展.力学进展,2000,30(4):571~579
    [19] Drake J T, Williamson R L, Rabin B H. Finite element analysis of thermal residual stresses at graded ceramic-metal interface PartⅡ—Interface optimization for residual stress reduction. J Appl Phy, 1993, 74:1321~1326
    [20] Ravichandran K S. Thermal residual stresses in a functionally gradient system. Mater Sci and Eng, 1995, A201: 269~276
    [21] Thangjitham S, Choi H J. Thermal Stresses in a Multi-layered Anisotropic Medium. Journal of Applied Mechanics, 1991, 58:1021~1027
    [22] Tanigawa Y, Akai T, Kawamura R, Oka N. Transient heat conduction and thermal stress problems of a non-homogeneous plate with temperature dependent material properties. Journal of Thermal Stress, 1996 (19): 77~102
    [23] Erdogan F, Wu B U. Crack problem in FGM layers under thermal stress. J Thermal stresses, 1996, 19: 237~265.
    [24] Noda N, Jin Z H. Thermal stress intersity factors for a crack in a strip of a functionally gradient materials. Int J Solids Structure, 1993, 31:1039~1051
    [25] 王继辉,张清杰,吴代华.金属-陶瓷梯度材料的热弹塑性分析.复合材料学报,1996,13(2):89~93
    [26] Nan C W, et al. The elastoplastic behavior of metal/ceramic functionally gradient materials. Ceramic transactions, 1993, 34:91~98
    [27] N Noda, S Nakai, T Tsuji. Thermal Stresses in FGM of particle-reinforced composite. Transactions of JSME, Series A 1998, 41(2): 178-184
    [28] Y T Pei, J Th M De Hosson. FGM Produced by laser cladding. Acta materials, 48(2000): 2617-2624
    [29] 张幸红,韩红杰等.梯度功能材料制备技术与发展趋势.宇航材料工艺,1999,2
    [30] Anne-Laure Dumont, Jeam-pierre Bonnet, etal. MoSi_2/Al_2O_3 FGM: elaboration by tape casting and SHS. J of European Ceramic Society 21(2001): 2353-2360
    [31] 廖恒成,张春燕,孙国雄.等离子喷涂与先进材料研制.材料研究学报,1999,2
    [32] 于思荣,张新平,何德明.离心铸造梯度功能材料的研究现状.功能材料,2000,11
    [33] 彭群家,松村宗顺,马莒生.复合电沉积法制备ZrO_2/Ni梯度功能材料的研究.清华大学(自然科学板),1999,12
    [34] S Mindess,J F Young.Concrete.方秋清,吴科如等译.北京:中国建筑工业出版社,
    
    1989: 141-144
    [35] H Kawakami, Effect of gravel size on strength of concrete with particular reference to sand content, Mechanical behavior of material, 1971, 4: 96
    [36] J Gluklich, Strength of concrete as composite materials. Proc. 1st Intern. Conf. Mech. Behaviour Mater., 1972,4
    [37] A F Stock, D J Hannant, R L T Williams, The effect of aggregate concentration upon the strength and modulus of elasticity of concrete, Mag. Conr.Res. 1979, 31 (109) : 225-234
    [38] B G Singh, Specific surface of aggregates related to compressive and flexural strength of concrete, J. Amer.Coner.Inst ,1958, 54: 897-907
    [39] R Jones, M E Kaplan, The effects of coarse aggregate on the mode of failure of concrete in compression and flexure. Mag. Concr. Res, 1957,9(26) : 89-94
    [40] R E Franklin, T M J King, Relations between compressive and indirect-tensile strengths of concrete. Road.Res.Lab.Rep.LR412, 1971: 32
    [41] J Skalny, S Midess (ed), Materials science of concrete. Published by American Ceramic Society, 1998: 128-129
    [42] Y Tawigawa, Model analysis of fracture and failure of composite materials. C.C.R., 1976, 6: 679-690
    [43] B J Addis, Properties of high-strength concrete made with South African materials. Ph.D. thesis. Uni.Witwatersrand, Johannesburg, 1992,and J.Skaluy., S.Midess (ed)-Materials science of concrete, 1998: 126-127
    [44] A Kronlof, Effect of very fine aggregate on concrete strength. Materials structure, 1994, 27 (165) : 15-25
    [45] R N Swamy. Fracture phenomena of hardened Paste mortar and concrete. Mech. Behav. Mater.Proc. 1971, Intern conf. 1972,4: 69
    [46] C Aitcin, P K Mehta, Effect of coarse-aggregate characteristics on mechanical properties of high strength concrete. Am. coner. Inst. Mater. J.1990, 87 (2) : 103-107
    [47] M G Alexander, An experimental critique of the BS8110 method of estimating concrete elastic modulus. Mag. Concr. Res. 1991, 43 (157) : 291-304
    [48] D C Teychenne., The use of crushed rock aggregates concrete. Building Research Establishment, Garston, U.K. 1978
    
    
    [49] S Mindess,J F Young.Concrete.方秋清,吴科如等译.北京:中国建筑工业出版社,1989:455
    [50] 龚洛书、柳春圃编.轻集料混凝土.北京:中国铁道工业出版社,1996
    [51] 张勇.不同纤维对轻集料混凝土韧性性能影响的研究.混凝土,2002,5(151):30-32
    [52] A Kleinlagel. Method for the preparation of a synthetic, mechanical iron mass. German Patent, 1920,388,159,18
    [53] G S Holister, C Thomas, Fiber reinforced materials. Elsevier, Amsterdam, 1966
    [54] Jr H Savastano, V Agopyan, Transition zone studies of vegetable fiber-cement paste composites. Cem. Coner. composites, 1999,21: 49-57
    [55] 叶青,胡国君.水泥基复合功能材料的研究开发.材料科学与工程,1995,13(2):62-65
    [56] 沈家洪,程育仁,闫成胤.水泥基纤维增强复合材料(FRC)发展应用综述.铁道物资科学管理,1997,2(15):33-34
    [57] 黄鼎业,王谦,刘恩.纤维增强水泥基材料(CFRC)的研究与应用.同济大学学报,1995,23(增刊):77-83
    [58] Sihai Wen, D D L Chung, Origin of the thermoelectric behavior of Steel fiber Cement paste. Com.Concr. Res. 2002, 32: 821-823
    [59] Kuitenbrouwer L, The use of steel fiber reinforced concrete in underground construction, Inter. Symposium on New Development in Concrete Science and Technology, 1995 Nanjing, China: 784-791
    [60] 高丹盈,刘建秀.钢纤维混凝土基本理论.河南:科学技术文献出版社,1994:239-249
    [61] M C Nataraja, N Dhang, A P Gupta, Stress-strain curves for steel-fiber reinforced concrete under compression. Cem. Concr. composites, 1999, 21:383-390
    [62] Qian Ch X, I Patnaikuni. Properties of high-strength steel fiber-reinforced concrete beams in bending. Com. Concr. composites, 1999, 21.. 73-81
    [63] D R Oakley, B A Proctor, Tensile stress-strain behavior of glass fiber reinforced cement composites Paper75 RLLEM sym. F.RC, London, A.M.Neville(ed), 1975:347-359
    [64] 唐乃岩,李秋平,刘乃芸.玻璃纤维混凝土的研究进展与工程应用.山东建材,1999,2:22-23
    [65] 朱颂茜,王锭一.喷射玻璃纤维增强混凝土在开炸石渠防渗处理中的应用研究.防渗技术,1997,9:12-16
    [66] 朱荣跃编译.耐碱玻璃纤维及其在混凝土中的应用(一).混凝土与水泥制品,1994,3:47-49
    
    
    [67] 朱荣跃编译.耐碱玻璃纤维及其在混凝土中的应用(二).混凝土与水泥制品,1994,4:44-47
    [68] 朱荣跃编译.耐碱玻璃纤维及其在混凝土中的应用(三).混凝土与水泥制品,1994,5:44-47
    [69] GFRC recommended practice for glass fiber reinforced concrete panels, Third Edition, PCI, 1993
    [70] 李湘洲,王伟.碳纤维增强混凝土的现状与趋势.混凝土,2000,8:31-33
    [71] 王秋林.碳纤维、芳纶纤维在国外土木建筑中的应用.纺织科学研究,1997,3:1-5
    [72] 吴寅.碳纤维增强混凝土的力学性能.纤维复合材料,1995,9:47-49
    [73] 耿志大.碳纤维增强混凝土.混凝土与水泥制品,1997,5:43-46
    [74] 刘丽娟,徐梁华,王广林.碳纤维增强水泥基复合材料的应用研究.材料科学与工程,2002,2(20):283-286
    [75] 岳清瑞,CFRP加固修补混凝土结构新技术及应用.高科技纤维与应用,1998,5(23):1-6
    [76] P B Cachim, et al. Fatigue behavior of fiber-reinforced concrete in compression. Cem. Coner. Composite 2002, 24:211-217
    [77] C P Oslertag, C K Yi, C Vondran. Tensile strength enhancement in underground fiber cement composites. Com. Concr. compsites, 2001,23:419-425
    [78] 赵敏,高俊刚等编著.改性聚丙烯新材料.北京:化学工业出版社,2002:484-485
    [79] 姚康德主编.智能材料.天津:天津大学出版社,1994
    [80] 杨大智主编.智能材料与智能系统.天津:天津大学出版社,2000
    [81] Peter L F, et al. Performance and health monitoring of the staffored medical building using imbedded sensors. Smart Mater Stru., 1992,(1): 63-68
    [82] 陶宝祺主编.智能材料结构,北京:国防工业出版社,1997
    [83] N Muto, Yanagida, et al. Design of smart materials with inition function for preventing fatal fracture smart materials and structure. Smart materials and structure, 1992(1)
    [84] Huston DR. Smart civil structure: an overview, SPEL, 1991
    [85] 瞿伟廉,项海帆.ER智能材料在结构振动控制中的应用.地震工程与工程震动,1998,18(3)
    [86] 吴人洁.复合材料.天津:天津大学出版社,2000:197-221
    [87] 毛起劭,陈品华等.小应力下碳纤维增强水泥压敏性和温敏性.材料研究学报,1997,11(3):322
    [88] Japan Concrete Institue, Special Issue: Advanced Concrete Technology-New Application and High Performance (JCI No.388),Concrete Journal, Vol.36,No. 1,1998
    
    
    [89] C Dry, Two intelligent materials both of which are self-forming and self-repairing, one also self sense and recycles, Proceeding of Third International Conference on Intelligent Materials, P.E.Gobin and J.Tatibouet, eds, 1996:164-171
    [90] C Dry, Smart earthquake resistant materials ( using time released adhesives for damping, stiffening, and deflection control ), Proceeding of Third International Conference on Intelligent Materials, P.E,Gobin and J.Tatibouet, eds, 1996:958-967
    [91] Gandhi Thompson, Smart materials and structures. London: Chapman & hall, 1992
    [92] Yunsheng Xu, D D L Chung, Cement of high specific heat and high thermal conductivity, obtained by using silane and silica fume as admixtures. C.C.R, 2000, 30:1175-1178
    [93] 王秀峰,王永兴,金志浩.碳纤维增强水泥基材料的导电性能及其应用.复合材料学报,1998,15(3):75-80
    [94] Sihai Wen, D D L Chung, Carbon fiber-reinforced cement as a thermistor. C.C.R, 1999, 29: 961-965
    [95] M.Sun, Z.Li etc., Study on the hole conduction phenomenon in carbon fiber reinforced concrete, Cem.Concr.Res.1998, 4-(28): 549-554
    [96] 张跃等.石墨MDF水泥基复合材料屏蔽电磁波性能.材料研究学报,Vol.9,No.3,1995:284-288
    [97] 观新春,韩宝国,欧进萍.碳纤维在水泥浆体中的分散性研究.混凝土与水泥制品,2002,2:34-36
    [98] 杨元霞,毛起炤,沈大荣,李卓球.碳纤维水泥基复合材料中纤维分散性的研究.建筑材料学报,2001,1:84-88
    [99] 毛起熠,杨元霞,李卓球,沈大荣.外加剂对CFRC导电性能的影响.无机材料学报,1997.12(3):415-419
    [100] S Akihams, Carbon fiber reinforced cement: short fiber and continuous fibers. Takabatsu, 1993, 45(5): 290
    [101] S S Lin. Application of short carbon fiber in construction. SAMPE J.1994, 30(5): 39
    [102] Sihai Wen, D D L Chung. Damage Monitoring of Cement Paste by electrical Resistance Measurement. Cem. Concr. Res. 2000, 30:1979-1982
    [103] 张东,吴科如,李宗津.0-3型水泥基压电机敏复合材料的制备和性能.硅酸盐学报,2002,30(2):161-166
    
    
    [104]Xuli Fu, D D L Chung, Effect of Couring Age on the Self-Monitoring Behavior of Carbon Fiber Reinforced mortar. Cem. Contr. Res. 1997,27(9): 1313
    [105]毛起劭,赵斌元等.水泥基碳纤维复合材料压敏性研究.复合材料学报,1996,13(4):8-11
    [106]毛起劭,杨元霞等.碳纤维增强水泥压敏性影响因素的研究.硅酸盐学报,1997,25(6):734-737
    [107]Sihai Wen, D D L Chung, Enhancing the Seeback Effect in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers, Cem. Coner. Res. 2000,30(8): 1295-1298
    [108]Sihai Wen, D D L Chung. Seebeck Effect in Carbon Fiber Reinforced Cement, Cem.Concr.Res. 1999, 2-(12): 1989-1993
    [109]孙明清,李卓球,沈大荣.碳纤维水泥基复合材料的Seebeck效应.材料研究学报,1998,12(1):111.112
    [110]孙明清,李卓球,毛起熠,沈大荣.影响CFRC的Seebeck效应的主要因素.材料研究学报,1998,12(3):329-331
    [111]杨久俊.无机材料科学.河南:河南科学技术出版社,1998,1