褐煤低温热改质过程及冷凝水水质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤提质是提高褐煤利用效率和减少污染排放的有效手段。本文围绕着褐煤低温热改质过程,研究了褐煤表面含氧官能团随温度的变化规律;重点研究了低温热改质温度对热改质冷凝水水质和冷凝水中有机物的组成与含量影响的规律;考察了改质后提质煤的成型性能。论文的研究内容和取得的研究结果包括:
     1、以霍林河褐煤和小龙潭褐煤为原料,在间壁式热改质装置上进行了褐煤低温热改质实验。实验结果表明:褐煤在100℃改质时,煤中水的脱除率不足50%:热改质温度高于150℃后,煤中的水分基本可以全部脱除。提质煤的挥发分随热改质温度的升高而减低,热改质温度升高至400℃,霍林河和小龙潭煤提质煤的挥发分分别下降了10.69%和15.60%。由平均芳环数可知,霍林河和小龙潭褐煤分别在400℃和350℃煤大分子碳骨架开始发生明显改变。
     2、对原煤和提质煤的表面官能团进行了红外和化学分析。研究发现,小龙潭原煤存在着类似泥炭的多聚羟基为主的网状体系(Coal—OH—O—Coal),在热改质温度超过250℃后这种结构被破坏。随热改质温度的增加,褐煤表面含氧官能团的脱除率显著增加,400℃时羧基的脱除率为90%以上,而酚羟基的脱除率与氧元素的脱除率相当,不足50%。在改质温度超过400℃后对小龙潭和霍林河原煤中烷烃支链、醚氧基结构和CH2桥键结构有明显影响。
     3、对褐煤低温热改质冷凝水水质进行了研究。实验结果表明:热改质温度在200℃前收集的冷凝水无色透明;200℃热改质冷凝水氨氮指标略高,可通过简单生化处理达标。250℃时冷凝水开始略带褐色,在350℃后开始出现分层现象,水质劣化明显。
     4、使用GC-MS分析了热改质冷凝水中的有机物。结果揭示了冷凝水中有机物含量随热改质温度变化的规律。实验结果表明:冷凝水中有机物组成十分复杂,包含了脂肪烃、芳香烃、含氧化合物和杂环类等化合物。含氧化合物含量最高,包括酚类、醇类、醛类、酮类、酸类和酯类等。其中,酚类物质是冷凝水中有机物含量最高的一类,其含量随处理温度的升高而增加。低级酚在冷凝水中酚类物质占比例很高,含量超过总酚的80%。与甲酚的脱烷基反应活性顺序不一致,三种甲酚的含量顺序是间甲酚>邻甲酚>对甲酚;苯酚的产率随热改质温度的增加而增加,但总酚中苯酚的比例并未呈现出类似煤热解焦油中一直上升的规律,可能是由于生成的酚类化合物经历酚分解过程或裂解和脱烷基反应不充分造成的。
     5、使用Aspen Plus软件NRTL活度系数法建立冷凝水脱酚过程模型,并根据相平衡实验数据对NRTL模型参数进行矫正。并对萃取塔中相比、温度、塔板数和塔板效率进行了灵敏度分析。结果表明,采用三级逆流萃取,以醋酸丁酯为萃取剂苯酚及甲酚在萃取温度20℃、水油相比3:1、理论塔板数3的条件下,可使冷凝水中的苯酚和甲酚含量降至满足生化处理要求。
     6、研究了褐煤和提质煤无粘结剂成型。结果表明,褐煤成型压制曲线总体变化大致可以分为褐煤粉末的致密化、部分褐煤颗粒开始发生形变、稳定阶段和褐煤颗粒发生明显形变四个阶段。褐煤颗粒群特性可以使用RRB方程进行描述。颗粒群特性、成型压力、水分含量和提质煤混合比例是影响型煤强度的主要因素。热改质温度为400℃的提质煤单独成型困难,配入一定量原煤后可顺利成型。
Thermal upgrading process is the most effective technology that removes moisture and certain pollutants from lower-rank coals such as sub-bituminous and lignite (brown) coals and in order to raise their calorific values. The goals of lignite upgrading technologies are to increase efficiency and reduce emissions before coal utilization. Therefore, in this thesis, the changes of oxygen-containing functional group contents with thermal upgrading of lignite were studied in detail, the influence of upgrading temperature on the water quality including composition and distribution of organic matter in lignite-derived water was investigated and the effects of upgrading process on coal briquette were also studied.
     The main works and results of this research are as follows:
     1) Two Chinese coals, Huolinhe(HLH) lignite and Xiaolongtan(XLT) lignite, were used to investigate the lignite upgrading reaction within the ranges of100℃-400℃℃. The results showed that the reduction of its water proportion of upgraded coal was no more than50%when the temperature was100℃,and down to below5%when the temperature exceeded150℃. The volatile matter in the upgraded coals was decrease with an increase of upgrading temperature. The volatile matter in the upgraded HLH and XLT lignites was reduced by10.69% and15.60%respectively compared with the raw lignites. By calculating the average number of aromatic rings, we know that large aromatic molecules of lignites were changed considerably when upgrading temperature exceeded400℃for HLH lignites and350℃for XLT lignites.
     2) FI-IR and chemical analysis were used to investigate the changes of oxygen-containing groups with different upgrading temperatures. The results indicated that network systems like Coal-OH-O-Coal were found in raw XLT lignite which are analogous to peat. The Coal-OH-O-Coal network systems were destroyed easily while upgrading temperature went over250℃. Besides, the oxygen-functional groups contents of both upgraded HLH and XLT lignites decreased obviously, especially carboxyl groups, at400℃, the removal rate of carboxyl groups had reached90%. The removal rate of phenolic hydroxyl groups was commensurate with that of oxygen element. In addition, when the upgrading temperature was more than400℃,it had obvious effects on alkane chain, ether oxygen bond and CH2bridged bond.
     3) Lignite-derived water from lignite upgrading reaction was analyzed with COD, NH3-N, phenols etc. The experimental results showed that the water was colorless and transparent when the upgrading temperature was not more than200℃.
     4) In order to better understand the composition and distribution of organic matter in lignite-derived water, GC-MS was used to analyze the organic matter in water. The results showed that the proportion of organic matter in water went up with the increase of the upgrading temperature. Furthermore the composition of organic matter was very complex, including aliphatic hydrocarbon, aromatic hydrocarbon, oxygen containing compounds and heterocyclic compounds. And phenols, alcohols, aldehydes, ketones, acids, esters and other complex compounds in oxygen containing compounds were detected as well. Phenols were found as the highest amount of organic matter. Phenols content in water was increased as the upgrading temperature increased, and noticeably increased after300℃. The content of simple phenols accounts for approximately80%of total phenols. The content of o-cresol, m-cresol, p-cresol was m-cresol>o-cresol>p-cresol, out of accord with cresol dealkylation activity. The yield of phenol in water went up with the increase of upgrading temperature, however, the content of phenol in phenols did not show the same tendency. By analyzing the phenols composition and distribution in lignite-derived water, it was concluded that it was due to inadequte dealkylation of cresol and decomposition of reactive intermediate.
     5) Aspen Plus software was applied in this study, NRTL equation taken as property, and extraction model established, in order to absorb phenol capability in extraction process. Model parameter of NRTL was corrected by detailed data from phase balance experiment to improve the accuracy of simulation. The sensitivity was analyzed in terms of phase ratio, temperature, number of plates and plate efficiency. The results indicated that at the temperature of20℃, with the phase ratio of3:1and number of plates of3, phenol concentration of final water dropped enough to meet the requirement of biochemical treatment.
     6) Lignite briquetting experiment was conducted in a hydraulic press. Compaction curves of the lignites show that the whole compaction process can be divided into stages of densification, the particle re-arrangement stage, the plastic deformation stage and the whole deformation stage. Rosin-Rammler-Bennet equation (RRB) was used to describe particle size distribution. Uniformity index n and characteristic feature size De were also calculated. In addition, characterization of particle group, briquetting pressure, water content and upgraded coal content were the major factors that affect briquette strength.
引文
[1]中国科学院能源战略研究组.中国能源可持续发展战略专题研究[M].北京:科学出版社,2006.
    [2]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004(8):12-15.
    [3]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [4]郭崇涛.煤化学[M].北京:化学工业出版社,1994.
    [5]M.A.埃利奥,徐晓,吴奇虎,等.煤利用化学(上册)[M].北京:化学工业出版社,1991.
    [6]J K KALDELLIS, D ZAFIRAKIS, E KONDILI. Contribution of lignite in the Greek electricity generation:Review and future prospects[J]. Fuel,2009 (3):475-489.
    [6]王天威.褐煤改质的基础研究[J].应用能源技术,2007(9):19-20.
    [7]K STRAUSS. Mechanical/Thermal Expression (MTE)-design of a laboratory MTE unit[J]. Fuel. 2006(11):20-23.
    [8]陈冰冰,池海.谈对褐煤的加工利用[J].煤炭转化,2005(11):113-114.
    [9]李德鹏,李建松,陈传福.加强对褐煤的利用[J].现代矿业,2009(2):23-25.
    [10]赵振新,朱书全,马名杰,等.中国褐煤的综合优化利用[J].洁净煤技术,2008(1):28-31.
    [11]沈国娟,张明旭,王龙贵.浅谈褐煤的利用途径[J].煤炭加工与综合利用,2005(6):25-27.
    [12]关珺,何德民,张秋民.褐煤热解提质技术与多联产构想[J].煤化工,2011(6):1-9.
    [13]E M SUURBERG,W A PETERS,J B HOWARD, Product compositions in rapid hydropyrolysis of coal[J]. Fuel,1980 (6):405-412.
    [14]L PETRAKIS,D W GRANDY, Free radicals in coals and coal conversion3. Investigation of the free radicals of selected macerals upon pyrolysis[J]. Fuel,1981 (2):115-119.
    [15]K MIURA, Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol.2000, (2):119-135.
    [16]易海波,王亚明,陈秋玲.煤直接液化催化剂研究进展[J].化工时刊,2006(10):52-54.
    [17]ARTOKA L, SCHOBERTA H H, ERBATURB O. Temperature-staged liquefaction of selected Turkish coals[J]. Fuel Processing Technology,1994 (3):211-236.
    [18]KUZNETSOV P N, SHARYPOV V I, KORNIYETS E D, et al. Influence of iron-containing ore catalysts on Kansk-Atchinsk lignite hydrogenation in tetralin[J]. Fuel,1990 (3):311-316.
    [19]YOKOYAMA S, YAMAMOTO M, YOSHIDA R, et al. Catalytic behaviour of sulphate and sulphide in S-promoted iron oxide catalysts for liquefaction of bituminous coal and lignite[J]. Fuel,1991(2): 163-168.
    [20]HIRSCHON A S, WILSON R B, Jr. Highly dispersed coal liquefaction catalysts[J]. Fuel,1992 (9): 1025-1031.
    [21]KUZNETSOV P N, BEREGOVTSOVA N G, IVANCHENKO N M. Catalytic liquefaction of Kansk-Achinsk lignite in methanol [J]. Fuel,1990 (8):985-991.
    [22]CHAN J S T, JACKSON W R, MARSHALL M. Reactions of brown coals with CO-H2O in the presence of alkaline catalysts in a well-stirred autoclave with hot-charge facility [J]. Fuel,1994 (10): 1628-1631.
    [23]WATANABE Y, YAMADA O, FUJITA K, et al. Coal liquefaction using iron complexes as catalysts[J]. Fuel,1984 (6):752-755.
    [24]王力,陈鹏,王琦,等.煤与废塑料共液化中氢转移的示踪试验研究[J].燃料化学学报,2001(4):309-312.
    [25]GIMOUHOPOULOS K, DOULIA D, VLYSSIDES A. et al. Waste plastics-lignite coliquefaction innovations[J]. Resources,1999 (6):43-52.
    [26]MCMILLEN D F, MALHOTRA R, CHANG S J, et al. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel,1987 (12):1611-1620.
    [27]WEI X Y, OGATA E, ZONG Z M, et al. Advances in the study of hydrogen transfer to model compounds for coal liquefaction [J]. Fuel Processing Technology,2000(2):103-107.
    [28]WANG L, CHEN P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics[J]. Fuel,2002,81:811-815.
    [29]TAN ABE K, HATTORI H, YAMAGUCHI T, et al. Function of metal oxide and complex oxide catalysts for hydrocracking of coal[J]. Fuel Processing Technology,1986,14:247-260.
    [30]MALDONALDO-HODAR F J, RIVERA-UTRILLA J, MASTRAL A M, et al. Hydrogenation of coals catalysed by Mo effect and transformation of porous texture[J]. Fuel,1995(11):1709-1715.
    [31]周志杰,范晓雷.非等温热重实验分析研究煤焦气化动力学[J].煤炭学报,2006(2):219-222.
    [32]杨海平,陈汉平,鞠付栋,等.典型煤种加压热解与气化实验研究[J].中国电机工程学报,2007(9):18-27.
    [33]MESSENBOCK R C, PATERSON N P, DUG WELL D R,et al. Factors governing reactivity in low temperature coal gasification. Part 1. An attempt to correlate results from a suite of coals with experiments on mineral concentrates [J]. Fuel,2000(2):109-121.
    [34]HARRIS, D G ROBERTS, D G HENDERSON. Gasification behaviour of Australian coals at high temperature and pressure [J]. Fuel,2006(1):134-142.
    [35]ROGER, KHALIL.et al. CO2 Gasification of biomass char:a kenetic stuy [J]. Enery & Fuel, 2008(1):94-100.
    [36]周小玲,肖宝清.煤的孔隙特性与煤中水分关系的研究[J].矿冶,1995(1):90-93,104.
    [37]吕向前,刘炯天.浮选精煤中水的存在形式与脱除[J].煤炭技术,2005(1):47.-49.
    [38]贾燕.褐煤结构的实验分析[D].太原:太原理工大学,2003.
    [39]李东涛,李文,李宝庆.褐煤中水分的原位漫反射红外光谱研究[J].高等学校化学学报,2002(12);2325-2328
    [40]涂华,白向飞,陈亚飞等.我国主要褐煤矿区最高内在水分等参数的计算[J].煤炭科学技术,2005(2):71-73
    [41]陈海旭.我国褐煤燃前脱灰脱水提质现状[J].中国煤炭,2009(4):98-101.
    [42]万永周,肖雷,陶秀祥,等.褐煤脱水预干燥技术进展[J].煤炭工程,2008(8):91-93.
    [43]岩田博行等.褐煤干燥特性[J].资源,1990(4):43-48.
    [44]任祥军.低煤阶煤的干燥进展[J].煤炭加工与综合利用,1996(4):85-87.
    [45]钟蕴英,钱中秋.褐煤的改质研究[J].中国矿业大学学报,2002(1):1-5.
    [46]魏广学,徐建华,陈伍凭,等.褐煤脱水提质的研究[J].农村能源,1994(2):16-20.
    [47]FLEISSNER. Method of drying coal and the like [P].US Patent US1632829.1927.
    [48]FLEISSNER. Method of drying coal and like fuels [P].US Patent US1679078.1928.
    [49]FOHL J, LUGSCHEIDER W, WALLNER F. Removal of moisture from brow coal 1.Basic principles and thermal drying process[J].Braunkohle,1987,39:46-47.
    [50]FOHL J, LUGSCHEIDER W, TESSMER G, et al. Removal of moisture from brow coal 2. Thermal dehydration[J]. Braunkohle 1987,39:78-87.
    [51]KAMEI T,ONE F.KOMAI K, et al. Proc 4thlnt. drying symposium [C]. Kyoto,1984.
    [52]ALLARDICE D J, EVANS D G. The brown-coal/water system:part 1.The effect of temperature on the evolution of water from brown coal[J].Fuel,1971,50:201-210.
    [53]ALLARDICE D J, ANDERSON B, WOSKOBOEENKO F. Developments and opportunities in the hydrothermal dewatering of low rank coals[C].5th Japan/Australian Joint Technical Meeting on Coal, Adelaide,7 June 1995.
    [54]ALLARDICE D J, CELMOW L M, FAVAS G, et al. The characterization of different forms of water in low rank coals and some hydro thermally dried products[J]. Fuel,2003,(6):661-667.
    [55]EVANS D G. Effects of colloidal structure on physical measurements on coals[J]. Fuel,1973 (2):155-156.
    [56]TIBOR G, ROZGONYI. Using saturated steam to process high moisture lignite[J]. Fuel Processing Technology,1985(10):64-71.
    [57]BANKS P J, BURTON D R. Press dewatering of brown coal:part 1:exploratory studies[J].Drying Technol,1989(3):443-475.
    [58]BANKS P J, BURTON D R. properties of brown coal in press dewatering[C]. Proc Int. Conf. on Coal Science,1985,Syney:509-512.
    [59]STRAUSS K. Method and device for reducing the water content of water-containing brown coal[P]. EP 0784660.1998
    [60]STRAUSS K. Process for reducing the water content of lignite[P]. WO9731082,1997.
    [61]朱学栋,朱子彬,朱学余,等.煤化程度和升温速率对热分解影响的研究[J].煤炭转化,1999(2):43-47.
    [62]姜立新,李晓岚,罗茜.蒸汽脱水技术的进展[J].金属矿山,1999(7):36.44.
    [63]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000(1):39-43.
    [64]刘旭光,李保庆.褐煤的降自燃活性研究[J].中国矿业大学学报,2000(3):266-270.
    [65]常春祥,熊友辉,蒋泰毅.高水分褐煤燃烧发电的集成干燥技术[J].选煤技术,2006(2):19-21.
    [66]LI X C, SONG H, WANG Q, et al. Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal[J]. Journal of Environmental Sciences Supplement,2009127-S130
    [67]赵卫东,刘建忠,周俊虎等.褐煤等温脱水热重分析[J].中国电机工程学报.2009(5):74-79.
    [68]赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008,(7):799-802.
    [69]刘辉,吴少华,孙锐,等.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报,2005,25(12):86-90.
    [70]刘志群.褐煤无粘结剂型煤的防水性能试验与研究[J].环境保护科学,1996(3):34-37.
    [71]高俊荣,陶秀祥,侯彤,万永周.褐煤干燥脱水技术的研究进展[J].洁净煤技术,2008(6):73-76.
    [72]万永周,高俊荣,肖雷等.褐煤的脱水提质研究[J].煤炭工程,2010,(4):75-77
    [73]WAN Y Z, GAO J R, XIAO L, et al. The optimization of the conditions of thermal and pressing dewatering and the effect of conditions on the burning characteristic of lignite[J]. Applied Mechanics and Materials,2011(66):1450-1455.
    [74]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神化科技,2009(2):17-22.
    [75]POTTER O E, BEEBY C J, FERNANDO W JN, et al. Drying brown coal in steam- heated steam-fluidized beds[J]. Drying technology,1984,(2):219.
    [76]TORU S,et al. UBC (Upgraded Brown Coal) Process Develop-ment[J].Kobe SteelEngineering Reports,2003.
    [77]DEGUCHI T,SHIGEHISA T, KATSUSHIMA S, et al. Development of the UBC process[C]. 7thAustilian Coal Science Conference. Gippsland:1996,479-485.
    [78]OKUMA O, SUGINA Y, YANAI S, et al. Dewatering and liquefaction of Victorian brown coal inBCL process[C]. Proc. Int. Conf on Coal Science.Sydney:1985,27-30.
    [79]HIDEKI K, H MAKINO. Energy-efficient coal dewatering using liquefied dimethyl ether[J]. Fuel, 2010, (8):2104-2109.
    [80]MIURA K, MAE K, ASHIDA R, et al. Dewatering of coal through solvent extraction[J]. Fuel,2002,(15-17):1417-1422.
    [81]KANDA H,SHIRAI H, HIER Y. Dewatering process for high misture coal using liquid DME asextracting solvent[C]. AIChE Annual Meeting, San Francisco:2003.
    [82]戴和武,杜铭华,谢可玉,等.我国低灰分褐煤资源及其优化利用[J].中国煤炭,2001(2):14-18.
    [83]RUBICRA F, ARENILLAS A, PEVIDA C, et al. Coal structure and reactivity changes induced by chemical demineralization[J].Fule Processing Technology,2002,79(3):273-279
    [84]WATANABE W, ZHANG W, ZHANG D K. The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal[J]. Fule Processing Technology,2001, (2):145-160.
    [85]STEEL K M, PATRICK T W. The production of ultra clean coal by sequential leaching with HF followed by HNO3[J]. Fuel,2003,82:1917-1920.
    [86]薛志敏,王海波.复合式干法选煤在六家煤矿的应用[J].内蒙古煤炭经济,2004(3):43.
    [87]许金禄,胡维基,刘广龙等.复合式干法选煤技术的应用[J].煤矿开采,2001(4):99-100.
    [88]牛焱.褐煤洗选加工的特点及应注意的问题[J].煤炭加工与综合利用,2005(5):17-19.
    [89]BUTLER C J,GREEN A M,CHAFFEE A L. MTE water remediation using Loy Yang brown coal as a filter bed adsorbent[J].Fuel,2008,(6):894-904.
    [90]CRAIG J. BUTLER, ALISON M. et al. Assessment of the water quality produced from mechanical thermal expression processing of three Latrobe Valley lignites[J]. Fuel,2006, (10-11):1364-1370.
    [91]H HU,Q ZHOU.S ZHU, et al. Product distribution and sulfur behavior in coal pyrolysis[J]. Fuel Process Teclnol,2004,85(8-10):849-861.
    [92]廖洪强,李文,孙成功,等.煤热解机理研究新进展[J].煤炭转化.1996,(3):1-7
    [93]M V KOK, E OZBAS,O KARACAN. Effect of particle size on coal pyrolysis[J].Journal of Analyticaland Applied Pyrolysis,1998, (2):103-110.
    [94]徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术,1999(2):175-179.
    [95]A B FUERTES,J J PIS,A J PEREZ,et al.Kinetic study of the reaction of a metallurgical coke with CO2[J].Solid State Ionics,1990,(1-2):75-80.
    [96]A ARENILLANS,F RUBIERA,J J PIS,M J CUESTA,et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J].Journal of Analytical and Applied Pyrolysis,2003,(8):371-385.
    [97]MURRAY J B, EVANS D G. The brown-coal/water system part 3:Thermal dewatering of brown coal [J]. Fuel,1972,(10):290-296.
    [98]EVANS D G. The brown-coal water system Part 4:Shrinkage on drying [J].Fuel,1973,(3):186-190.
    [99]ALLARDICE D J, EVANS D G.The brown-coal/water system part 2:Water sorption isotherms on bed-moist Yallourn brown coal [J].Fuel,1971,(3):236-253.
    [100]KAJI R,MURANAKA Y,OTAUKA K,et al. Water absorption by coals:effects of pore structure and surface oxygen [J]. Fuel,1986,(2):288-291.
    [101]庞雁原.煤热解过程中酚类化合生成机理及数学模型[J].煤炭转化.1995,(1):75-81.
    [102]葛宜掌.煤低温热解液体产物中的酚类化合物(Ⅰ)生成机理[J].煤炭转化.1997,20(1):14-20.
    [103]Y Y SHI, S Y LI,H Q HU, Studies on pyrolysis characteristic of lignite and properties of its pyrolysates[J]. Journal of Analytical and Applied Pyrolysis,2012,(3):75-78.
    [104]Z PAKOWSKI, R ADAMSKI, M KOKCINSKA.et al. Generalized desorption equilibrium equation of lignite in a wide temperature and moisture content range [J]. Fuel,2011,(11):3330-3335.
    [105]S C TSA著,王曾辉,叶雅青等译,煤炭洗选加工及应用基础[M].上海:华东化工学院出版社,1991.
    [106]E M SUURBERG, W A PETERS, J B HOWARD, Product compositions in rapid hydropyrolysis of coal [J]. Fuel,1980,(6):405-412.
    [107]L PETRAKIS,D W GRANDY. Free radicals in coals and coal conversion3.In vestigation of the free radicals of selected macerals upon pyrolysis [J].Fuel,1981,(2):115-119.
    [108]R A GRAFT,S D BRANDES.Modification of coal by subcritical steam:pyrolysis and extraction yields[J].Energy & Fuels,1987,(1):84-88.
    [109]廖洪强,孙成功,李保庆.煤一焦炉气共热解特性的研究[J],燃料化学学报.1997,(2):104-108.
    [110]II MAES,J VAN, J YPERMAN, et al. Study of coal-derived pyrite and its conversion products using atmospheric pressure temperature-programmed erduction[J]. Energy&Fuels,1995,(6):950-955.
    [111]II MAES, S C MITCHELL,J YPERMAN, et al. Sulfur functionalities and physical characteristics of the Maritzal ztok Basin ilgnite[J]. F uel,1996,(11):1286-1293.
    [112]M J LAZARO,R MOLINER,I SUELVES, Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis[J]. Joural of Analytical and Applied Pyorlysis,1998 (2):111-125.
    [113]Q LIU,H HU,Q ZHOU,et al.Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel,2004,(6):713-718.
    [114]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [115]YAUVZ R, KUCUKBAYRAK S. An Investigation of some Factors Affecting the Dispersant Adsorption of Lignit [J]. Powder Technology,2001, (2-3):89-94.
    [116]GUY D W, CRAWFORD R J, MAIN WARING D E. The role of surface thermodynamic properties in the agglomeration of coals [J]. Fuel,1992,(8):935-939.
    [117]FUERSTENAU D W,DIAO J, HANSON J S. Estimation of the distribution of surface sites and contact angles on coal particles from film flotation date[J]. Energy Fuel,1990, (1):34-37.
    [118]孙成功,吴家珊,李保庆.低温热改质煤表面性质变化及其对浆体流变特性的影响[J].燃料化学学 报,1996,(2):174-180.
    [119]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [120]KAMEI T,ONE F,KOMAI K, et al. Dewatering and utilization of high moisture brown coal[C].Proc 4th Int. drying symposium, Kyoto:725-731.
    [121]ALLARDCIE D J, CELMOW L M, FACAS G, et al. The characterization of different forms of water in low rank coals and some hydro thermally dried products[J].Fuel,2003,(6):661-667.
    [122]戴树桂.环境化学[M].高等教育出版社,2004.
    [123]吴泳.环境·污染·治理[M].科学出版社,2004.
    [124]吴勇民,李甫,黄成雨.含酚废水处理新技术及其发展前景[J].环境科学与管理,2007(3):150-153.
    [125]污水综合排放标准.中国人民共和国国家标准GB 8978-1996.
    [126]BRASQUET C, SUBRENAT E. Removal of phenolic compounds from aqueous solution by activated carbon cloths [J]. Water Science Technology,1999, (10-11):201-205.
    [127]RENGARAJ S, MOON SEUNG-HYEON, SIVABALAN R, et al. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste:rubber seed coat [J]. Journal of Hazardous Materials,2002, (2-3):185-196.
    [128]李渊,李以圭,费维扬,等.液一液萃取过程和设备[M].北京:原子能出版社,1993.
    [129]TREYBAL R E. Liquid extraction [M].2nd ed. New York, Toronto, London:McGraw-Hill Book Company Inc,1963
    [130]RENON H, PRAUSNITZ J M. Local composition in thermodynamic excess functions for liquid mixtures [J]. American Institute of Chemical Engineers Journal,1968, (1):135-144.
    [131]WATSON J S, MCNEESE L E, CARROAD P A, et al. Flooding rates and holdup in packed liquid-liquid extraction columns [J]. American Institute of Chemical Engineers J,1975, (6): 1086-1099.
    [132]MERIA J M, TASSIOS I E C. Effective local compositions in phase equilibrium correlations [J]. Industrial & Engineering Chemistry Process Design and Development,1973, (1):67-71.
    [133]Aspen Technology Inc. Aspen physical property system [M]. Cambridge:TenCanal Park,1999.
    [134]SHEN G J, ZHANG M X, WANG L G. Utilization way of lignite[J]. Coal Processing & Comprehensive Utilization,2005, (6):25-27.
    [135]HOWARD J B. Chemistry of coal utilization. New York:Wiley,1981.2nd supplement.
    [136]吴成义.张丽英.粉末成型力学原理[M].北京:冶金工业出版社,2003.
    [137]翁优玲.粉土粒度分布特性及其稳定方法的研究[M].西安:长安大学出版社,2006.
    [138]DENNY P J. Compaction equations:a comparison of the Heckel and Kawakit a equations [J]. Powder Technology,2002,127:162-172.
    [139]CAO S H, YIJ H, FENG D W, et al. Densification mechanism and its applications in de-signing powder mixtures for warm compaction [J].Powder Metallurgy Materials Science and Engineering, 2001,(3):198-204.
    [140]SEELING R P, WALFF J. The pressing operation in the fabrication of articles by powder metallurgy[J]. Trans AIME,1946,166:492-504.
    [141]李登新,吴家珊,宋永玮,等.煤的性质对具有粘结剂冷压成型型煤质量的影响[J].燃料化学学 报,1993(4):32-35.
    [142]YAMAN S.Fuel briquettes from biomass-lignite blends[J].Fuel Processing Technology,2001,(1):1-8.
    [143]G BEKER.Briquetting of Afin-Elbistan Lignite[J].Fuel Processing Technology,1998,(2):117-127.
    [144]赵玉兰,常鸿雁,吉登高,等.粉煤成型机理研究进展[J].煤炭转化,2001,(3):12-19.
    [145]任祥军,吴保军,李玉山.煤岩学原理在粉煤成型机理中的应用[J].黑龙江科技学院学报,2001,11(3):13-15