使用滑频滤波器抑制孤子位相抖动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用孤子位相进行信息传输的相移键控(PSK)系统,需要用放大器来补偿光纤损耗,但放大器自发辐射噪声导致了孤子参数的波动,从而引起了孤子的位相抖动,限制了PSK系统的传输性能。本文着眼于这一点,采用滑频滤波控制方案来抑制孤子位相抖动,取得了非常好的效果,使得利用PSK系统进行信息传输成为可能。
     文中第一部分利用微扰理论发现在无任何控制措施的情况下,孤子位相抖动与传输距离成立方关系,显示了使用滤波器控制位相抖动的必要性;第二部分同样用微扰理论来研究滤波器的作用,导出了频域滤波孤子传输系统的脉冲演化方程;在第三部分中,采用固定滤波器方案来抑制孤子位相抖动,结果显示位相抖动现仅随传输距离成线性增长,但同时发现滤波器中心频率附近的色散波呈指数增长,导致了系统的不稳定。第四部分在传输系统中我们采用滤波器中心频率随传输链路按恒定速率滑动的方案,发现此方案不仅可使孤子位相抖动随传输距离成线性增长,而且还抑制了滤波器中心频率附近色散波的增长。当考虑滤波器三阶项时,出现了上下滑频的区别,并且上滑频方案要优于下滑频,但在不考虑滤波器三阶项时这些都是不存在的现象。第五部分总结了本文,给出结论。
Phase shift keying (PSK) soliton system that transmits information via the phase of the soliton attracted much attention because of its superior transmission performance. However, phase noise caused by amplified spontaneous emission (ASE) poses new limitations on PSK systems. In this letter one way of overcoming the problem, which was used to reduce soliton interaction and timing jitter, is to slide the filters center frequency linearly with propagation distance. We have found it efficient on reducing soliton phase jitter and making PSK possible at long-distance soliton transmission.
    Firstly, in this paper, we use perturbation theory and find that the soliton phase jitter increases as the propagation distance cube in the absence of control. The results show it essential to use the filters and reduce the phase jitter.
    Secondly, we have studied the effect of filters by the use of perturbation theory and derived the evolution equation of the soliton pulse in the presence of sliding frequency.
    Thirdly, to reduce the soliton phase jitter, an optical filter of fixed center frequency is inserted after every optical amplifier. Now we find the soliton phase jitter increases only linearly with the propagation distance, but we also find the dispersive wave existing around the center frequency of the filters increases exponentially depending on the propagation distance at the same time.
    In the fourth section, through sliding the filters center frequency linearly with propagation distance, the soliton phase jitter is found that increases also linearly with the distance. Furthermore, the dispersive wave existing around the center frequency of the filters is reduced. We find that the third-order guiding filter term causes a significant difference between the regimes of up- and down-sliding of filter frequency. But there is no difference between up-sliding and down-sliding when we ignore this term. Consequently, it is more preferable to use up-sliding.
    The last section is the conclusion.
引文
[1] K.C. Kao and G. H. Hockham, Proc. IEE, 1966, 113, 1151
    [2] E.P. Kapron, D. B. Keck, and R. D. Maurer, Appl. Phys. Lett.,1970,17,423
    [3] T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Electron. Lett.,1979,15,106
    [4] Fsher R A,Bischel W K. Numberrial studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. J. Appl. Phys., 1975, 46,14,4921~4924
    [5] Aislie B J and Day C R, A review of single-mode fibers with modified dispersion characteristics. J. Lightwave Technol., 1986,4,8,967~979
    [6] H. Makatsuka, D. Grischkowsky, and A. C. Balant, Nonlinear picosecond pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett., 1981, 47, 910~913
    [7] C.S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev.Lett., 1967,19,1095
    [8] C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Commun. Pure Appl. Math., 1974,27,97
    [9] J.P. Gordon, Intersction s forces among solitons in optical fibers, Opt. Lett., 1983, 8,596
    [10] S. Wabnitz, Y. Kodama, and A. B. Aceves, Control of optical soliton interaction, Opt. Fiber Technol.Master Devices, 1995,Ⅰ,1987
    [11] C. Desen, etc., Interaction of soliton in tunnel-coupled optical fiber, Technology Digest IOOC'83
    [12] A. Hasegawa, and Y. Kodama, Signal transmission by optical solitons in monomode fiber, Proc. IEEE, 1981, 69,1145
    [13] A. Hasegawa, and Y. Kodama, Guiding-center soliton in optical fibers, Opt. Lett., 1990, 51, 1443-1445
    [14] A. Hasegawa, Amplification and reshaping of optical solitons in a glass fiber-Ⅳ: use of the stimulated raman process, Opt. Lett., 1983,8,650
    [15] A. Hasegawa, and Y. Kodama, Guiding center soliton, Phys. Rev. Lett.,1991, 66, 161-164
    [16] Y. Kodama, and A. Hasegawa, Generation of asymptotically stable optical soliton and suppression of Gordon-Haus effect, Opt. Lett., 1992,17,31-33
    [17] D. Anderson, High transmission rate communication system using lossy optical solitons, Opt. Commun.,1983, 8, 186
    
    
    [18] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett., 1973, 23, 142~144
    [19] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Ⅱ. Normalous dispersion. Appl. Phys. Lett., 1973, 23, 171~172
    [20] L. F. Mollenauer, R. H. Stolen and J. P. Gordon, Experimental observation of picosecond pulse narrowing and soliton in optical fibers. Phys. Rev. Lett., 45, 1980, 1095~1098
    [21] L. F. Mollenauer, and K. Simith, Demonstration of soliton transmission over more than 4000km in fiber with loss periodically by Raman gain, Opt. Lett.,1988, 13,675-677
    [22] R. J. Mears, L. Reekie, I. M. Jauncey and D. N. Payne,Low noise Erbium-doped fiber amplifier operating at 1.54um,Electron. Lett., 1987,23,1026-1028
    [23] C. Randy. Gile, Emmanuel. Desurvire, Modeling erbium-doped fiber amplifiers, J.Lightwave Technol., 1991,9,271~283
    [24] L. F. Mollenauer, S. G. Evaagelides and H. A. Haus, Long-distance soliton propagation using lumped amplifier and dispersion shifted fiber, J.Lightwave Technol., 1991,9,194~197
    [25] J. H. Povlsen and A. Bjarklev, Long distance transmission though distributed erbium-doped fibers, J. L ightwave Technol., 1993,11 (12),2105~2115
    [26] M.Nakazawa, Y. Kimura, And K. Suzuki, Electron. Lett., 1989, 25, 199
    [27] T. Widdowson, D. J. Malyon, X. Shan, Soliton propagation without transmission control using a phase-locked erbium fiber ring laser, Electron. Lett., 1994, 30(8), 661~663
    [28] M. Suzuki, 10Gbit/s over 12 200km soliton data transmission with alternating amplitude soliton, IEEE Photon, Technol. Lett., 1994, 6(6),757~759
    [29] J. P. Gordon and H. A. Haus, Pandon walk of coherently amplified solitons in optical fiber transmission, opt. Lett., 1986, 11 (10), 665~667
    [30] D. Marcuase, An alternative derivation of Gordon-Haus effect,J.Lightwave Technol.,1992, 10(2), 273~278
    [31] O Leclerc, E Desurvire , Effect of synchronous modulation on the soliton optical phase [J].Optics lett.,1998,23 (18):1453-1455
    [32] M Hanna, H Porte, etc., Soliton optical phase control by use of in-line filters[J]. Optics lett., 1999,24(11):732-734
    [33] Chris Xu, Xiang Liu, Postnonlinearity compensation with data-driven phase modulators in
    
    phase-keying transmission [J].Optics lett., 2002,27 (18): 1619-1621
    [34] Xiang Liu, Xing Wei and E. S.Richart, Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation, Optics Lett., 2002,27 (18):1616-1618
    [35] J P Gordon ,L F Mollenauer . Phase noise in photonic communications systems using linear amplifiers[J]. Optics Lett., 1990,15 (23): 1351-1353.
    [36] M. Matsumoto, H.Ikeda, T.Uda, And A. Hasegawa, Stable soliton transmission in the system with nonlinear gain, J. Lightwave Techno., 1995, 13 (4),658-665
    [37] Brian Han, Mark Hillery, Adil Benmoussa, And Christopher C. Gerry, Effect of losses on phase noise, J. Modern Opt., 2003, 50(8), 1309-1318
    [38] A.H.Gnauk, G. Raybon, S. Chandrasekhar, etc., postdeadline paper presented at the Optical Fiber Communication Conference(OFC2002), Anaheim, Calif., March 17-22, 2002
    [39] A.Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Modulation and filtering control of soliton transmission, J. Opt. Soc. Am. B,1992,9,1350
    [40] Y. Kodama, A.Hasegawa, Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect, Opt. Lett., 1992,17,31
    [41] T Georges, F Favre. Modulation, filtering, and initial phase control of interacting solitons [J].Opt.Soc.Am.B, 1993,10 (10): 1880-1889.
    [42] Y. Kodama, S. Wabnitz, Reduction and suppression of soliton interaction by bandpass filters, Opt. Lett.,1993,18(16),1311~1313
    [43] L F Mollenauer, J P Gordon, and S. G. Evangelides, The sliding-frequency filter:an improved form of soliton jitter control, Opt. Lett., 1992, 17(22), 1575~1577
    [44] Y. Kodama, S. Wabnitz, Analysis of soliton stability and interaction with sliding filters, Optics Lett., 1994,19(3):539-541
    [45] A. Mecozzi, Soliton transmission control by Butterworth filters, Optics Lett., 1995, 20(18): 1859-1861
    [46] A. Mecozzi, M. Midrio, and M. Romagnoli, Timing jitter in soliton transmission with sliding filters, Optics Lett., 1996,21 (6): 402-404
    [47] S. Wabnitz, E. Westin, Optical fiber soliton bound states and interaction suppression with high-order filtering, Optics Lett., 1996,21 (16): 1235-1237
    
    
    [48] A. D. Capobianco, A. Tonello, Dispersion-managed soliton control with narrow bandpass filters filters and energy enhancement, Optics Communications, 2001,198, 177-185
    [49] E A Golovchenko,A N Pilipetskii, et al., Soliton propagation with up- and down-sliding-frequency guiding filters[J]. Optics Lett., 1995,20(6):539-541
    [50] M. Matsumoto, Analysis of filter control of dispersion managed soliton transmission, J. Opt. Soc. Am. B,1998,15(2),2831~2837
    [51] Jeng-Cherng Dung, Sien Chi, And Senfar Wen, Reduction of soliton interaction by zigzag sliding frequency guiding filters, Optics Lett., 1995,20(18): 1862-1864
    [52] 张介秋,陈砚圃,冯大毅,梁昌洪,用正弦变频滤波器抑制孤子间的相互作用,光学学报,2002,22(2),148-152
    [53] T. Mayteevarunyoo, B. A. Malomed, P. L. Chu, A. Roeksabutr, Fundamental properties of dispersion-managed solitons in systems with lumped frequency-sliding filters, Opt. Commun., 2003,227,99-106
    [54] Govind P Agrawal, Applications of Nonlinear Fiber Optics[M],Boston:Academic Press,2002.
    [55]G P Agrawal著,贾东方,余震虹,等译,非线性光纤光学原理及应用[M],北京:电子工业出版社,2002
    [56] 杨祥林,温扬敬.光纤孤子通信理论基础[M].北京:国防工业出版社,2000.
    [57] K. J.Blow, N. J. Doran, And S, J. D. Phoenix, The soliton phase, Opt. Commun., 1992,88, 137-140