γ-TiAl基合金液态置氢及其对组织和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-TiAl基合金具有优良的高温强度、抗蠕变、抗氧化和阻燃性能,而且密度低、弹性模量高,有望作为结构材料应用于航空航天及汽车等领域,但TiAl合金的热成形仍然存在一些问题,如铸造成形后组织粗大,锻造成形时流变应力高。热氢处理技术可以细化组织,改善热变形性能,其原理是将氢作为一种临时性合金元素,利用氢的作用细化合金的组织,改善合金的高温变形性能。但由于氢在固态合金中的扩散速率相对较慢,热氢处理技术主要应用于小型薄壁工件。为克服传统热氢处理技术置氢周期长,效率低的不足,本课题组发明了一种新的置氢技术,定义为液态置氢,该技术的实施过程是在氢气/氩气中熔炼合金,氢气分解并扩散进入合金熔体进而达到置氢的目的。液态置氢技术具有较高的置氢效率,可与合金熔炼同时进行,适用于对各种尺寸的工件进行置氢。本文将液态置氢技术应用于TiAl合金,研究液态置氢对TiAl合金凝固组织和力学性能的影响,以及液态置氢对TiAl合金熔体的净化作用。
     本文首先对液态置氢的置氢量和置氢时间的控制这一基础问题进行了研究,包括氢在TiAl合金熔体中的溶解度及扩散系数。结合热力学理论和实验数据,得到了氢在TiAl二元合金熔体中的溶解度模型,建立了氢在TiAl二元合金熔体中的溶解度与合金成分、氢分压和熔体温度的关系。经实验验证,氢在TiAl合金熔体中溶解度的实验值与计算值吻合较好。在本实验条件下,将氢在TiAl合金熔体中的扩散近似为一维扩散,利用菲克第二定律,并采用误差函数法估算得到了氢在TiAl合金熔体中的等效扩散系数约为5.5×10-3 cm2/s。氢在TiAl合金熔体中溶解度和扩散系数的获得为实施液态置氢技术奠定了基础。
     研究了液态置氢去除Ti-47Al合金熔体中的杂质元素O、C和N的作用。发现液态置氢对O和C具有比较显著的脱除作用,而对N的脱除作用极其微弱。在液态置氢过程中,随着氢分压和熔炼时间的增大,Ti-47Al合金中的O和C含量逐渐降低。利用吉布斯自由能的变化对液态置氢去除TiAl合金中的O和C元素的机理进行分析,O和C元素含量的降低是由于氢与这些元素在合金熔体表面发生化学反应所造成的。
     对Ti-44Al,Ti-47Al及Ti-49Al二元合金进行了液态置氢并研究了液态置氢对TiAl合金的凝固组织的影响。液态置氢后,这三种不同成分的TiAl合金的凝固组织均得到了显著的细化,TiAl合金由粗大的柱状晶变成比较细小的等轴晶。液态置氢后合金中除了四重对称的树枝晶之外,还出现了六重对称的树枝晶。液态置氢细化TiAl合金的机理是由于氢降低了临界形核功,同时促进了固液界面前沿溶质Al原子的富集,增强了固液界面前沿的成分过冷,提高了成分过冷度。液态置氢还能够细化Ti-47Al合金的固态相变组织,减小Ti-47Al合金的片层厚度。对经液态置氢处理的Ti-47Al合金进行真空退火除氢后发现,细小的晶粒得以保留。
     利用Gleeble热模拟机研究了液态置氢后的Ti-47Al合金高温塑性变形行为,发现在所研究的变形条件下,经液态置氢处理的合金的流变应力和峰值应力均有所降低,降低的程度随着置氢量的提高而增强。如在1150℃,1×10~(-2 )s-1变形时,1 at.%的置氢量可将峰值应力降低约33 %。TEM观察发现,置氢后的Ti-47Al合金中动态再结晶的程度显著增强,还发现氢的存在减少了合金中的位错缠结,同时还观察到置氢后孪生变形的堆垛层错数量有所增加。
γ-TiAl based alloys have excellent high-temperature strength, creep resistance, oxidation resistance, flame retardant, low density and high elastic modulus, which is promising to be applied to aerospace and automotive industries. However, there are some disadvantages for forming of TiAl alloy, such as the coarse structure after the casting and high flow stress during the forging. The thermohydrogen treatment (THT) is a technique in which hydrogen is used as a temporary alloying element to be introduced into the alloys. Grain refinement and improvement of hot deformation performance can be obtained by the positive effect of hydrogen.
     Because the diffusion of hydrogen in solid alloy is relatively slow, the conventional THT is usually applied to small-scale or thin-wall samples. In order to overcome the disadvantage of low efficiency of the conventional THT, a novel hydrogenation technique was put forward by our research group, which is melt hydrogenation technique (MH). In the MH processing, the alloys are melted in argon/hydrogen mixture. The hydrogen decomposes and diffuses into alloy melt and retains in the alloys during the cooling process. The MH is applied to TiAl alloy in this study, and its effect on solidification structure, mechanical property and removal of impurities are studied.
     The control of hydrogen content and duration during MH process was studied first, including solubility and diffusion coefficient of hydrogen in TiAl alloy melt. A formula of hydrogen solubility in TiAl alloy melt was obtained based on thermodynamic theory and experimental data. The relationship of hydrogen solubility in TiAl binary alloy melt between composition, partial pressure of hydrogen and melt temperature was established. The experiment value of hydrogen solubility is consistent with the calculated values. The equivalent diffusion coefficient of hydrogen in TiAl alloy melt was estimated by assuming one-dimention conduction, together with Fick’s second law and error function method, which is 5.5×10~(-3) cm2/s.
     The removal effect of MH on the impurities O, C and N in TiAl alloy melt was investigated. The method showed good deoxidation, decarburization and weak denitrification effect on TiAl alloy melt, as evidence by the decrease of impurities when the partial pressure of hydrogen and the melting duration were increased. The deoxidation, decarburization and denitrification effect of hydrogen was analyzed via change of Gibbs free energy together with the hydrogen action in alloy melt, which is due to the reactions of hydrogen with the impurities near certain regions of the melt surface.
     The MH was performed on Ti-44Al, Ti-47Al, Ti-49Al alloys and its effect on solidification structures was studied. After MH, the coarse columnar grains of TiAl alloys become much refiner columnar plus equiaxed grains, and some grains with the six-fold symmetry appear except the four-fold symmetrical grains. The hydrogen-induced refinement is due to hydrogen-decreased critical nucleation energy and hydrogen-enhanced constitutional supercooling ahead of the solid-liquid interface. In addition, the lamellar spacing of Ti-47Al alloy was decreased by MH.
     The effect of hydrogen on hot deformation of Ti-47Al alloy was studied using a Gleeble hot simulator. At the appropriate temperature and strain rate, the flow stress and peak stress of Ti-47Al alloy are reduced with increasing hydrogen addition. The peak stress can be reduced by about 33 % with 1 at.% hydrogen addition at 1150°C, 1×10-2 s-1. There are less dislocation tangles and more twinning and stacking faults in hydrogenated alloys. The decrease of flow stress and peak stress by melt hydrogenation is attributed to hydrogen-induced dislocation mobility and hydrogen-promoted dynamic recrystallization and twinning.
引文
[1] Xiao S L, Tian J, Xu L J, et al. Microstructures and Mechanical Properties of TiAl Alloy Prepared by Spark Plasma Sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1423-1427.
    [2] Jovanovic M T, Dimcic B, Bobic I, et al. Microstructure and Mechanical Properties of Precision Cast TiAl Turbocharger Wheel[J]. Journal of Materials Processing Technology, 2005, 167(1):14-21.
    [3]叶喜葱.小型薄壁TiAl基合金件底注式真空吸铸技术基础研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010:1-31.
    [4] Reitz J, Lochbichler C, Friedrich B. Recycling of Gamma Titanium Aluminide Scrap from Investment Casting Operations[J]. Intermetallics, 2011, 19(6):762-768.
    [5] Goral M, Swadzba L, Moskal G, et al. Diffusion Aluminide Coatings for TiAl Intermetallic Turbine Blades[J]. Intermetallics, 2011, 19(5):744-747.
    [6] Zhang W, Liu Y, Li H Z, et al. Constitutive Modeling and Processing Map for Elevated Temperature Flow Behaviors of a Powder Metallurgy Titanium Aluminide Alloy[J]. Journal of Materials Processing Technology, 2009, 209(12-13):5363-5370.
    [7] Cao L, Wang H W, Zou C M, et al. Microstructural Characterization and Micromechanical Properties of Dual-phase Carbide in Arc-melted Titanium Aluminide Base Alloy with Carbon Addition[J]. Journal of Alloys and Compounds, 2009, 484(1-2):816-821.
    [8]杨非,孔凡涛,陈玉勇,等. TiAl合金板材的制备及研究现状[J].材料工程, 2010(5):96-100.
    [9] Khan A N, Usman A. Effect of Silver Addition in Gamma Titanium Aluminide[J]. Journal of Alloys and Compounds, 2010, 491(1-2):209-212.
    [10] Chaudhari G P, Acoff V L. Titanium Aluminide Sheets Made Using Roll Bonding and Reaction Annealing[J]. Intermetallics, 2010, 18(4):472-478.
    [11] Porter W J, Uchic M D, John R, et al. Compression Property Determination ofa Gamma Titanium Aluminide Alloy Using Micro-specimens[J]. Scripta Materialia, 2009, 61(7):678-681.
    [12] Rastkar A R, Shokri B. A Multi-step Process of Oxygen Diffusion to Improve the Wear Performance of a Gamma-based Titanium Aluminide[J]. Wear, 2008, 264(11-12):973-979.
    [13] Froes F H, Senkov O N, Qazi J I. Hydrogen as a Temporary Alloying Element in Titanium Alloys: Thermohydrogen Processing[J]. International Materials Reviews, 2004, 49(3-4):227-245.
    [14] Dimiduk D M. Gamma Titanium Aluminide Alloys-An Assessment within the Competition of Aerospace Structural Materials[J]. Materials Science and Engineering A, 1999, 263(2):281-288.
    [15] Suardi K, Hamzah E, Ourdjini A, et al. Effect of Heat Treatment on the Diffusion Coefficient of Hydrogen Absorption in Gamma-Titanium Aluminide[J]. Journal of Materials Processing Technology, 2007, 185(1-3):106-112.
    [16] Senkov O N, Froes F H. Thermohydrogen Processing of Titanium Alloys[J]. International Journal of Hydrogen Energy, 1999, 24(6):565-576.
    [17]王亮.钛合金液态气相置氢及其对组织和性能的影响[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010:1-102.
    [18] Goltsov V A. Hydrogen Treatment (Processing) of Materials: Current Status and Prospects[J]. Journal of Alloys and Compounds, 1999, 293-295:844-857.
    [19]张勇.钛合金及Ti-Al基合金的氢处理研究[D].北京:北京航空材料研究院博士学位论文, 1996:1-19.
    [20]韩明臣.钛合金的热氢处理[J].宇航材料工艺, 1999(1):23-27.
    [21] Yang C C. Mechanism of Hydride Formation in Ti-Al Alloy[D]. Washington: Doctoral Dissertation of Washington University, 1996:1-95.
    [22] Legzdina D, Robertson I M, Birnbaum H K. Hydride Structures in Ti-aluminides Subjected to High Temperature and Hydrogen Pressure Charging Conditions[J]. Journal of Materials Research, 1991, 6:1230-1237.
    [23] Matejczyk D E, Rhodes C G. Second Phase Formation in Gamma Titanium Aluminide during High-pressure Hydrogen Charging[J]. Scripta Metallurgicaet Materialia, 1990, 24(7):1369-1373.
    [24] Takasaki A, Furuya Y. Hydrogen Evolution from Cathodically Charged Ti3Al-based Titanium Aluminium Alloy[J]. Journal of Alloys and Compounds, 1999, 292(1-2):287-291.
    [25] Maeland A J, Hauback B, Fjellv?g H, et al. The Structures of Hydride Phases in the Ti3Al/H System[J]. International Journal of Hydrogen Energy, 1999, 24(2-3):163-168.
    [26]高克玮,王燕斌,乔利杰,等. TiAl的氢化物脆和滞后断裂机理[J].中国科学E辑:技术科学, 1999, 29(4):289-298.
    [27] Takasaki A, Furuya Y, Ojima K, et al. Hydrogen Solubility of Two-phase (Ti3Al+TiAl) Titanium Aluminides[J]. Scripta Metallurgica et Materialia, 1995, 32(11):1759-1764.
    [28]虞炳西,高树浚.氢对Ti合金的Debye温度和晶格常数的影响[J].金属学报, 1990, 26(6):A415-A419.
    [29] Wu Y, Hwang S K. Microstructural Refinement and Improvement of Mechanical Properties and Oxidation Resistance in EPM TiAl-based Intermetallics with Yttrium Addition[J]. Acta Materialia, 2002, 50(6):1479-1493.
    [30] Morris M A. Dislocation Mobility, Ductility and Anomalous Strengthening of Two-phase TiAl Alloys: Effects of Oxygen and Composition[J]. Intermetallics, 1996, 4(5):417-426.
    [31] Okabe T, Oishi T, Ono K. Deoxidation of Titanium Aluminide by Ca-Al Alloy under Controlled Aluminum Activity[J]. Metallurgical and Materials Transactions B, 1992, 23(5):583-590.
    [32] Mimura K, Komukai T, Isshiki M. Purification of Chromium by Hydrogen Plasma-arc Zone Melting[J]. Materials Science and Engineering: A, 2005, 403(1-2):11-16.
    [33] Elanski D, Lim J W, Mimura K, et al. Impurity Removal from Zr, Nb and Ta Metals by Hydrogen Plasma Arc Melting and Thermodynamic Estimation of Hydride Formation[J]. Journal of Alloys and Compounds, 2006, 413(1-2):251-258.
    [34]格拉齐阿诺夫.精密合金冶金学[M].北京:北京冶金研究所, 1976:9-186.
    [35] Niinomi M, Gong B, Kobayashi T, et al. Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure Using Hydrogen[J]. Metallurgical and Materials Transactions A, 1995, 26(5):1141-1151.
    [36] Bashkin I O, Ponyatovsky E G, Senkov O N, et al. The Effect of Strain Rate on the Hydrogen-Enhanced Plasticity of Titanium Alloy VT20 in the Range 500 to 800℃[J]. Physics of Metals and Metallography, 1990, 69:167-174.
    [37] Shen C C, Yu C Y, Perng T P. Variation of Structure and Mechanical Properties of Ti-6Al-4V with Isothermal Hydrogenation Treatment[J]. Acta Materialia, 2009, 57(3):868-874.
    [38] Saqib M, Apgar L S, Eylon D, et al. Microstructure and Phase Morphology during Thermochemical Processing ofα2-based Titanium Aluminide Castings[J]. Materials Science and Engineering A, 1995, 201(1-2):169-181.
    [39] Liao B, Yang K, Li Y Y, et al. Effect of Hydrogen on (α2+β)/βTransus Temperature of Super—α2 Alloy[J]. Scripta Metallurgica et Materialia, 1995, 32(2):277-281.
    [40]张学敏,赵永庆,曾卫东.氢处理对TC21合金显微组织的影响[J].稀有金属材料与工程, 2009, 38(12):2179-2182.
    [41]赵敬伟,丁桦,赵文娟,等.热氢处理对Ti600合金的组织演变和硬度的影响[J].材料研究学报, 2008, 22(3):262-268.
    [42]张月红.钛合金TiH2分解法液态置氢技术基础研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010:1-118.
    [43]万晓景,程晓英,陈业新,等.金属间化合物在氢气中的脆化[J].自然科学进展, 2001, 11(12):1233-1239.
    [44]万晓景,陈业新,程晓英.金属间化合物环境氢脆的研究进展[J].自然科学进展, 2001, 11(5):458-464.
    [45]褚武扬.氢损伤与滞后开裂[M].北京:治金工业出版社, 1988:167-169.
    [46]褚武扬.氢致开裂和应力腐蚀机理的前沿问题[J].腐蚀科学与防护技术, 1993, 5(3):151-155.
    [47] Oriani R A, Josephic P H. Equilibrium Aspects of Hydrogen-induced Cracking of Steels[J]. Acta Metallurgica, 1974, 22(9):1065-1074.
    [48]高芝晖,杨杰,彭向和,等.氢降低金属滞后开裂断裂韧性的定量描述[J].重庆大学学报(自然科学版), 2000, 23(1):37-40.
    [49]高克玮,王燕斌,褚武扬. TiAl的室温氢致滞后断裂[J].金属学报, 1996, 32(1):29-32.
    [50]侯红亮,李志强,王亚军,等.钛合金热氢处理技术及其应用前景[J].中国有色金属学报, 2003, 13(3):533-549.
    [51]苏彦庆,骆良顺,毕维升,等.置氢对Ti6Al4V合金室温组织的影响[J].材料科学与工艺, 2005, 13(1):103-107.
    [52] Senkov O N, Bashkin I O, Ponyatovsky E G. Mechanical Behaviour of a VT20 Titanium Alloy at Different Initial States and Hydrogen Contents[C]. 1991.
    [53] Ilyn A A, Kolachev B A, Mamonov A M. Phase and Structure Transformations in Titanium Alloys under Thermohydrogenous Treatment[C]. Titanium 92: Science and Technology, TMS, Warrendale, 1993.
    [54]侯红亮,黄重国,王耀奇.置氢Ti-6Al-4V合金组织演变与超塑性能[J].北京科技大学学报, 2008, 30(11):1270-1274.
    [55]孙中刚,侯红亮,李红,等.氢处理对TC4钛合金组织及室温变形性能的影响[J].中国有色金属学报, 2008, 18(5):789-793.
    [56]杨树宝,徐九华,危卫华,等.置氢处理对TC4钛合金流变行为的影响[J].航空学报, 2010, 31(5):1093-1098.
    [57]宗影影.钛合金置氢增塑机理及其高温变形规律研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2007:1-106.
    [58] Chu W Y, Thompson A W, Williams J C. Brittle Fracture Behavior and Influence of Hydride in Titanium Aluminide[C]. Hydrogen Effects on Material Behavior; Proceedings of the 4th International Conference on the Effect of Hydrogen on the Behavior of Materials, Moran, WY; UNITED STATES: 1990.
    [59] Ding H, Du Y H, Lu G M, et al. The Effect of Hydrogen on Microstructure and Superplastic Deformation of Ti3Al Intermetallic[C]. in‘THERMEC’97’, International Conference on‘Thermomechanical processing of steels and other materials’, (ed. T. Chandra and T. Sakai), Warrendale, PA, TMS. 1997: 1505-1510: 1997.
    [60]蔡经炳.关于温度对化学反应方向的影响—兼谈Van't Hoff方程式的物理意义[J].化学通报, 1983(9):53-56.
    [61]蒋光锐,刘源,李言祥,等.多元合金熔体组元活度系数计算方法的改进[J].金属学报, 2007, 43(5):503-508.
    [62] Su Y Q, Liu Y, Guo J J, et al. Calculation of Activity Coefficients for Components in Ti-15-3 Melt[J]. Journal of Harbin Institute of Technology, 1999, 6(1):54-57.
    [63]秦峰,范同祥,张荻,等.三元合金中组分活度系数预测模型[J].上海交通大学学报, 2009, 43(5):708-712.
    [64]丁学勇,王文忠.二元系熔体中组元活度的计算式[J].金属学报, 1994, 30(22):444-447.
    [65] Miedema A R, Chatel P F D, De B F R. Cohesion in Alloys-fundamentals of a Semi-empirical Model[J]. Physica, 1980, 100B:1-28.
    [66] Hildebrand J H. The Regular Solution Model for Binary Alloy[J]. Proceedings of the National Academy of Sciences of the United States of America, 1927, 13:267.
    [67] Lupis C H P, Elliott J F. Prediction of Enthalpy and Entropy Interaction Coefficients by the "Central Atoms" Theory[J]. Acta Metallurgica, 1967, 15(2):265-276.
    [68] Tanaka T, Gokcen N A, Morita Z. Relationship between Enthalpy of Mixing and Excess Entropy in Liquid Binary Alloys[J]. Zeitschrift für Metallkunde, 1990, 81(1):49-54.
    [69] Tanaka T, Gokcen N A, Morita Z I, et al. Thermodynamic Relationship between Enthalpy of Mixing and Excess Entropy in Liquid Binary Alloys[J]. Zeitschrift für Metallkunde, 1993, 84:192-199.
    [70]陈星秋,丁学勇,刘新,等.二元合金熔体组元活度计算式的改进[J].金属学报, 2000, 36(5):492-496.
    [71] Lida T, Guthrie R. The Physical Properties of Liquid Metals[J]. Oxford: Clarendon Press, 1988:125.
    [72] Maeda M, Kiwake T, Shibuya K, et al. Activity of aluminum in molten Ti-Al alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure And Processing, 1997, 239-240:276-280.
    [73] Sokolov V M, Fedorenko I V. Estimation of Hydrogen Solubility in Liquid Alloys of Iron, Nickel and Copper[J]. International Journal of Hydrogen Energy, 1996, 21(11-12):931-934.
    [74]张华伟,李言祥,刘源.氢在Gasar工艺常用纯金属中的溶解度[J].金属学报, 2007, 43(2):113-118.
    [75]陈永定,余信昌.金属和合金中的氢[M].北京:冶金工业出版社, 1988:107-108.
    [76] Suh D, Eagar T W. Mechanistic Understanding of Hydrogen in Steel Welds[C]. Procedings of international workshop conference on hydrogen management for welding applications. Ottawa, Ontario, Canada, 1998.
    [77] Depuydt P, Parlee N. The Diffusion of Hydrogen in Liquid Iron Alloys[J]. Metallurgical and Materials Transactions B, 1972, 3(2):529-536.
    [78] Estupi?an H A, Uribe I, Sundaram P A. Hydrogen Permeation in Gamma Titanium Aluminides[J]. Corrosion Science, 2006, 48(12):4216-4222.
    [79] Sundaram P A, Wessel E, Clemens H, et al. Determination of the Diffusion Coefficient of Hydrogen in Gamma Titanium Aluminides during Electrolytic Charging[J]. Acta Materialia, 2000, 48(5):1005-1019.
    [80] Tian W H, Nemoto M. Effect of Carbon Addition on the Microstructures and Mechanical Properties ofγ-TiAl Alloys[J]. Intermetallics, 1997, 5(3):237-244.
    [81]李书江,王艳丽,林均品,等.微量C, B对高铌TiAl合金显微组织与力学性能的影响[J].稀有金属材料与工程, 2004, 33(2):144-148.
    [82]杜华云,樊丁,张瑞华. GTA电弧温度场流场数值计算[J].兰州理工大学学报, 2004, 30(5):24-27.
    [83]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993:449-485.
    [84]王振东,曹孔健,何纪龙.感应炉熔炼[J].化学工业出版社, 2007:310.
    [85] Fruehan R, Martonik L. The Rate of Decarburization of Liquid Iron by CO2 and H2[J]. Metallurgical and Materials Transactions B, 1974, 5(5):1027-1032.
    [86]苏彦庆,郭景杰,贾均,等.真空熔炼TiAl金属间化合物过程中合金元素的挥发行为[J].铸造, 1999(3):1-4.
    [87]张志敏,盛文斌.自耗电极/感应凝壳熔铸TiAl基合金成分均匀性研究[J].热加工工艺, 2007(5):25-28.
    [88]司玉锋,陈子勇,孔凡涛,等. Ti-22Al-25Nb合金ISM熔炼过程中的成分控制[J].铸造技术, 2004(11):834-836.
    [89]刘贵仲,苏彦庆,郭景杰,等. Ti-13Al-29Nb-2.5Mo合金ISM熔炼过程中多组元挥发损失[J].稀有金属材料与工程, 2003, 32(2):108-112.
    [90]程荆卫,郭景杰,苏彦庆,等. Ti-13Al-29Nb-2.5Mo ISM过程中Al元素的挥发损失速率[J].材料科学与工艺, 1999, 7(S1):124-131.
    [91] Kim M C, Oh M H, Lee J H, et al. Composition and Growth Rate Effects in Directionally Solidified TiAl Alloys[J]. Materials Science and Engineering: A, 1997, 239-240:570-576.
    [92] Jin Y, Wang J N, Yang J, et al. Microstructure Refinement of Cast TiAl Alloys byβSolidification[J]. Scripta Materialia, 2004, 51(2):113-117.
    [93] Ohnuma I, Fujita Y, Mitsui H, et al. Phase Equilibria in the Ti-Al Binary System[J]. Acta Materialia, 2000, 48(12):3113-3123.
    [94] Kim Y. Microstructural Evolution and Mechanical Properties of a Forged Gamma Titanium Aluminide Alloy[J]. Acta Metallurgica et Materialia, 1992, 40(6):1121-1134.
    [95]李作良.合金Ti-44Al-8Nb-1B在700℃下的氧化行为[D].成都:西南交通大学硕士学位论文, 2010:1-37.
    [96] Denquin A, Naka S. Phase Transformation Mechanisms Involved in Two-phase TiAl-based Alloys-I. Lambellar Structure Formation[J]. Acta Materialia, 1996, 44(1):343-352.
    [97] Sun Y. Nanometer-scale, Fully Lamellar Microstructure in an Aged TiAl-based Alloy[J]. Metallurgical and Materials Transactions A, 1998, 29(11):2679-2685.
    [98] Pond R C, Shang P, Cheng T T, et al. Interfacial Dislocation Mechanism for Diffusional Phase Transformations Exhibiting Martensitic Crystallography: Formation of TiAl+Ti3Al Lamellae[J]. Acta Materialia, 2000, 48(5):1047-1053.
    [99] Zhang L C, Cheng T T, Aindow M. Nucleation of the Lamellar Decomposition in a Ti-44Al-4Nb-4Zr Alloy[J]. Acta Materialia, 2004, 52(1):191-197.
    [100] Zghal S, Naka S, Couret A. A Quantitative TEM Analysis of the LamellarMicrostructure in TiAl Based Alloys[J]. Acta Materialia, 1997, 45(7):3005-3015.
    [101] Wunderlich W, Kremser T, Frommeyer G. Mobile Dislocations at theα2/γPhase Boundaries in Intermetallic TiAl/Ti3Al-alloys[J]. Acta Metallurgica et Materialia, 1993, 41(6):1791-1799.
    [102]李光明,甘礼华,陈龙武,等.氢化钛的制备及其分解[J].应用化学, 1998, 15(1):77-79.
    [103] Okamoto H. H-Ti (Hydrogen-Titanium)[J]. Journal of Phase Equilibria, 1992, 13(4):443.
    [104] Okamoto H. Al-Ti (Aluminum-Titanium)[J]. Journal of Phase Equilibria, 1993, 14(1):120-121.
    [105] Sundaram P A, Basu D, Steinbrech R W, et al. Effect of Hydrogen on the Elastic Modulus and Hardness of Gamma Titanium Aluminides[J]. Scripta Materialia, 1999, 41(8):839-845.
    [106]林天辉,常汝勤,许桂琴,等.氢在β钛合金中的原子交互作用的穆斯鲍尔研究[J].上海钢研, 1989(5):46-49.
    [107] Cheng T T. The Mechanism of Grain Refinement in TiAl Alloys by Boron Addition—An Alternative Hypothesis[J]. Intermetallics, 2000, 8(1):29-37.
    [108] Hasegawa M, Kotani K, Yamaura S, et al. Hydrogen-induced Internal Friction of Zr-based Bulk Glassy Alloys in a Rod Shape above 90 K[J]. Journal of Alloys and Compounds, 2004, 365(1-2):221-227.
    [109] Hasegawa M, Takeuchi M, Kato H, et al. Stability and Hydrogen-induced Internal Friction of Ti-rich Multicomponent Glassy Alloys[J]. Journal of Alloys and Compounds, 2004, 372(1-2):116-120.
    [110] Hasegawa M, Takeuchi M, Nagata D, et al. Internal Friction Induced by Interstitial Atoms in Multicomponent Glassy Alloy and Composite[J]. Journal of Alloys and Compounds, 2007, 434-435:196-198.
    [111] Jung I S, Jang H S, Oh M H, et al. Microstructure Control of TiAl Alloys ContainingβStabilizers by Directional Solidification[J]. Materials Science and Engineering A, 2002, 329-331:13-18.
    [112] Jung I S, Kim M C, Lee J H, et al. High Temperature Phase Equilibria nearTi-50 at.% Al Composition in Ti-Al System Studied by Directional Solidification[J]. Intermetallics, 1999, 7(11):1247-1253.
    [113] Mccullough C, Valencia J J, Levi C G, et al. Phase Equilibria and Solidification in Ti-Al Alloys[J]. Acta Metallurgica, 1989, 37(5):1321-1336.
    [114] Inkson B J, Boothroyd C B, Humphreys C J. Boron Segregation in a (Iron, Vanadium, Boron) TiAl Based Alloy[J]. Journal de Physique IV, 1993, 3:397-402.
    [115] De Graef M, L?fvander J P A, Levi C G. The Structure of Complex Monoborides inγ-TiAl Alloys with Ta and B Additions[J]. Acta Metallurgica et Materialia, 1991, 39(10):2381-2391.
    [116]郑立静,杨莉莉,张虎.微量元素B在γ-TiAl基合金的应用研究进展[J].稀有金属材料与工程, 2010, 39(10):1875-1880.
    [117] Hu D. Effect of Boron Addition on Tensile Ductility in Lamellar TiAl Alloys[J]. Intermetallics, 2002, 10(9):851-858.
    [118]郭青苗,刘彪,侯红亮,等.多孔TC4钛合金吸氢规律[J].北京科技大学学报, 2009, 31(4):459-462.
    [119]张浩.层片组织TiAl基合金高温变形行为研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010:34-45.
    [120]史科. TC11钛合金叶轮类复杂构件等温成形规律与数值模拟[D].哈尔滨:哈尔滨工业大学博士学位论文, 2008:55-56.
    [121] Zong Y Y, Shan D B, LüY, et al. Effect of 0.3 wt.%H Addition on the High Temperature Deformation Behaviors of Ti-6Al-4V Alloy[J]. International Journal of Hydrogen Energy, 2007, 32(16):3936-3940.
    [122] Birnbaum H K, Sofronis P. Hydrogen-enhanced Localized Plasticity-A Mechanism for Hydrogen-related Fracture[J]. Materials Science and Engineering: A, 1994, 176(1-2):191-202.
    [123] Bond G M, Robertson I M, Birnbaum H K. Effects of Hydrogen on Deformation and Fracture Processes in High-purity Aluminium[J]. Acta Metallurgica, 1988, 36(8):2193-2197.
    [124] Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen Effects on the Interaction between Dislocations[J]. Acta Materialia, 1998, 46(5):1749-1757.
    [125] Caballero V, Varma S K. Effect of Stacking Fault Energy and Strain Rate on the Microstructural Evolution during Room Temperature Tensile Testing in Cu and Cu-Al Dilute Alloys[J]. Journal of Materials Science, 1999, 34(3):461-468.
    [126] Dobatkin S V, Kaputkina L M. Maps of Structural States for the Optimization of Hot-working Regimes of Steels[J]. Physics of Metals and Metallography, 2001, 91(1):75-84.
    [127] Gao K W, Nakamura M. Hydrogen Embrittlement of Ti-49Al at Various Strain Rates[J]. Intermetallics, 2002, 10(3):233-238.
    [128]褚武扬.断裂与环境断裂[M].北京:科学出版社, 2000:75-85.
    [129] G?ken M, Kempf M, Nix W D. Hardness and Modulus of the Lamellar Microstructure in PST-TiAl Studied by Nanoindentations and AFM[J]. Acta Materialia, 2001, 49(5):903-911.
    [130]王航,徐燕灵,孙巧艳,等.温度和氧含量对Ti-2Al合金拉伸力学行为和断裂方式的耦合影响[J].稀有金属材料与工程, 2010, 39(9):1545-1549.
    [131] Liu C T, Maziasz P J. Microstructural Control and Mechanical Properties of Dual-phase TiAl Alloys[J]. Intermetallics, 1998, 6(7-8):653-661.
    [132] Morris D G, Dadras M M, Morris-Mu?oz M A. Strain-ageing Effects inγ-TiAl-based Alloys[J]. Intermetallics, 1999, 7(5):589-598.
    [133]刘伟,杜宇,于振涛,等.一种近α钛合金间隙元素含量和冲击性能关系分析[J].西安工业学院学报, 2005, 25(4):370-373.
    [134]薛志庠,陆盘金,冯利增.氧对铸造Ti-6Al-4V合金机械性能的影响[J].特种铸造及有色合金, 1985(1):53-56.