铝合金微弧氧化陶瓷层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统的介绍了铝合金微弧氧化技术的机理、影响因素、制备方法等研究进展。微弧氧化陶瓷层与基体结合牢固、结构致密,具有良好的耐磨性、耐腐蚀性、耐高温冲击和电绝缘性能,其工艺对环境无污染,具有广阔的应用前景。
     采用正交实验的方法研究了铝合金微弧氧化的电解液配方、处理工艺及影响微弧氧化陶瓷层生长的因素,评估了电解液的稳定性,利用XRD、SEM、硬度、厚度等数据,分析了添加剂Na_2WO_4、电源波形、电流密度等参数对该电解液体系微弧氧化工艺和陶瓷层的影响,并与其他电解液体系制备的样品及硬质氧化样品进行了比较。
     实验优化的电解液配方为:硼酸含量为10 g/L,氢氧化钾含量为2 g/L,钨酸钠含量为2 g/L;在微弧氧化过程中该配方比硅酸钠体系的电解液稳定;在铝合金表面形成陶瓷层的主要成分为α-Al_2O_3和γ—Al_2O_3两相和少量的W。
     适量的Na_2WO_4添加剂的加入,有利于微弧氧化反应的进行。Na_2WO_4浓度影响陶瓷层的沉积速度和陶瓷层的成分,随着Na_2WO_4质量体积浓度的降低,表面放电中心减少,使电压上升,陶瓷层的厚度和陶瓷层中硬质相α-Al_2O_3的含量均增加,陶瓷层的硬度和耐磨性略有提高。
     电参数的控制和选择对陶瓷层的生长速度和成分均有影响。正半波和大电流作用在陶瓷层上的能量密度大,陶瓷层生长速度快,α-Al_2O_3的含量较高,硬度较大。
     溶液体系不仅影响陶瓷膜的沉积速度,还影响其表面形貌和组分含量,但对孔隙率和耐腐蚀性影响不是很大。在微弧氧化工艺高电压下制备的陶瓷层含有硬质相α-Al_2O_3,硬质氧化工艺制备的陶瓷层是非晶相,微弧氧化工艺在耐磨、耐腐蚀等方面均优于硬质氧化工艺。
In this paper, a comprehensive introduction of micro-arc oxidation, including its mechanism, influence factors and preparation methods was described. By means of the micro-arc oxidation (MAO) technique, ceramic coatings with high micro-hardness, strong adhesion, high strength and high wear resistance can be fabricated.
    The water solution composed of H3BO3, KOH and Na2WO4 was used as the electrolyte for MAO derived coatings on aluminum alloy substrates. The electrolyte composition was optimized by means of orthogonal design from both technical and economic points of view, and the stability was evaluated. The MAO process was studied by measuring the voltage as a function to time. The coatings fabricated in different technical parameters were characterized by XRD and SEM with respect to the phases and microstructures, and by testing micro-hardness and the wear resistance with respect to mechanical properties. Final, the samples were compared with hard anodic oxidation and others fabricated in other solutions.
    The results showed that electrolyte containing H3BO3 10 g/1, KOH 2 g/1 and Na2WO4 2 g/1 was the most optimal in terms of the hardness and thickness measurements. This solution was more stable than Na2SiO3 solution. The ceramic coating in this electrolyte mainly consisted of -Al2O3 phase, -A12O3 phase and a small amount of W. The concentration of Na2WO4 had direct effects on the behavior of MAO process and the quality of the MAO coatings as well. With decreasing Na2WO4 concentration in the electrolyte, the number of the discharge centers on the aluminum alloys surface decreased, the working voltage at the micro-arc discharge stage increased, the thickness and the content of -Al2O3 phase in the coating both increased. The micro-hardness and the wear resistance were both enhanced as the content of -Al2O3 phase increased.
    The control of electrical parameters in MAO plays an important role in the coating growth rate and phase composition. The more energy density acts on the
    
    
    ceramic coatings using positive half wave and stronger currents, faster the coatings grow and harder the coatings are.
    The different solutions influence the growth rate, surface morphology and phase composition of the coatings. But the porosity and corrosion-resistance are not influenced. The micro-arc oxidation is super to hard anodic oxidation in anti-wear and corrosion-resistance.
引文
[1] 胡传. 表面处理技术手册. [M]. 北京:北京工业大学出版社.
    [2] 王飚. 抗磨损抗腐蚀材料的新进展. [J]. 材料科学与工程,18(4),116-120,2000.
    [3] 武恭,姚良均,李震夏,彭如清,赵祖德,铝及铝合金材料手册。[M]. 北京:科学出版社,1994.
    [4] 高云震。铝合金表而处理。[M]. 北京:冶金工业出版社,1991.
    [5] 王艳芝,铝及其合金阳极氧化技术研究的进展。[J]. 材料保护,2001,34 (9),22-23。
    [6] 王艳芝,铝及铝合金阳极氧化膜着色技术研究进展,[J]. 电镀与涂饰,2001. 23 (3), 20-21。
    [7] A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma electrolysis for surface engineering. [J]. Surface and Coatings Technology. 122(1999) 73-93.
    [8] 薛文斌,邓志威,来永春,陈如意,张通和。有色金属表面微弧氧化技术评述。[J]. 金属热处理。2000(1),1-3。
    [9] 宋涧滨,左洪波,吉泽升。轻金属等离子体增强电化学表面陶瓷化进展。[J]. 轻合金加工技术,31(2),2003,8-11。
    [10] 李世平,等离子体技术在铝阳极氧化中的应用简介。[J]. 铝加工,1998,21(25),44-46。
    [11] 左洪波,郝相君,孔庆山,李欣,一种新型表面改性技术一等离子体增强电化学表面陶瓷化(PECC) [J]. 中国表面工程,1999(2),38-40。
    [12] 李淑华,伊玉军,程金生,李树堂,[J]. 特种铸造及有色合金,2001(1),36-37。
    [13] 来永春,施修龄,华铭。铝合金表面等离子微弧氧化处理技术。[J]. 电镀与涂饰,22(3),2003,1-3
    [14] 张欣宇,石玉龙,方明,微弧氧化陶瓷膜的性能研究,[J]. 电镀与涂饰,2002. 21 (6),1-5。
    
    
    [15] P. A. Dearnley, J. Gummersbach, H. Weiss, A. A. Ogwu, T. J. Davies, The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure, [J]. Wear, 225-229(1999), 127-134.
    [16] X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dowey, A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys, [J]. Surface & Coatings Technology, 116-119(1999), 1055-1060.
    [17] Jun Tian, Zhuangzi Luo, Shangkui Qi, Xiaojun Sun, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy, [J]. Surface & Coatings Technology, 154 (2002), 1-7。
    [18] A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, M. S. Donley, Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment, [J]. Surface and Coatings Technology, 86-87(1996), 516-521.
    [19] 卢立红,沈德久,王玉林,田新华,毛志强,A_3钢热镀 Al-Si 层的微弧氧化及其耐蚀性,[J]. 表面技术,2000,29 (6),12-15
    [20] 王玉林,沈德久,铝材微弧氧化陶瓷膜的电绝缘性,[J]. 轻合金加工技术,2001,29(10),34-35。
    [21] 沈德久,廖波,王玉林,杨万和,影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨,[J]. 材料开发与应用,2002,17(4),22-24.
    [22] Guntherschulze A, Betz H, Neue Undersuchungen uber die elecktrolytische Ventilwirkung. [J]. Z Phys., 1932, 78: 196-210
    [23] Guntherschulze A, Betz H, Elektronenstromung in Isolatoren bei Extremen Feldstarken. [J]. Z. phys. 1934, (91): 70-96
    [24] G. P. Wirtz, S. D. Brown, W. M. Kriven, Ceramic Coatings by Anodic Spark Deposition. [J]. Materials & Manufacturing Processes, 1991, 6(1), 87-115.
    [25] W. Krysmann, P. Kurze, K. H. Dittrich, H. G. Schneider, Process
    
    Characteristics and Parameters of Anodic Oxidation by Spark Discharge. [J]. Crystal Res. & Technol., 1984, 19(7), 973-979.
    [26] K. H Dittrich, W. Krysmann, P. Kurze, H. G. Schnelder, Structure and Properties of ANOF Layers. [J]. Crystal Res. & Technol. 1984, 19(1), 93-99.
    [27] Peter Kurze, Waldemar Krysmann, Anodic Oxidation under Spark Discharge (ANOF). [J]. Lew-Nachrichten, 20(1989)41, 38-42.
    [28] 邓志威,薛文斌,汪新福,陈如意,来永春,铝合金表面微弧氧化技术。[J]. 材料保护,1996,29(2),15-16
    [29] XUE Wen-bin, DENG Zhi-wei, LAI Yong-chun et al. Analysis of Phase for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy[J]. Journal of The American Ceramic Society, 1998, 81(5): 1365~1368
    [30] 旷亚飞,侯朝辉,刘建平,阳极氧化过程中电击穿理论的研究进展,[J]. 电镀与涂饰,2000,19(3),38-45。
    [31] 蒋永锋,李均明,蒋百灵,符长璞,铝合金微弧氧化陶瓷层形成因素的分析。[J]. 表面技术,2001,30(2),37-39。
    [32] 邓志威,来永春,薛文斌,陈如意,宋红卫,微弧氧化材料表面陶瓷化机理的探讨,[J]. 原子核物理评论,1997,14(3),193-195。
    [33] 薛文斌,邓志威,张通和,陈如意,李永良,铸造镁合金微弧氧化机理,[J]. 稀有金属材料与工程,1999,28(6),353-356。
    [34] 张欣宇,石玉龙,等离子体微弧氧化技术及其应用,[J]. 青岛化工学院学报,2002,23(1),69-74
    [35] 李学静,鞠治刚,杨大状,彭靓,钱翰城,铝合金表面微弧氧化原位生长Al_2O_3陶瓷层技术,2002(4),34-37
    [36] A. K. Vijh, Sparking Voltages and Side Reactions During Anodization of Valve Metals in Terms of Electron Tunnelling. [J]. Corros. Sci.. 1971, (11), 411-412
    [37] S. Ikonopisov, Theory of Electrical Breakdown During Formation of
    
    barrier Anodic Films. [J]. Electrochim Acta. 1977, (22), 1077-1078
    [38] J. M. Albella, I. Montern, J. M. Martine-Duart, Electron In jection and Avalanche During the Anodic Oxidation of Tantalum. [J]. Electrochem. Sci.. 1984, 131, 1101-1102
    [39] 李淑华,程金生,伊玉军,辛文彤,杨润泽,微弧氧化过程中电流和电压变化规律德探讨,[J]. 特种铸造及有色合金,2001 (3),4-5。
    [40] 李淑华,程金生,伊玉军,辛文彤,杨涧泽,LY12Al合金微弧氧化过程中电流和电压变化规律,[J]. 腐蚀科学与防护技术,2001,13(6),362-364。
    [41] 薛文斌,邓志威,来永春,陈如意,张通和,铝微弧氧化电流效率的测定,[J]. 电镀与精饰,1998,20(3),1-4。
    [42] 刘文亮,铝合金在不同溶液中的微弧氧化膜层性能研究,[J]. 电镀与精饰,1999,21(4),9-11。
    [43] 周海晖,旷亚非,侯朝辉,唐浩,LF4合金在磷酸盐一氢氧化钠溶液中的微弧氧化,[J]. 湖南大学学报,2001,28(5),67-71。
    [44] 高殿奎,姜桂荣,王玉林,铝合金微弧氧化陶瓷层石墨相的形成及作用,[J]. 表面技术,2001,30(4),28-29。
    [45] 沈德久,王玉林,卢立红,田新华,杨万和,铝合金表面微弧氧化自润滑陶瓷覆层,[J]. 材料保护,2000,33(5),51-52。
    [46] 左洪波,束术军,孔庆山,徐武志,能量密度对LD31合金表面蓝色PECC陶瓷装饰膜层成分及性能的影响,[J]. 材料保护,1999,32(5),20-21。
    [47] A. L. Yerokhin, A. A. Voevodin, V. V. Lyubimov, J. Zabinski, M. Donley, Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys, [J]. Surface & Coatings Technology, 110(1998), 140-146.
    [48] Yang Guangliang, Lu Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsun, The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating, [J]. Journal of Alloys and Compounds, 345(2002), 196-200.
    
    
    [49] 张欣宇,方明,吕江川,谢广文,石玉龙,电解液参数对铝合金微弧氧化的影H响,[J]. 材料保护,2002,35(8),39-41。
    [50] 侯朝辉,旷亚非,周海晖,唐浩,铝合金微弧氧化工艺研究,[J]. 电镀与精饰,2001,23(5),5—8。
    [51] P. I. Butyagin, Ye. V. Khokhryakov, A. I. Mamaev, Microplasma systems for creating coatings on aluminium alloys, [J]. Materials Letters, 57(2003), 1748-1750.
    [52] L. Rama Krishna, K. R. C. Somaraju, G. Sundarajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, [J]. Surface and Coatings Technology, 163-164(2003), 484-490。
    [53] 熊仁章,盛磊,杨生荣,余来贵,添加剂对铝合金微弧氧化陶瓷涂层结构和耐磨性能的影响,[J]. 兵器材料科学与工程,2002,25(3),27-29。
    [54] Y. K. Wang, L. Sheng, R. Z. Xiong, B. S. Li, Efffects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation, [J]. Surface Engineering, 1999, 15(2), 109-111.
    [55] 刘建平,旷亚非,微弧氧化技术及其发展,[J]. 材料导报,1998,12(5),27—29。
    [56] 王亚明,蒋百灵,雷廷权,郭立新,Ti6A14V 表面微弧氧化陶瓷涂层的结构和摩擦学特性,[J]. 摩擦学学报,2003,23 (5),371-374。
    [57] 薛文斌,邓志威,张通和,陈如意,李永良,铸造镁合金微弧氧化机理,[J]. 稀有金属材料与工程,1999,28(6),353-356。
    [58] 张岱岚,白新德,陈宝山,刘芳言,伍志明,Zr-4合金德微弧氧化研究,[J]. 稀有金属材料与工程,2003,32(8),658-661。
    [59] F. Scholttig, D. Dietrich, J. Schreckenbach, G. Marx, Electron microscopic characterization of SrTiO_3 films obtained by anodic spark deposition, [J]. Fresenius J Anal Chem, (1997)358, 105-107.
    [60] W. Xue, Z. Donz, H. Ma, R. Chen, T. Zhang, Microstructure and phase composition of microarc oxidation coatings formed on Ti-6Al-4V
    
    alloy in aluminate solution, [J]. Surface Engineering, 2001, 17(4), 323-326.
    [61] W. Xue, Z. Deng, R. Chen, T. Zhang, Microstructure and mechanical properties near interface between microarc oxidation coating and Al. alloy substrate, [J]. Surface Engineering, 2000, 16(4), 344-348.
    [62] J. P. Schrechenbach, G. Marx, F. Schlottig, M. Textor, N. D. Spencer, Characterization of anodic spark-converted titanium surfaces for biomedical applications, [J]. Journal of materials Science: materials in medicine, 10(1999), 1-5.
    [63] Oscar Khaselev, Danny Weiss, Joseph Yahalom, Anodizing of Pure Magnesium in KOH-Aluminate Solutions under Sparking, [J]. Journal of The Electrochemical Society, 146(5) 1757-1761(1999).
    [65] 薛文斌,邓志威,汪新福,陈如意,来永春,铝合金微弧氧化陶瓷膜的形貌及相组成分析,[J]. 北京师范大学学报,1996,32(1),67-70。
    [65] Alekse L. Yerokhin, Viktor Ⅴ. Lyubimov, Roman V. Ashitkov, Phase Formation in Ceraic Coatings During Plasma Electrolytic Oxidation of Aluminium Alloys, [J]. Ceramics International, 24(1998) 1-6.
    [66] Wenbin Xue, Zhiwei Deng, Yonchun Lai, Ruyi He, Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy, [J]. J. Am. Ceram. Soc. 81(5) 1365-68(1998).
    [67] X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, A. Matthews, Abrasive wear/corrosion properties and TEM analysis of Al_2O_3 coatings fabricated using plasma electrolysis, [J]. Surface & Coatings Technology, 149(2002)245-251.
    [68] 崔昌军,彭乔,铝及铝合金的阳极氧化研究综述,[J]. 全面腐蚀控制,2002,16(6),12-17。
    [69] 薛文斌,邓志威,陈如意,张通和,李永良,微弧氧化表面处理对铝合金拉伸性能的影响,[J]. 金属热处理学报,1999,20(4),1-5。
    [70]刘凤岭,骆更新,毛立信,微弧氧化与材料表面陶瓷化,[J]. 材料保护,
    
    1998,3l(3),22-24。
    [71] 贺子凯,表面技术在烟机配件国产化上的运用,[J]. 中国表面工程,2003,59 (2),42-44。
    [72] 冯俊,沈丽如,冯洁,廖勇刚,钟莺,袁国民,汽车发动机活塞的微弧氧化处理,[J]. 特种铸造及有色合金,2003(1),52。
    [73] 裘建军,辛铁柱,罗品,高彩桥,铝及铝合金微弧氧化技术的特点及应用,[J]. 航天制造技术,2002 (4),44-47。
    [74] 卢立红,沈德久,王玉林,微弧氧化陶瓷膜层的性能及其应用,[J]. 材料保护,2001,34(1),17—18。
    [75] 陈魁.应用概率统计[M]. 北京:清华大学出版社. 2000.
    [76] 范雄. X射线金属学[M]. 北京:机械工业出版社. 1996:90.
    [77] 邵荷生,曲敬信,许小隶,陈华辉。摩擦与磨损. [M]. 北京:煤炭工业出版社.