基于软计算方法的电力系统负荷预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短期负荷预测是电力系统负荷预测的重要组成部分,是电力系统调度和计划部门安排购电计划和制定运行方式的基础,对电力系统的可靠和经济运行意义重大。随着电力市场的发展,精度高、速度快的预测理论和方法越来越受到重视。本文围绕这一课题进行了研究和探讨。
     论文首先综述了短期负荷预测的意义、特点、影响因素及其主要研究方法的优缺点,明确了本论文的主要研究内容和研究方向。在第二章中,介绍了神经网络的基本原理,指出了神经网络在应用中存在的问题。论述了免疫算法的机理和研究现状,给出了免疫算法的一般步骤。
     本论文取得的主要成果如下:
     1.提出了一种免疫聚类径向基函数神经网络(ICRBFNN)模型来预测电力系统短期负荷。在ICRBFNN的设计中,根据共生进化和免疫规划原理,提出了共生进化免疫规划聚类算法,可以自动确定RBF网络隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对华东某市进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络预测方法相比,ICRBFNN方法具有更高的预测精度。
     2.提出了一种协同进化免疫网络模型来预测电力系统短期负荷。在神经网络的设计中,根据协同进化和免疫算法原理,提出了协同进化免疫算法,对神经网络的结构和参数同时进行学习,形成了一种新型的神经网络学习算法。对斯洛伐克东部电力公司进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络预测方法相比,协同进化免疫网络方法具有更高的预测精度。
     3.在对支持向量机(SVM)方法进行分析的基础上,提出了一种免疫支持向量机(IWSVM)方法来预测电力系统短期负荷,其中利用免疫规划算法优化支持向量机方法的参数。免疫规划算法利用浓度和个体多样性保持机制进行免疫调节,有效地克服了未成熟收敛现象,提高了群体的多样性。电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,所提免疫支持向量机方法具有更高的预测精度。
     4.针对城市电力系统年用电量增长的特点,将灰色神经网络模型GNNM(1,1)引入城市年用电量预测。GNNM(1,1)模型是把灰色方法与神经网络有机结合起来,对复杂的不确定性问题进行求解所建立的模型。该模型通过建立一个BP网络,来映射GM(1,1)模型的灰色微分方程的解。GNNM(1,1)模型采用BP学习算法,网络经训练收敛后就可进行城市年用电量预测。算例计算表明,与灰色预测方法相比,GNNM(1,1)模型具有更强的适应性和更高的预测精度,适用于城市年用电量预测。
     论文最后对上述研究成果进行了总结,指出了短期负荷预测中还有待进一步研究的问题。
Short-term load forecasting (STLF) is very important to the control, operation, and schedule of power system. Deregulation and competition of the power industry are now propelling the utilities to operate the system at an even higher efficiency. This trend further intensifies the concern as to the accuracy of STLF. The paper aims to improve the precision of STLF.
     In chapter 1, the significance and current situation of main researches in the paper are introduced. The original works completed by the author are also pointed out. In chapter 2, the basic principle of the neural network and immune algorithm is introduced.
     The main achievements of paper are
     1. An immune clustering RBF neural network(ICRBFNN) model is presented for STLF. In the design of the ICRBFNN, a novel clustering method based on the symbiotic evolutionary and the immune programming algorithm(SEIPCM) is proposed. The SEIPCM automatically adjust the number and positions of hidden layer RBF centers. The weights of output layer are decided by the recursive least squares algorithm. The proposed ICRBFNN model has been implemented based on the actual data collected from the East China Power Company and compared with the traditional RBF neural network(RBFNN) method. The test results reveal that the ICRBFNN method possesses far superior forecast precision than the RBFNN method.
     2. A cooperative coevolutionary immune network (CCIN) model is presented for STLF. In the design of neural network, a novel method based on the cooperative coevolutionary and the immune algorithm (CCIM) is proposed. The CCIM is used to evolve the structure and parameters of neural network. The proposed CCIN model has been implemented based on the actual data collected from the Eastern Slovakian Electricity Corporation and compared with the traditional RBF network (RBFN) method. The test results reveal that the CCIN method possesses far superior forecast precision than the RBFN method.
     3. An immune support vector machines(IWSVM) method is presented for STLF. The immune programming algorithm, inspired by the immune system of human and other mammals, is used to optimize the parameters of support vector machines. The algorithm has the advantage in preventing premature convergence and promoting population diversity. The forecasting results demonstrate that the proposed method has higher forecast precision for STLF.
     4. According to the speciality of electricity demand development in a city, the grey neural network model GNNM(1,1) is introduced into the field of city electricity demand forecasting. The GNNM(1,1) model is the combination of grey system and neural network, which can solve the complex uncertain problems. The GNNM(1,1) model builds a kind of BP neural network which can map the solution to the grey differential equation of GM(1,1) model, then the model is trained by using BP algorithm. City electricity demand is forecasted after the GNNM(1,1) model is convergent. The forecasting results demonstrate that the GNNM(1,1) model has higher adaptability and forecast precision for city electricity demand forecasting.
     The main works are summarized at the end of this paper. Further work to the research is pointed out.
引文
[1] 刘晨晖.电力系统负荷预报理论与方法.哈尔滨:哈尔滨工业大学出版社,1987.
    [2] 牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用.北京:中国电力出版社,1998.
    [3] 王锡凡.电力系统优化规划.北京:水利电力出版社,1990.
    [4] Ranaweera D K, Karady G G, Farmer R G. Economic impact analysis of load forecasting. IEEE Transactions on Power Systems, 1997,12(3): 1388-1392.
    [5] Hobbs B F, Jitprapaikulsarn S, Konda S, et al. Analysis of the value for unit commitment of improved load forecasts. IEEE Transactions on Power Systems, 1999,14(4): 1342-1348.
    [6] Douglas A P, Breipohl A M, Lee F N, et al. Risk due to load forecast uncertainty in short term power system planning. IEEE Transactions on Power Systems, 1998,13(4): 1493-1499.
    [7] 国家电力公司战略研究与规划部,国家电力公司动力经济研究中心.中国电力负荷特性分析与预测.北京:中国电力出版社,2002.
    [8] Toyoda J, Chen M, Inoue Y. An application of state estimation to short-term forecasting. IEEE Transactions on Power Systems, 1970, 89: 1678-1688.
    [9] Galiana F, Handschin E, Fiechter A. Identification of stochastic electric load models for physical data. IEEE Transactions on Automatic Control, 1974, 19(9): 887-893.
    [10] Hagan M T, et al. The time series approach to short-term load forecasting. IEEE Transactions on Power Systems, 1987, 2(3): 785-791.
    [11] Papalexopulos A D, et al. A regression based approach to short-term system load forecasting. IEEE Transactions on Power Systems, 1990, 5(4): 1535-1547.
    [12] Masters T. Neural, novel & hybrid algorithms for time series prediction. Chichester: John Wiley & Sons. Inc., 1995.
    [13] Charytoniul W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 1998, 13(3): 725-730.
    [14] 赵宏伟,任震,黄雯莹.基于周期自回归模型的短期负荷预测.中国电机工程学报,1997,17(5):9-12.
    [15] Chao-Ming Huang, Chi-Jen Huang, Ming-Li Wang. A particle swarm optimization to identifying the ARMAX model for short-term load forecasting. IEEE Transactions on Power Systems, 2005, 20(2): 1126-1133.
    [16] Hipper H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 2001,16(2): 44-54.
    [17] Park D C, EI-Sharkawi M A, Marks R J, et al. Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 1991,6(2): 442-449.
    [18] Park D C, Mohammed O, EI-Sharkawi M A, et al. An adaptively trainable neural network algorithm and its application to electric load forecasting. Proceedings of the first international forum on applications of neural networks to power systems, 1991: 7-11.
    [19] Peng T M, Hubele N F, Karady G G. Advancement in the application of neural networks for short term load forecasting. IEEE Transactions on Power Systems, 1992,7(1): 250-257.
    [20] Ho K L, Hsu Y Y, Yang C C. Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Transactions on Power Systems, 1992,7(1): 141-149.
    [21] Chen S T, Yu D C, Moghaddamjo A R. Weather sensitive short-term load forecasting using nonfully connected artificial neural network. IEEE Transactions on Power Systems, 1992,7(3): 1098-1105.
    [22] Park D C, Sharkawi M A. Electric load forecasting using an artificial neural networks. IEEE Transactions on Power Systems, 1991,6(2): 442-448.
    [23] Lu C N, Wu H T, Vemuri S. Neural network based on short term load forecasting. IEEE Transactions on Power Systems, 1993,8(1): 336-342.
    [24] Papalexopulos A D, Hao S, Peng T M. An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems, 1994,9(4): 1956-1962.
    [25] Khotanzad A, Hwang R C, Abaye A, et al. An adaptive modular artificial neural networks hourly load forecast and its implementation at electric utilities. IEEE Transactions on Power Systems, 1995,10(3): 1716-1722.
    [26] Ranaweera D K, Karady G G, Farmer R G. Effect of probabilistic inputs on neuralnetworks based electrical load forecasting. IEEE Transactions on Neural Works, 1996,7(6): 1528-1532.
    [27] Chow T W S. Neural network based short-term load forecasting using weather compensation. IEEE Transactions on Power Systems, 1996,11(4): 1736-1742.
    [28] Drezga I, Rahman S. Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 1998,13(4): 1238-1244.
    [29] Yoo H, Pimmel R L. Short term load forecasting using a self-supervised adaptive neural network. IEEE Transactions on Power Systems, 1999,14(2): 779-784.
    [30] Tomonobu S, Hitoshi T, Katsumi U, et al. One-hour-ahead load forecasting using neural network. IEEE Trans on Power Systems, 2002, 17(1): 113-118.
    [31] Taylor J W, Buizza R. Neural network load forecasting with weather ensemble oredictions. IEEE Trans on Power Systems, 2002, 17(3): 626-632.
    [32] Hai-Feng Liang, Geng-Yin Li, Ming Zhou. An adaptive BP-network approach to short term load forecasting. In: Conference on electric utility deregulation, restructuring and power technologies, Hong Kong, China, 2004, 505-509.
    [33] Wei Liu, Ke-Jun Wang, Mo Tang. Study on power system load forecasting based on MPSO artificial neural networks. In: Proceedings of the 6th world congress on intelligent control and automation, Dalian, China, 2006, 2728-2732.
    [34] Park J, Sandberg I W. Universal approximation using radial-basis-function networks. Neural Computation, 1991, 3(2): 246-257.
    [35] Park J, Sandberg I W. Approximation and radial-basis-function networks. Neural Computation, 1993, 5(2): 305-316.
    [36] 徐秉铮,张百灵,韦岗.神经网络理论与应用.广州:华南理工大学出版社,1995.
    [37] Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification. International Journal of Control, 1992, 56(2): 319-346.
    [38] 赵登福,张涛,杨增辉,等.基于 GN-BFGS 算法的 RBF 神经网络短期负荷预测.电力系统自动化,2003,27(4) :33-36.
    [39] 高山,单渊达.基于径向基函数网络的短期负荷预测.电力系统自动化,1999,23(5): 31-34.
    [40] 赵剑剑,张步涵,程时杰,等.一种基于径向基函数的短期负荷预测方法.电网技术,2003,27(6):22-26.
    [41] 张涛,赵登福,周琳,等.基于 RBF 神经网络和专家系统的短期负荷预测方法.西安交通大学学报,2001,35(4):331-334.
    [42] Sutanto E L. Mean-tracking clustering algorithm for radial basis function center selection. Int. J. Control, 1997, 67(6): 961-977.
    [43] Moody J E, Darken C. Fast learning in networks of locally tuned processing units. Neural Computation, 1989, 1(2):281-294.
    [44] 刘志远,吕剑虹,陈来九.新型 RBF 神经网络及在热功过程建模中的应用.中国电机工程学报,2002,22(9):118-122.
    [45] 刘小华,刘沛,张步涵,等.逐级均值聚类算法的模型在负荷预测中的应用.中国电机工程学报,2004,24(2):17-21.
    [46] 宫新保,周希朗.基于免疫聚类和遗传算法的 RBF 网络设计方法.应用科学学报,2004,22(1):81-84.
    [47] You-Chan Zhu, Yu-Jun He. Short-term load forecasting model using fuzzy C means based radial basis function network. In: Proceedings of the 6th international conference on intelligent systems design and applications, 2006.
    [48] Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithms for radial basis function networks. IEEE Trans Neural Networks, 1991, 2(2):302-309.
    [49] Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification. Int. J. Control, 1992, 56(2): 319-346.
    [50] Sherstinsky A, Picard R W. On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Trans Neural Networks, 1996, 7(1): 195-200.
    [51] Sherstinsky A, Picard R W. On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Trans Neural Networks, 1996, 7(1):95-200.
    [52] 邰能灵,侯志俭.小波模糊神经网络在电力系统短期负荷预测中的应用.中国电机工程学报,2004,24(1):24-29.
    [53] 冉启文,单永正,王骐,等.电力系统短期负荷预报的小波-神经网络-PARIMA方法.中国电机工程学报,2003,23(3):38-42.
    [54] 邰能灵,侯志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法.中国电机工程学报,2003,23(1):45-50.
    [55] 牛东晓,邢棉,谢宏,等.短期电力负荷预测的小波神经元网络模型的研究.电网技术,1999,23(4):21-24.
    [56] Yan-Qiu Bi, Jian-Guo Zhao, Da-Hai Zhang. Power load forecasting algorithm based on wavelet packet analysis. In: Conference on power system technology, Singapore, 2004, 987-990.
    [57] Daneshdoost M, Lotfalian M, Bumroonggit G, et al. Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Trans Neural Networks, 1998, 13(4):1386-1391.
    [58] Khotanzad A, Rey-Chue Hwang, Abaye A, et al. An adaptive modular fuzzy artificial neural network hourly load forecaster and its implementation at electric utilities. IEEE Trans Neural Networks, 1995, 10(3):1716-1721.
    [59] Bakirtzis A G. Short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 1995,10(3): 11-17.
    [60] Papadakis S E,Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 1998,13(2): 480-492.
    [61] 吕志来,张保会.基于 ANN 和模糊控制相结合的电力系统短期预测方法.电力系统自动化,1999,23(22) :37-39.
    [62] 马文晓,白晓民,沐连顺.基于人工神经网络和模糊推理的短期负荷预测方法.电网技术,2003,27(5):29-32.
    [63] Tomonobu S, Paras M, Katsumi U et al. Next day load curve forecasting using hybrid correction method. IEEE Transactions on Power Systems, 2005,20(1): 102-109.
    [64] Gwo-Ching Liao, Ta-Peng Tsao. Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 330-340.
    [65] Vapnik V N. The nature of statistical learning theory. New York: Springer, 1995.
    [66] Chen B J, Chang M W, Lin C J. Load forecasting using support vector machines: astudy on EUNITE competition 2001. IEEE Trans. on Power Systems, 2004,19(4): 1821-1830.
    [67] 李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究.中国电机工程学报,2003,23(6):55-59.
    [68] 赵登福,王蒙,张讲社,等.基于支撑向量机方法的短期负荷预测.中国电机工程学报,2002,22(4): 26-30.
    [69] Chapelle O, Vapnik V. Choosing multiple parameters for support vector machines. New York: AT & T Research Labs, 2001.
    [70] Yuan-Cheng Li, Bo Li, Ting-Jian Fang. An approach to forecast short-term load of support vector machines based on rough sets. In: Proceedings of the 5th world congress on intelligent control and automation, Hangzhou, China, 2004, 5180-5184.
    [71] Knapp B, Strasscr H, Yurtscver K. Chaos-theortic methods for load forecasting in the field of energy management systems. Proceedings of power system computation conference, 1996, 224-230.
    [72] Mori H, Vrano S. Short-term load forecasting with chaos time series analysis. Proceedings of international conference on intelligent system application to power systems, 1996, 133-137.
    [73] 李云天,刘自发.电力系统负荷的混沌特性及预测.中国电机工程学报,2000,20(11):36-40.
    [74] 唐立春,李光熹,熊曼丽.基于分形的电力系统负荷预测.电力系统及其自动化学报,1999,11(4):21-24.
    [75] 樊福梅,梁平.基于分形的社会总用电量及其构成预测.中国电机工程学报,2004,24(11):91-95.
    [76] 康重庆,夏清,沈瑜,等.电力系统负荷预测的综合模型.清华大学学报,1999,39(1):8-11.
    [77] 谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究.中国电机工程学报,2002,22(7):85-89.
    [78] 莫维仁,张伯明,孙宏斌,等.短期负荷综合预测模型的探讨.电力系统自动化,2004,28(1):30-34.
    [79] 徐光虎,申刚,顾洁,等.基于自适应进化规划的电力系统负荷综合模型.电力自动化设备,2002,06:29-32.
    [80] Chen G J, Li K K, Chung T S et al. Application of an innovative combined forecasting method in power system load forecasting. Electric Power System Research, 2001,59(2): 131-137.
    [81] Petridis V, Kehagias A, Petrou L et al. A Bayesian multiple models combination method for time series prediction. Journal of Intelligent and Robotic Systems:Theory and Applications, 2001,31(1-3): 69-89.
    [82] 高峰,康重庆,夏清,等.负荷预测中多模型的自动筛选方法.电力系统自动化,2004,28(6):11-13.
    [83] 邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社,1990.
    [84] 刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用.北京:科学出版社,1999.
    [85] 王成山,杨军,张崇见.灰色系统理论在城市年用电量预测中的应用—不同预测方法的分析比较.电网技术,1999,23(2):15-18.
    [86] 史德明,李林川,宋建文.基于灰色预测和神经网络的电力系统负荷预测.电网技术,2001,25(12):14-17.
    [87] 牛东晓,陈志业.具有二重趋势性的季节电力负荷预测优化灰色神经网络模型.中国电机工程学报,2002,22(4):29-32.
    [88] Angeline P. An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 1994,5(1): 54-65.
    [89] Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks, 1994,5(1): 39-53.
    [90] Whitley D. Genetic reinforcement learning for neuron control problems. Machine Learning, 1993,13: 259-284.
    [91] 蔡超豪,蔡元宇.机组优化组合的遗传算法.电网技术,1997,21(1):44-47.
    [92] 杨建国,李蓓智,俞蕾.基于免疫遗传算法的优化设计.机械设计,2002(9):14-17.
    [93] 高洁.应用免疫算法进行电网规划研究.系统工程理论与实践,2001(5):119-123.
    [94] 张军,刘克胜,王煦法.一种基于免疫调节和共生进化的神经网络优化设计方法.计算机研究与发展,2000,37(8):924-930.
    [95] 周伟良,何鲲,曹先彬,等.基于一种免疫遗传算法的 BP 网络设计.安徽大学学报,1999,23(1) :63-66.
    [96] 曹先彬,刘克胜,王煦法.基于免疫遗传算法的装箱问题求解.小型微型计算机系统,2000,21(4) :361-363.
    [97] 刘克胜,曹先彬,王煦法.于免疫算法的 TSP 问题求解.计算机工程,2000,26(1) :1-2.
    [98] 曹先彬,郑振,刘克胜.免疫进化策略及其在二次布局求接中的应用.计算机工程,2000,26(3) :1-2.
    [99] 王肇捷,曹文剑.立体匹配的免疫算法.电脑与信息技术,2001(4) :4-6.
    [100] Mccoy D F, Devarajan V. Artificial immune systems and aerial image segmentation. In: Proc IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, 1997, 867-872.
    [101] Kim J, Bentley P. The artificial immune model for network intrusion detection. In: Proc 7th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1999, 13-19.
    [102] Kim J, Bentley P. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proc Congress on Evolutionary Computation, Seoul, Korea, 2001, 27-30.
    [103] Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proc 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, 1999, 257-267.
    [104] Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3):143-150.
    [105] Endoh S, Toma N, Yamada K. Immune algorithm for TSP. In: Proc IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA,USA, 1998, 3844-3849.
    [106] Timmis J, Knight T. Artificial immune system: Using the immune system as inspiration for data mining. In: Abbass H A, Sarker R A, Newton C S eds DataMining: A Heuristic Approach. Hershey: Idea Publishing Group, 2001, 209-230.
    [107] Jerne N K. The immune system. Scientific American, 1973,229(1):51-60.
    [108] Burnet F M. Clonal selection and after. In: Bell G I, Perelson A S, Pimbley G H eds Theoretical Immunology, New York: Marcel Dekker Inc., 1978, 63-85.
    [109] Jerne J K. Towards a network theory of the immune system. Annual Immunology, 1974,125:373-389.
    [110] Perelson A. Immune network theory. Immunological Review, 1989,110:5-36.
    [111] De Castro L N, Von Zuben F J. An evolutionary immune network for data clustering. In: Proc 6th Brazilian Symposium on Neural Networks, Rio de Janeiro, Brazil, 2000,84-89.
    [112] Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000,55(1-3):143-150.
    [113] Timmis J, Neal M. A resource limited artificial immune system for data analysis. Knowledge Based Systems, 2001,14(3-4):121-130.
    [114] Ishiguro A, Watanabe Y, Kondo T. Decentralized consensus making mechanisms based on immune systems: Application to behavior arbitration of an autonomous mobile robot. In: Proc IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 1996,82-87.
    [115] 林学颜,张玲.现代细胞与分子免疫学.北京:科学出版社,1999.
    [116] Forrest S, Hofmeyr S A, Somayaji A. Computer immunology. Communications of the ACM, 1997,40(10):88-96.
    [117] 孟繁桢,杨则,胡云昌.具有免疫体近亲性的遗传算法及其应用.天津大学学报,1997,30(5):624-630.
    [118] 武晓今,韩生廉.免疫-遗传系统的构造及其在函数寻优中的应用.辽宁工程技术大学学报,2001,20(5):669-672.
    [119] 王磊,潘进,焦李成.免疫规划.计算机学报,2000,23(8):806-812.
    [120] Moriarty D, Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 1996, 22: 11-32.
    [121] 王磊,潘进,焦李成.免疫算法.电子学报,2000,28(7):74-78.
    [122] Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling andidentification. Int J. Control, 1992, 56(2): 319-346.
    [123] Kiartzis S J, Zoumas C E, Theocharis J B et al. Short-term load forecasting in an autonomous power system using artificial neural networks. IEEE Transactions on Power Systems, 1997,12(4): 1591-1596.
    [124] Connor J T. A robust neural network filter for electricity demand prediction. Forecast, 1996,15(6): 437-458.
    [125] 于尔铿,刘广一,周京阳,等.能量管理系统.北京:科学出版社,1998.
    [126] Khotanzad A, Afkhami R, Lu L et al. ANNSTLF-a neural-network based electric load forecasting system. IEEE Transactions on Neural Networks, 1997,8(4): 835-846.
    [127] Bakirtzis A G, Petridis V, Kiartzis S J et al. A neural network short-term load forecasting model for the greek power system. IEEE Transactions on Power Systems, 1996,11(2): 858-863.
    [128] Husbands P, Mill F. Simulated co-evolution as the mechanism for emergent planning and scheduling. In: Belew R K, Booker L B eds. Proceedings of the 4th International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann Publishers, 1991, 264-270.
    [129] Potter M A, de Jong K A. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation, 2000,8(1): 1-29.
    [130] de Jong K A , Potter M A. Evolving complex structures via cooperative coevolution. In: Proceedings of the 4th Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995,307-317.
    [131] Chen H Y, Wang X F. Cooperative coevolutionary algorithm for unit commitment. IEEE Transactions on Power Systems, 2002,17(1): 128-133.
    [132] Goldberg D E. Genetic algorithms in search, optimization and learning. Reading(MA): Addison-Wesley, 1989.
    [133] 张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000.
    [134] Potter M A. The design and analysis of a computational model of cooperative coevolution, doctoral dissertation. Fairfax: George Mason University, 1997.
    [135] Wiegand R P, Liles W C, de Jong K A. An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Proceedings of the Geneticand Evolutionary Computation Conference. San Francisco: Morgan Kaufmann Publishers,2001, 1235-1245.
    [136] Potter M A, de Jong K A. A cooperative coevolutionary approach to function optimization. In: Proceedings of the Third Conference on Parallel Problem Solving from Nature. New York: 1994, 249-257.
    [137] World-wide competition within the EUNITE network, EUNITE competition report. http ://neuron.tuke.Sk/competition/index.php.
    [138] Shevade S K, Keerthi S S, Bhattacharyy C et al. Improvements to SMO algorithm for SVM regression. IEEE Trans on Neural Network, 2000, 11(5): 1188-1193.
    [139] 钟珞,白振刚,夏红霞,等.灰色问题神经网络建模优化及其应用.计算机工程与应用,2001,37(9):33-35.
    [140] Luo Zhong, Jing-Ling Yuan, Hong-Xia Xia, et al. A study on gray neural network modeling. In: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 2002, 2021-2023.