单层短程线型球面网壳优化设计及抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网壳具有优美的建筑造型,不论在建筑平面、立面或型体都能给设计师以充分的创造自由。薄壳与网架结构不能实现的形态,网壳结构几乎都可以实现。这种结构形式既能表现静态美,又可通过平面与立面切割以及网格、支承与杆件等变化表现动态美。现在,网壳结构已广泛应用于体育建筑、机场建筑、展览馆、工业厂房等各类建筑中。
     球面网壳,是目前我国应用最多的一种网壳形式。单层球面网壳的每根杆件的有限元力学计算模型为空间梁单元。大跨度空间网壳结构近年来得到日益广泛的应用,被用作各种公共建筑的屋盖、雨棚等,其具有结构组成灵活、建筑造型美观、结构受力合理、设计计算简便和加工制作机械化程度高等一系列优点,即单层球面网壳结构的优化设计属于离散变量结构优化设计问题。
     本文主要研究的是单层短程线型球面网壳的优化问题。首先运用大型有限元分析软件ALGOR对单层短程线型球面网壳进行静力特性分析,主要研究了不同跨度、不同矢跨比、集中荷载、不同边界条件对单层短程线型球面网壳受力特性和位移特性的影响,为下一步结构优化做准备。
     然后针对单层短程线型球面网壳的特点,本文提出了网壳结构截面优化的两级算法。采用FORTRAN语言编写网壳截面优化两级算法设计程序,并与大型有限元分析软件ALGOR连接。通过对不同跨度、不同失跨比、不同网格划分疏密的单层短程线型球面网壳的优化分析验证此算法的有效性和可靠性。接下来利用上述算法对单层短程线型球面网壳进行截面优化设计,得到了网壳最优矢跨比、网格划分的范围。这些研究具有一定工程参考价值。
     另外,本文针对不同参数的单层短程线型球面网壳结构进行动力分析,研究不同跨度、荷载和矢跨比下的单层短程线型球面网壳结构的自振特性和地震响应进行研究总结其自振特性规律和地震响应规律。地进行地震响应分析,研究其位移和内力分布规律。建议工程设计时要进行多维地震响应分析,尤其是对网壳边缘部分的杆件和主肋,在设计时要考虑增大安全系数。
Dome has a beautiful architectural style, whether in architecture, facade, or type body. It can give designers the creative freedom to the full. shape can not be achieved with the grid structure, almost all the dome structure can do. This structure not only can performance static beauty,but also dynamic beauty by plane and cross cutting and the grid, supporting such changes and pole. Now, dome structure has been widely used in sports buildings, airport buildings, exhibition halls, industrial plants and other kinds of buildings.
     The spherical shell is a reticulated shell form which is the most widely used in China. Single spherical shell's mechanical finite element model is the spatial beam unit, and its capacity depends not only on the strength of rods, but also on the overall stability and local stability of network shell structure. In the design process of the single-layer reticulated shell structure, strength, rigidity, stability and geometry restrictive conditions must be taken into account. As well as, each bar should in line with the existing specifications and models, in a word, the optimization design of reticulated shells is kind of discrete variables structure optimization design problem.
     This paper studies the single-layer spherical shell of geodesic optimization problem. First, we use finite element analysis software ALGOR on geodesic spherical shell layer for static characteristics.From different spans a different span ratio, concentrated load, and different boundary conditions on the single-layer spherical shell of geodesic force and displacement characteristics of characteristics have been studied to prepare for the next optimization.
     Then, shape optimization of dome structure of the two algorithms accounted for the characteristics of single-layer spherical shell of geodesic dome in this paper. FORTRAN language is adopted for writing program about the Sequential two-level algorithm of dome section optimization, and connect to finite element analysis software named ALGOR. Through the different span across different loss ratio, the different mesh density of the single geodesic spherical shell of the optimization analysis we verify the validity and reliability. The next layer we used the above algorithm for geodesic spherical shell section optimum design, and obtained the optimal shell span ratio, the range of mesh. These studies have a certain value of engineering
     In addition, this article does dynamical analysis of single-layer spherical shell of geodesic which is of different parameters, of different span, load and cross-over, to obtain the characteristics of self oscillation and the regularity of seismic response. During the earthquake response analysis, we study the distribution of displacements and internal forces. We propose to conduct multi-dimensional engineering design seismic response analysis, especially for the shell edge and the main part of the bar ribs. Therefore, in the design safety factor should be increased.
引文
[1]尹德钰,刘善维,钱若军.网壳结构设计[M].北京:中国建筑工业出版社,1996:54-375
    [2]刘锡良.国外建筑钢结构应用概况[J].金属世界,2004,4:29-32
    [3]曹品然,张海荣.上海国际会议中心大球壳设计研究[J].建筑钢结构进展.2001.3(3):13-18
    [4]董石麟,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展[J].空间结构.2005.11(4):3-10
    [5]张毅刚.大跨度空间结构[M].机械工业出版社,2005:15-55
    [6]刘锡良,韩庚华.网格结构设计与施工[M].天津:天津大学出版社,2004
    [7]沈祖炎,陈扬骥.网架与网壳[M].上海:同济大学出版社,1996
    [8]GB 50009-2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2001
    [9]GB 50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001
    [10]GB 50017-2003钢结构设计规范[S].北京:中国建筑工出版社,2003
    [11]JGJ61-2003网壳结构技术规程[S].北京:中国建筑工业出版社,2003
    [12]刘锡良,韩庚华.网格结构设计与施工[M].天津:天津大学出版社,2004:108-114
    [13]丁芸孙,刘罗静等.网架网壳设计与施工[M]..北京:中国建筑工业出版社,2006.8
    [14]Schmit L A, Kicher T P. Synthesis of material and configuration selection. J. Struc. Div. ASCE,1962, 88:79-102
    [15]Lipson S L, Gwin L B.Discrete sizing of trusses for optimal geometry. J.Struc.Div. ASCE,1977, 103:1031-1046
    [16]Jenkins W M.Towards structural optimization via the genetic algorithm. Comp. Struc.1991, Vol.40,No.5:1321-1327
    [17]Salajegheh E, Vanderplaats G N. Optimum design of trusses with sizing and shape variables. Stru.Opt., 1993,6:79-85
    [18]Robert Levy, Ariel Hanaor&Nancy Rizzuto.Experimental Investigation of Prestressing in Double-Layer Grid. International Journal of Space Structures,1994,1:21-26
    [19]马克俭,李晓红.预应力钢网壳结构的研究和应用,贵州工学院勘察设计研究院空间结构研究所,1994.
    [20]Rajan, S.D. (Arizona State Univ). Sizing, shape, and topology design optimization of trusses using genetic algorithm.Source:Journal of Structural Engineering 12110 Oct 1995 ASCE.1480-1487 0733-9445
    [21]尹思明等.大跨度预应力钢网壳屋盖的理论分析及实验研究,攀枝花市建筑勘察设计院,1995
    [22]孙焕纯,王跃方,黄吉锋.离散变量桁架的形状优化设计[J],大连理工大学学报,1995,Vol.35,No.1.10-16
    [23]柴山,孙焕纯.求解一类(0,1)规划问题的相对差商法[J],系统工程学报,1996,Vol.11,No.1:17-27
    [24]柴山,孙焕纯.求解一类(0,1,2)规划问题的二级定界组合算法[J],大连理工大学学报,1996, Vol.36,No.3:258-263
    [25]石连拴,孙焕纯,柴山.两类变量综合处理的结构形状优化设计方法[J],计算力学学报,1999,Vol.16,No.4:416-420.434
    [26]邓华,董石麟.空间网壳结构的形状优化,浙江大学学报(工学版)[J],1999,Vol.33,No.4:371-375
    [27]邓华,董石麟.拉索预应力空间网格结构的优化设计,计算力学学报[J],2000,Vol.17,No.2:207-213
    [28]张爱林,杨海军,预应力索-桁架结构形状优化设计.计算力学学报[J],2007.2,Vol.24,No.1:91-97
    [29]段学超,仇原鹰,段宝岩.基于自适应遗传算法的Stewart平台结构双目标优化设计[J].计算力学学报.2006.12,Vol.23,No.6:718-721
    [30]孙贤斌,薛涛,刘明.混合遗传算法在结构优化设计中的应用[J].公路工程与运输.2007.1,30-33
    [31]程耿东,许林.基于可靠度的结构优化的序列近似规划算法[J].计算力学学报.2006.12,Vol.23,No.6:641-646
    [32]王伟,赵美英,赵锋等.基于人工神经网络技术的结构布局优化设计[J].机械设计.2006.12,Vol.23:No.12,7-10
    [33]孙焕纯,柴山,王跃方.离散变量结构优化设计[M].大连:大连理工大学出版社,1995
    [34]Lipson S L, Gwin L B. Discrete sizing of trusses for optimal geometry[J]. J.Struc.Div. ASCE,1977, 103:1031-1046
    [35]Jenkins W M. Towards structural optimization via the genetic algorithm. Comp[J]. Struc.,1991, 40(5):1321-1327
    [36]Salajegheh E, Vanderplaats G N. Optimum design of trusses with sizing and shape variables[J]. Stru.Opt.,1993,6:79-85
    [37]Robert Levy,Ariel Hanaor&Nancy Rizzuto. Experimental Investigation of Prestressing in Grid[J]. International Journal of Space Structures,1994,1:21-26
    [38]马克俭,李晓红.预应力钢网壳结构的研究和应用.贵州工学院勘察设计研究院空间结构研究所,1994
    [39]Rajan S.D. (Arizona State Univ). Sizing, shape, and topology design optimization of trusses using genetic algorithm.Source:Journal of Structural Engineering 12110 Oct 1995 ASCE p 1480-1487 0733-9445
    [40]孙焕纯,王跃方,黄吉锋.离散变量桁架的形状优化设计[J].大连理工大学学报,1995,35(1)
    [41]柴山,孙焕纯.求解一类(0,1)规划问题的相对差商法[J].系统工程学报,1996,Vol.11,No.1
    [42]柴山,孙焕纯.求解一类(0,1,2)规划问题的二级定界组合算法[J].大连理工大学学报,1996,Vol.36,No.3
    [43]石连拴,孙焕纯,柴山.两类变量综合处理的结构形状优化设计方法[J].计算力学学报.1999,Vol.16.No.4
    [44]邓华,董石麟.空间网壳结构的形状优化[J].浙江大学学报(工学版),1999,33(4):371-375
    [45]邓华.空间网格结构基于离散变量的优化设计[J].空间结构,2000,6(3):26-32
    [46]孙焕纯,柴山,王跃方.离散变量结构优化设计[M].大连:大连理工大学出版社,1995
    [47]柴山等.空间网架结构离散变量优化设计的研究[J].山东:山东工程学院学报,1995,8(4)
    [48]聂文雅.基于离散变量球面网壳的形状优化设计[D].山东:山东建筑大学申请硕士学位论文,2008
    [49]刘宗发.单层球面网壳的选型优化设计[D].重庆:重庆大学,2005:47-48
    [50]唐可,田彩军,寇晓东.ALGOR结构分析高级教程[M].北京:清华大学出版社,2008
    [51]郭玉霞.单层球面网壳选型优化[D].山东:山东建筑大学申请硕士学位论文,2007
    [52]宋秀卿.双层柱面网壳选型优化[D].山东:山东建筑大学申请硕士学位论文,2009
    [53]曲晓东,赵丽红.离散变量结构优化设计方法的研究进展与展望[J].辽宁工学院学报.2004
    [54]郭鹏飞.离散变量结构优化的拟满应力设计方法[J].工程力学,2000,(1)
    [55]郭鹏飞.离散变量结构优化的斐波那契遗传算法[J].辽宁工学院学报,2003,23(2):2—4