模拟鸟巢式体育场环境效应及其对草坪生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体育场的框架结构阻断了场内外空气的直接对流,造成了场内相对封闭的小气候环境,草坪是体育场内有生命的植物,场内小环境因子的变化将会影响草坪的生长与草坪的质量。目前,有关体育场环境效应及其对草坪生长影响的系统研究较少。本课题通过构建鸟巢式国家体育场框架模型,以高羊茅草坪为试验材料,分别于2006、2007年夏、冬季进行了以下四方面的研究:一、模拟鸟巢式体育场框架结构对场内草坪生长环境的影响;二、模拟鸟巢式体育场对高羊茅草坪越夏的影响;三、坪床控温技术对模拟鸟巢式体育场内高羊茅草坪越夏的改善效应;四、模拟鸟巢式体育场对高羊茅草坪冬季生长的影响。主要研究结果如下:
     模拟鸟巢式体育场框架结构造成了场内遮荫的环境,场内的光照强度与直射光照时间均显著低于场外对照,夏季场内草坪的平均光照强度只有场外对照的23.98%~68.07%,平均直射光照时间只有场外对照的12.08%;冬季场内草坪的平均光照强度只有场外对照的8.00%~60.47%,平均直射光照时间只有场外对照的3.34%。模拟鸟巢式体育场内的温度则显著高于场外对照,表现出明显的热集聚效应,2006和2007年夏季场内气温最大比场外对照分别高出7.8℃和7.5℃,场内分别出现了45.3℃和45.8℃的极端气温,给高质量运动草坪的养护带来非常大的难度;冬季场内的热集聚效应较夏季小,2006年冬季场内气温最大比场外对照高出2.4℃。模拟鸟巢式体育场框架结构也导致了场内相对湿度的增加,2006和2007年夏季场内相对湿度平均比场外对照分别高出2.9%和3.0%;2006年冬季场内相对湿度平均比场外对照高出6.7%。
     模拟鸟巢式体育场内夏季温度的增高严重影响了高羊茅草坪的生长,加速了草坪质量的下降。场内草坪的质量和生长量分别自7月23/24日和7月20/21日开始显著低于场外对照,草坪质量在8月8/9日下降到可接受草坪质量标准(6.0)以下;场内草坪叶片的叶绿素含量自7月28/29日开始显著低于场外对照,但叶片的相对电导率则从8月6日起显著高于场外对照,叶片内的丙二醛含量则有一半左右的时间显著高于场外对照。
     坪床控温技术显著降低了模拟鸟巢式体育场内草坪根际的生长温度,控温区坪床10cm处地温显著低于非控温区,其平均降温幅度分别达到5.11℃和7.31℃,分别降至30.97℃和27.78℃。控温区坪床地温的下降显著地改善了场内高羊茅草坪的生长,控温区草坪的质量和生长量分别自7月23/24日和7月20/21日开始显著高于非控温区;草坪叶片的叶绿素含量自7月28/29日开始也显著高于非控温区;2006年控温区草坪的群落净光合速率从7月23日起显著高于非控温区,最大比非控温区提高了105.4%;2007年控温区草坪的根系活力从7月25日起也显著高于非控温区,最大比非控温区提高了35.1%;而叶片的相对电导率则从8月6日起显著低于非控温区,叶片的丙二醛含量和可溶性糖含量也有一半左右的时间显著低于非控温区。
     模拟鸟巢式体育场内冬季温度的增高虽使高羊茅草坪的垂直生长速度在2006年12月16日至2007年1月6日期间显著高于场外对照;但场内的弱光条件显著抑制了高羊茅草坪的生长,导致草坪质量、密度、单株分蘖数、地上部生物量、叶片的叶绿素含量及可溶性糖含量在整个试验期间均显著低于场外对照。
Frame structure of stadium interdicts direct convection of air inside and outside, resulting in a relatively closed microenvironment in stadium. Turfgrass is plant with life and changes of environmental factors in stadium could affect turf growth and quality. At present, systematic research on the microenvironment of the stadium and its effects on turfgrass growth are seldom. A simulated Nest-type National Stadium was built in this study and four experiments were carried out with tall fescue during the summer and winter of 2006 and 2007, respectively. The first was effects of simulated nest-type stadium on the growth environment of sports turf. The second was effects of simulated nest-type stadium on the growth of tall fescue in summer. The third was effects of root-zone cooling on the growth improvement of tall fescue in simulated nest-type stadium. The fourth was effects of simulated nest-type stadium on the growth of tall fescue in winter. The main results were as follows:
     Frame structure of stadium led to shade environment. Light intensity and direct radiation time in simulated stadium were significantly lower than the outside control. In summer average light intensity and direct radiation time in simulated stadium were only 23.98%~68.07% and 12.08% of the control, respectively. In winter average light intensity and direct radiation time in simulated stadium were only 8.00%~60.47% and 3.34% of the control, respectively. However, temperature in simulated stadium was significantly higher than the outside control, showing that there was a significant heat accumulation in it. The highest air temperature increases were 7.8℃and 7.5℃, and extreme air temperature were 45.3℃and 45.8℃in simulated stadium during the summer of 2006 and 2007, respectively. The increase of temperature in simulated stadium could make turf high quality management more difficult in summer. Heat accumulation in winter was lower than that in summer in simulated stadium. The highest air temperature increase was 2.4℃during the winter of 2006. Relative humidity in simulated stadium was also significantly higher than the outside control. The average relative humidity increases in simulated stadium were 2.9% and 3.0% in the summer of 2006 and 2007, respectively. In the winter of 2006 the average relative humidity increase was 6.7% in simulated stadium.
     The increase of temperature in simulated stadium dramatically affected the growth of tall fescuse in summer, accelerating the decline of turf quality. Turf quality and growth had been significantly lower than the control since July 23/24 and 20/21, respectively. Turf quality had decreased to below the acceptable level (6.0) since August 8/9. Leaf chlorophyll content had also decreased significantly compared to the control since July 28/29. However, leaf electrolyte leakage had been significantly higher than the control since August 6. MDA content in leaves had also increased significantly compared to the control for about half of the experiment period.
     Technique of root-zone cooling significantly reduced the root growth temperature of turfgrass in simulated stadium. Root-zone temperature at 10cm depth in Nest1 (treatment) was significantly lower than that in Nest2 (control). The average decreases were 5.11℃and 7.31℃, thus the root-zone temperature at 10cm depth in Nest1 reduced to 30.97℃and 27.78℃. The decrease of root-zone temperature in Nest1 significantly improved the growth of tall fescuse in simulated stadium. Turf quality and growth had been significantly higher than Nest2 since July 23/24 and 20/21, respectively. Leaf chlorophyll content had also increased significantly compared to Nest2 since July 28/29. Turf canopy net photosynthetic rate was significantly higher than Nest2 since July 23 in the year 2006, and the highest increase was 105.4% of Nest2. Turfgrass root activity had also increased significantly compared to Nest2 since July 25 in the year 2007, and the highest increase was 35.1% of Nest2. However, leaf electrolyte leakage had been significantly lower than Nest2 since August 6. MDA content and soluble sugar content in leaves had also decreased significantly compared to Nest2 for about half of the experiment period.
     The increase of temperature in simulated stadium prompted shoot vertical extension rate in winter, which had been significantly higher than the control during the period of December 16, 2006 and January 6, 2007. However, low light condition in simulated stadium significantly inhibited the growth of tall fescuse. Turf quality, density and turfgrass tiller, shoot dry weight, leaf chlorophyll content and soluble sugar content had been significantly lower than the control since the beginning of the experiment.
引文
[1] 王斌兵, 李燕云. 张拉整体体系的统一定义[J]. 空间结构, 1998, 4(4): 10-14.
    [2] 傅丰. 张拉整体结构—新型的空间结构体系[J]. 四川建筑科学研究, 2004, 30(3): 3-5.
    [3] 张兴波. 坪床控温对模拟鸟巢式体育场草坪生长的影响[D]. 甘肃农业大学, 2006.
    [4] ESRU. A building energy simulation environment[M]. User guide, Energy Systems Research Unit, University of St rathclyde, Glasgow, 1995.
    [5] Martin, D. E. Climatic heat stress studies at the Atlanta 1996 Olympic stadium venue, 1992- 1995[J]. Sports Medicine, Training, and Rehabilitation, 1996, 6: 249-267.
    [6] Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrass in relation to antioxidant metabolism and lipid peroxidation[J]. Crop Sci, 2001, 41: 436-442.
    [7] Wang Z, Xu Q, Huang B. Endogenous cytokinin levels and growth responses to extended photoperiods for creeping bentgrass under heat stress[J]. Crop Sci, 2004, 44: 209-213.
    [8] Xu Q., Huang B. Lowering soil temperatures improves creeping bentgrass growth under heat stress[J]. Crop Sci, 2001, 41: 1878-1883.
    [9] Xu Q., Huang B. Morphysiological and physiological characteristics associated with heat tolerance in creeping bentgrass[J]. Crop Sci, 2001, 41: 127-133.
    [10] Carrow, R. N. Summer decline of bentgrass greens. Golf Course Manage. 1996, 64: 51-56.
    [11] Xu, Q., and B. Huang. a. Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures[J]. Crop Sci, 2000, 40: 1361-1368.
    [12] Xu Q Z , Huang B R , Wang Z L. Effects of extended day-length on shoot growth and carbohydrate metabolism for creeping bentgrass exposed to heat stress[J]. Journal of the American Society for Hortcultural Science, 2004, 129(2): 193-197.
    [13] Beard J B. Turfgrass: science and culture[M]. 2nd edition. Prentice Hall Englewood Cliffs NJ, 1995, 227-260.
    [14] Davies, A., and H. Thomas. Rate of leaf and tiller production in young spaced perennial ryegrass plants in relation to soil temperature and solar radiation[J]. Ann. Bot. (London). 1983, 51: 591-597.
    [15] Thomas, H., and I. B. Norris. The growth responses of Lolium perenne to the weather during winter and spring at various altitudes in mid-Wales[J]. J. Appl. Ecol, 1977, 14: 949-964.
    [16] Youngner, V. B., and F. J. Nudge. Soil temperature, air temperature, and defoliation effects on growth and nonstructural carbohydrates of Kentucky bluegrass[J]. Agron. J, 1976, 68: 257-260.
    [17] Youngner, V. B., F. J. Nudge, and S. Spaulding. Seasonal changes in nonstructural carbohydrate levels and innovation number of Kentucky bluegrass turf growing in three plant-climate areas[J]. Agron. J, 1978, 70: 407-411.
    [18] 孙吉雄. 草坪学[M]. 第二版. 北京: 中国农业出版社, 2004, 23-85.
    [19] Al-Khatib, K., Paulsen, G. M. High-temperature effects on photosynthetic processes in temperate and tropical cereals[J]. Crop Sci, 1984, 39: 119-125.
    [20] Kramer, P. J. Water stress research: progress and problems[J]. Curr. Top. Plant Biochem. Physiol, 1983, 2: 129-144.
    [21] Kuroyanagi, T., Paulsen, G.M. Mediation of high-temperature injury by roots and shoots during reproductive growth of wheat[J]. Plant Cell Environ, 1988, 11: 517-523.
    [22] Smart, C. M., Scofield, S. R., Bevan, M. W., Dyer, T. A. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium[J]. Plant Cell, 1991, 7: 647-656.
    [23] Udomprasert, N., Li, P. H., Davis, D. V., Markhart III, A. H. a. Root cytokinin level in relation to heat tolerance of Phaseolus acutifolius and Phaseolus vulgaris[J]. Crop Sci, 1995, 35: 486-490.
    [24] Udomprasert, N., Li, P.H., Davis, D.V., Markhart III, A.H. b. Effect of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris[J]. Crop Sci, 1995, 35: 490-495.
    [25] 陈才夫, 梁祖铎, 王槐三. 多年生黑麦草对高温、干旱的生理反应[J]. 南京农业大学学报, 1988, 11(2): 87-92.
    [26] Xu Q Z , Huang B R , Wang Z L. Photosynthetic responses of creeping bentgrass to reduced root-zone temperatures at supraoptimal air temperature[J]. The Journal of the American Society for Hortcultural Science, 2002, 127(5): 754-758.
    [27] Xu Q, Huang B. Season changes in carbohydrate accumulation for two creeping bentgrass cultivars[J]. Crop Sci, 2003, 43: 266-271.
    [28] Liu X Z , Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creepingbentgrass[J]. Crop Science, 2000, 40(2): 503-510.
    [29] 伍世平, 王君健, 于志熙. 18种草坪禾草的抗逆性研究[J]. 武汉植物学研究, 1995, 13(1): 75-80.
    [30] 何亚丽, 沈 剑, 王惠林. 冷季型草坪草抗热机理初探Ⅰ草地早熟禾 Poa paratensis 在热胁迫下叶片叶绿素含量和POD酶活性的变化[J]. 上海农学院学报, 1997, 15(2): 128-132.
    [31] Larkindale J , Huang B R. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera)[J]. Environmental and Experimental Botany, 2004, 51: 57-67.
    [32] Ma Z R , Liu R T. Physiology of Grasses in Drought Resistance[J]. Lanzhou: Lanzhou University Press. 1993.
    [33] 张庆峰, 徐胜, 李建龙. 温度胁迫下高羊茅生理生化特性研究[J]. 草业科学, 2006, 23 (4): 26-28.
    [34] 郭玉春, 余高镜, 曾建敏, 等. 温度胁迫下外引高羊茅活性氧代谢与细胞膜透性的变化[J]. 草业科学, 2003, 20(2): 4-8.
    [35] Xu, Q., and B. Huang. b. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass[J]. Crop Sci, 2000, 40: 1368-1374.
    [36] 王代军, 温 洋. 温度胁迫下几种冷季型草坪草抗性机制的研究[J]. 草业学报, 1998, 7(1): 75-80.
    [37] Katia G. Some mechanisms of damage and acclimation of the photosynthetic apparatus to high temperature[J] . Bulg. J . Plant Physiol. , 1999, 25: 89-99.
    [38] Matos M C , Campos P S , Ramalho J C , et al . Photosynthetic activity and cellular integrity of the Andean legume Pachyrhiz us ahipa (Wedd.) Parodi under heat and water stress[J]. Photosynthetica, 2002, 40: 493-501.
    [39] 陈平, 席嘉宾, 郭伟经, 等. 高温胁迫下粤选1号匍匐翦股颖新品系的生理效应研究[J]. 草业学报, 2004, 13 (2): 79-83.
    [40] 王志勇. 冷季型草坪草耐热性的研究进展[J]. 草业科学, 2006, 23(10): 84-91.
    [41] 赵昕, 李玉霖. 高温胁迫下冷地型草坪草几项生理指标的变化特征[J]. 草业学报, 2001, 10(4): 85-91.
    [42] Lomas K J , Eppel H , Cook M , et al. Ventilation and thermal performance of design options for stadium Australia[C]. Proceedings of International Building Performance SimulationAssociation, 2003, 160-167.
    [43] Paulsen, G. M. High temperature responses of crop plants. p. 365–389. In K.J. Boote et al. (ed.) Physiology and determination of crop yield[J]. ASA, CSSA, and SSSA. Madison, WI. 1994.
    [44] Ramcharan, C., D. L. Ingram, T. A. Nell, and J. E. Barrett. Fluctuations in leaf carbon assimilation as affected by root-zone temperature and growth environment[J]. HortScience, 1991, 26: 1200-1202.
    [45] Ruter, J. M. , and D. L. Ingram. 14Carbon-labeled photosynthate partitioning in Ilex crenata ‘Rotundifolia’ at supraoptimal root-zone temperatures[J]. J. Am. Soc. Hort. Sci, 1990, 115: 1008-1013.
    [46] Ruter, J. M., and D. L. Ingram. High root-zone temperature influence Rubisco activity and pigment accumulation in leaves of ‘Rotundifolia’ holly[J]. J. Am. Soc. Hort. Sci, 1992, 117: 154-157.
    [47] Roy Dodd Ph. D., Bruce Martin. Ph. D. and James Camberato. Ph. D. Subsurface cooling and aeration[J]. Golf Course Management, 1999.
    [48] Trusty, S. Hot town cool bentgrass[J]. Golf Course Management, 1998, 66(4): 186-191.
    [49] Liu X, Huang B. Cytokinin effects on creeping bentgrass response to heat stress II. Leaf senescence and antioxidant metabolism[J]. Crop Sci, 2002, 42: 466-472.
    [50] He Y L , Liu Y L , Chen Q , et al. Thermotolerance related to antioxidation induced by salicylic acid and heat hardening in tall fescue seedlings[J]. J Plant Physiol Mol Biol, 2002, 28(2): 89-95.
    [51] 何亚丽, 王惠林, 沈 剑, 等. 冷季型草坪草耐热机理研究 Ⅱ. 5种冷季型草坪草离体叶片在骤然高温、干旱下细胞膜透性的变化及其抗性鉴定[J]. 上海农学院学报, 1997, 15(3): 209-214.
    [52] 江海东, 孙小芳, 曹卫星. 施肥对高羊茅草坪越夏的影响[J]. 植物资源与环境学报, 2000, 9(4): 41-47.
    [53] Fu J M, Huang B R. Effects of application of nutrients on heat tolerance of creeping bentgrass. J Plant Nutr, 2003. 26: 81-96.
    [54] He L F, Wang A Q, Liu Y L, etal. Progress in the study on Ca2 + channels in plants[J]. J Guangxi Agric Biol Sci, 1999, 18(2): 142-146.
    [55] 何亚丽, 曹卫星, 刘友良, 等. 冷季型草坪草耐热性研究综述[J]. 草业学报, 2000, 9(2): 58-63.
    [56] 江海东, 曹卫星, 王举斌. 修剪对高羊茅生长及草坪质量的影响[J]. 草业科学, 1998, 15(1): 54-58.
    [57] 宋桂龙, 韩烈保. 足球场草坪运动质量影响因素的研究进展[J]. 中国草地, 2003, 25(1): 54-62.
    [58] 孙敬先, 王兆龙, 朱燕华, 等. 模拟鸟巢式运动场的热集聚效应及其对草坪生长的影响[J]. 草原与草坪, 2005, (5): 22-26.
    [59] 江海东, 孙小芳, 吴春, 等. 光照和播种量对高羊茅生长及草坪质量的影响[J]. 草业学报, 2000, 9(4): 63-67.
    [60] Yiwei Jiang, Robert N, Ronny R. Duncan. Physiological acclimation of seashore paspalum and bermudagrass to low light[J]. Scientia Horticulturae, 2005, (105): 101-115.
    [61] 徐胜, 李建龙, 何兴元, 等. 冷季型草坪草的耐热性调控研究进展[J]. 应用生态学报, 2006, 17(6): 1117-1122.
    [62] 江禾. 盆地气象学问题[J]. 新疆气象, 1986, (10): 2-4.
    [63] 徐东生, 孟志卿. 高温对高羊茅和狗牙根几个生理生化指标的影响[J]. 江西农业学报, 2007, 19 (8): 67-68.
    [64] 陈海波, 刘荣堂, 杜广真, 等. 草坪草褐斑病的研究进展和现状[J]. 草原与草坪, 2002, (3): 10-14.
    [65] 石仁才, 商鸿生, 张敬泽. 草坪禾草丝核菌的核相研究[J]. 菌物学报, 2007, 26(2): 221-225.
    [66] 柴春山, 贺伟. 夏季北京主要草坪病害调查及室内药剂筛选试验[J]. 中国草地, 2002, 24(6): 38-42.
    [67] Kassim A K , Gary M P. High temperature effects on photosynthetic processes in temperate and tropic cereals[J]. Crop Science, 1999, 39: 119-125.
    [68] Chartzoulakis K , Psarras G. Global change affects on crop photosynthesis and production in Mediterranean: The case of Crete, Greece[J]. Agriculture, Ecosystems & Environment, 2005, 106: 147-157.
    [69] Baker B S , Jung G A. Effect of environmental conditions on the growth of four perennial grasses. I. Response to controlled temperature[J]. Agronomy Journal, 1968, 60: 155-158.
    [70] 赵世杰, 许长成, 邹琦, 等. 植物中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207-210.
    [71] 陈建勋, 王小峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002.
    [72] Hull R J. Energy relations and carbohydrates partitioning in turfgrasses[J]. In D.V. Waddington et al. (ed.) Turfgrass. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. 1992: 175-206.
    [73] Huang B R , Gao H W. Growth and Carbohydrate Metabolism of Creeping Bentgrass Cultivars in Response to Increasing Temperatures[J]. Crop Science, 2000, 40: 1115-1120.
    [74] Wang Z L , Huang B R. Physiological Recovery of Kentucky Bluegrass from Simultaneous Drought and Heat Stress[J]. Crop Science, 2004, 44: 1729-1736.
    [75] 卢少云, 郭振飞. 草坪草逆境生理研究进展[J]. 草业学报, 2003, 12(4): 7-13.
    [76] 陈传军, 沈益新, 周建国, 等. 高温季节草地早熟禾草坪质量与叶片抗氧化酶活性的变化[J]. 草业学报, 2006, 15(4): 81-87.
    [77] Kenneth B M. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass[J]. Crop Science, 1998, 38: 1214-1218.
    [78] 张巨明, 王新力. 运动场草坪坪床设计与建造[J]. 中国体育科技, 2006, 42(2): 140-143.
    [79] 韩烈保. 运动场草坪[M]. 北京: 中国农业出版社, 2004.
    [80] Huang, B., X. Liu, and J. D. Fry. Shoot physiological responses of two bentgrass cultivars to high temperature and poor soil aeration[J]. Crop Sci, 1998, 38: 1219-1224.
    [81] 邹琦. 植物生理生化实验指导[M]. 北京: 中国农业出版社, 2000, 62-63.
    [82] Beard, J. B. Turfgrass: Science and culture[M]. Prentice-Hall, Engle-wood Cliffs, NJ, 1973.
    [83] Lucas, L.T. Bentgrass summer decline. North Carolina Summary[J]. 1995, 32-33.
    [84] Xu, Q., and B. Huang. Antioxidant Metabolism Associated with Summer Leaf Senescence and Turf Quality Decline for Creeping Bentgrass[J]. Crop Sci, 2004, 44: 553-560.
    [85] Liu X Z , Huang B R. Root physiological factors involved in cool-season grass response to high soil temperature[J]. Environmental and Experimental Botany, 2005, 53: 233-245.
    [86] Aldous, D. E. , and J. E. Kaufmann. Role of root temperature on shoot growth of two Kentucky bluegrass cultivars[J]. Agron. J, 1979, 71: 545-547.
    [87] Ziska, L. H. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxidase concentrations[J]. Ann. Bot. (London) 1998, 81: 717-721.
    [88] Martin, C. A., D. L. Ingram, and T.A. Nell. Supraoptimal root-zone temperature alters growth and photosynthesis of holly and elm[J]. J. Arboriculture, 1985, 15: 272-276.
    [89] Kuroyanagi, T., and G. M. Paulsen. Mediation of high-temperature injury by roots and shoots during reproductive growth of wheat[J]. Plant Cell Environ, 1988, 11: 517-523.
    [90] Graves, W. R., R.. J. Joly, and M. N. Dana. Water use and growth of honey locust and tree-of-heaven at high root-zone temperature[J]. HortScience, 1991, 26: 1309-1312.
    [91] Cooper R J . Protecting turf from winter injury. Golf course Manage[M], 1982, (10): 30-32.
    [92] Ledboer F B. Soil heating study with cool season turfgrass: I. Effect of watt density, protective covers and ambient environment on soil temperature distributtion. University of Rhods Island[M], Chapter 1. 1969.
    [93] Roberts J M. Influence of protective covers on reducing winter desiccation of turf [J]. Agron. J , 1986, 78: 145-147.
    [94] Evans G E. Winter mulch covers, spring vigor, and subsequent growth of Agrostis[J]. Agron. J , 1975, 67: 409-454.
    [95] 毕玉芬. 北方运动场草坪冬季加热保温技术的研究[J]. 2001, (2): 22-27.
    [96] 王钦. 低温对草坪植物细胞的伤害[J]. 草业科学, 1993, 10(4): 57-61.
    [97] 王钦. 低温对草坪植物生命过程的伤害[J]. 草业科学, 1993, 10(4): 62-65.
    [98] 魏臻武, 范占炼, 王槐三. 不同类型草坪草的抗寒锻炼[J]. 草业科学, 1997, 14(3): 60-65.
    [99] 梁慧敏, 夏阳, 杜峰, 等. 低温胁迫对草地早熟禾抗性生理生化指标的影响[J]. 草地学报, 2001, 9 (4): 283-286.
    [100] 颜红波. 不同温度对多年生禾草种子发芽的影响[J]. 草业科学, 1998, 15(4): 22-26.
    [101] Lyons J M. Chilling injure in plants[J]. Ann Rev Plant Physiol, 1973, 24: 445-446.
    [102] 池玉春, 丁国华, 连永权, 等. 低温胁迫对三种冷季型草坪草脯氨酸含量及膜透性的影响[J]. 中国农学通报, 2007, 23(1): 101-104.
    [103] 刘道宏. 植物叶片的衰老[J]. 植物生理学通讯, 1983, (2): 14-19.
    [104] Kratsch H A , etal. The ultra structure of chilling stress[J]. Plant Cell and Environ., 2000, (23): 337-350.
    [105] 周德宝. 不同披碱草抗寒性的研究[J]. 阴山学刊(自然科学版), 1996, 13(3): 35-37.
    [106] 杨志民, 何霞, 韩烈保. 高温季节不同光照强度对冷季型草坪草坪用性状的影响[J]. 草业学报, 2007, 16(5): 48-55.